1
|
Hunt A, Rasor BJ, Seki K, Ekas HM, Warfel KF, Karim AS, Jewett MC. Cell-Free Gene Expression: Methods and Applications. Chem Rev 2025; 125:91-149. [PMID: 39700225 PMCID: PMC11719329 DOI: 10.1021/acs.chemrev.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 12/21/2024]
Abstract
Cell-free gene expression (CFE) systems empower synthetic biologists to build biological molecules and processes outside of living intact cells. The foundational principle is that precise, complex biomolecular transformations can be conducted in purified enzyme or crude cell lysate systems. This concept circumvents mechanisms that have evolved to facilitate species survival, bypasses limitations on molecular transport across the cell wall, and provides a significant departure from traditional, cell-based processes that rely on microscopic cellular "reactors." In addition, cell-free systems are inherently distributable through freeze-drying, which allows simple distribution before rehydration at the point-of-use. Furthermore, as cell-free systems are nonliving, they provide built-in safeguards for biocontainment without the constraints attendant on genetically modified organisms. These features have led to a significant increase in the development and use of CFE systems over the past two decades. Here, we discuss recent advances in CFE systems and highlight how they are transforming efforts to build cells, control genetic networks, and manufacture biobased products.
Collapse
Affiliation(s)
- Andrew
C. Hunt
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Blake J. Rasor
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Kosuke Seki
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly M. Ekas
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Robert
H. Lurie Comprehensive Cancer Center, Northwestern
University, Chicago, Illinois 60611, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Burbano DA, Kiattisewee C, Karanjia AV, Cardiff RAL, Faulkner ID, Sugianto W, Carothers JM. CRISPR Tools for Engineering Prokaryotic Systems: Recent Advances and New Applications. Annu Rev Chem Biomol Eng 2024; 15:389-430. [PMID: 38598861 DOI: 10.1146/annurev-chembioeng-100522-114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
In the past decades, the broad selection of CRISPR-Cas systems has revolutionized biotechnology by enabling multimodal genetic manipulation in diverse organisms. Rooted in a molecular engineering perspective, we recapitulate the different CRISPR components and how they can be designed for specific genetic engineering applications. We first introduce the repertoire of Cas proteins and tethered effectors used to program new biological functions through gene editing and gene regulation. We review current guide RNA (gRNA) design strategies and computational tools and how CRISPR-based genetic circuits can be constructed through regulated gRNA expression. Then, we present recent advances in CRISPR-based biosensing, bioproduction, and biotherapeutics across in vitro and in vivo prokaryotic systems. Finally, we discuss forthcoming applications in prokaryotic CRISPR technology that will transform synthetic biology principles in the near future.
Collapse
Affiliation(s)
- Diego Alba Burbano
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Cholpisit Kiattisewee
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ava V Karanjia
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ryan A L Cardiff
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ian D Faulkner
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Widianti Sugianto
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - James M Carothers
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
3
|
Melinek BJ, Tuck J, Probert P, Branton H, Bracewell DG. Designing of an extract production protocol for industrial application of cell-free protein synthesis technology: Building from a current best practice to a quality by design approach. ENGINEERING BIOLOGY 2023; 7:1-17. [PMID: 38094242 PMCID: PMC10715128 DOI: 10.1049/enb2.12029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 10/16/2024] Open
Abstract
Cell-Free Protein Synthesis (CFPS) has, over the past decade, seen a substantial increase in interest from both academia and industry. Applications range from fundamental research, through high-throughput screening to niche manufacture of therapeutic products. This review/perspective focuses on Quality Control in CFPS. The importance and difficulty of measuring the Raw Material Attributes (RMAs) of whole cell extract, such as constituent protein and metabolite concentrations, and of understanding and controlling these complicated enzymatic reactions is explored, for both centralised and distributed industrial production of biotherapeutics. It is suggested that a robust cell-free extract production process should produce cell extract of consistent quality; however, demonstrating this is challenging without a full understanding of the RMAs and their interaction with reaction conditions and product. Lack of technology transfer and knowledge sharing is identified as a key limiting factor in the development of CFPS. The article draws upon the experiences of industrial process specialists, discussions within the Future Targeted Healthcare Manufacturing Hub Specialist Working Groups and evidence drawn from various sources to identify sources of process variation and to propose an initial guide towards systematisation of CFPS process development and reporting. These proposals include the development of small scale screening tools, consistent reporting of selected process parameters and analytics and application of industrial thinking and manufacturability to protocol development.
Collapse
Affiliation(s)
| | - Jade Tuck
- CPIDarlingtonUK
- Merck KGaADarmstadtGermany
| | | | | | | |
Collapse
|
4
|
Piorino F, Patterson AT, Han Y, Styczynski MP. Plasmid Crosstalk in Cell-Free Expression Systems. ACS Synth Biol 2023; 12:2843-2856. [PMID: 37756020 PMCID: PMC10594874 DOI: 10.1021/acssynbio.3c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Indexed: 09/28/2023]
Abstract
Although cell-free protein expression has been widely used for the synthesis of single proteins, cell-free synthetic biology has rapidly expanded to new, more complex applications. One such application is the prototyping or implementation of complex genetic networks involving the expression of multiple proteins at precise ratios, often from different plasmids. However, expression of multiple proteins from multiple plasmids may inadvertently result in unexpected, off-target changes to the levels of the proteins being expressed, a phenomenon termed plasmid crosstalk. Here, we show that the effects of plasmid crosstalk─even at the qualitative level of increases vs decreases in protein expression─depend on the concentration of plasmids in the reaction and the type of transcriptional machinery involved in the expression. This crosstalk can have a significant impact on genetic circuitry function and even interpretation of simple experimental results and thus should be taken into consideration during the development of cell-free applications.
Collapse
Affiliation(s)
- Fernanda Piorino
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Alexandra T. Patterson
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Yue Han
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Mark P. Styczynski
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| |
Collapse
|
5
|
Dodia H, Sunder AV, Borkar Y, Wangikar PP. Precision fermentation with mass spectrometry-based spent media analysis. Biotechnol Bioeng 2023; 120:2809-2826. [PMID: 37272489 DOI: 10.1002/bit.28450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 06/06/2023]
Abstract
Optimization and monitoring of bioprocesses requires the measurement of several process parameters and quality attributes. Mass spectrometry (MS)-based techniques such as those coupled to gas chromatography (GCMS) and liquid Chromatography (LCMS) enable the simultaneous measurement of hundreds of metabolites with high sensitivity. When applied to spent media, such metabolome analysis can help determine the sequence of substrate uptake and metabolite secretion, consequently facilitating better design of initial media and feeding strategy. Furthermore, the analysis of metabolite diversity and abundance from spent media will aid the determination of metabolic phases of the culture and the identification of metabolites as surrogate markers for product titer and quality. This review covers the recent advances in metabolomics analysis applied to the development and monitoring of bioprocesses. In this regard, we recommend a stepwise workflow and guidelines that a bioprocesses engineer can adopt to develop and optimize a fermentation process using spent media analysis. Finally, we show examples of how the use of MS can revolutionize the design and monitoring of bioprocesses.
Collapse
Affiliation(s)
- Hardik Dodia
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | | | - Yogen Borkar
- Clarity Bio Systems India Pvt. Ltd., Pune, India
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
- Clarity Bio Systems India Pvt. Ltd., Pune, India
| |
Collapse
|
6
|
Wagner L, Jules M, Borkowski O. What remains from living cells in bacterial lysate-based cell-free systems. Comput Struct Biotechnol J 2023; 21:3173-3182. [PMID: 37333859 PMCID: PMC10275740 DOI: 10.1016/j.csbj.2023.05.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Because they mimic cells while offering an accessible and controllable environment, lysate-based cell-free systems (CFS) have emerged as valuable biotechnology tools for synthetic biology. Historically used to uncover fundamental mechanisms of life, CFS are nowadays used for a multitude of purposes, including protein production and prototyping of synthetic circuits. Despite the conservation of fundamental functions in CFS like transcription and translation, RNAs and certain membrane-embedded or membrane-bound proteins of the host cell are lost when preparing the lysate. As a result, CFS largely lack some essential properties of living cells, such as the ability to adapt to changing conditions, to maintain homeostasis and spatial organization. Regardless of the application, shedding light on the black-box of the bacterial lysate is necessary to fully exploit the potential of CFS. Most measurements of the activity of synthetic circuits in CFS and in vivo show significant correlations because these only require processes that are preserved in CFS, like transcription and translation. However, prototyping circuits of higher complexity that require functions that are lost in CFS (cell adaptation, homeostasis, spatial organization) will not show such a good correlation with in vivo conditions. Both for prototyping circuits of higher complexity and for building artificial cells, the cell-free community has developed devices to reconstruct cellular functions. This mini-review compares bacterial CFS to living cells, focusing on functional and cellular process differences and the latest developments in restoring lost functions through complementation of the lysate or device engineering.
Collapse
|
7
|
Martin JP, Rasor BJ, DeBonis J, Karim AS, Jewett MC, Tyo KEJ, Broadbelt LJ. A dynamic kinetic model captures cell-free metabolism for improved butanol production. Metab Eng 2023; 76:133-145. [PMID: 36724840 DOI: 10.1016/j.ymben.2023.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/30/2022] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
Cell-free systems are useful tools for prototyping metabolic pathways and optimizing the production of various bioproducts. Mechanistically-based kinetic models are uniquely suited to analyze dynamic experimental data collected from cell-free systems and provide vital qualitative insight. However, to date, dynamic kinetic models have not been applied with rigorous biological constraints or trained on adequate experimental data to the degree that they would give high confidence in predictions and broadly demonstrate the potential for widespread use of such kinetic models. In this work, we construct a large-scale dynamic model of cell-free metabolism with the goal of understanding and optimizing butanol production in a cell-free system. Using a combination of parameterization methods, the resultant model captures experimental metabolite measurements across two experimental conditions for nine metabolites at timepoints between 0 and 24 h. We present analysis of the model predictions, provide recommendations for butanol optimization, and identify the aldehyde/alcohol dehydrogenase as the primary bottleneck in butanol production. Sensitivity analysis further reveals the extent to which various parameters are constrained, and our approach for probing valid parameter ranges can be applied to other modeling efforts.
Collapse
Affiliation(s)
- Jacob P Martin
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Blake J Rasor
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Jonathon DeBonis
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Keith E J Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Linda J Broadbelt
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
8
|
Rasor BJ, Chirania P, Rybnicky GA, Giannone RJ, Engle NL, Tschaplinski TJ, Karim AS, Hettich RL, Jewett MC. Mechanistic Insights into Cell-Free Gene Expression through an Integrated -Omics Analysis of Extract Processing Methods. ACS Synth Biol 2023; 12:405-418. [PMID: 36700560 DOI: 10.1021/acssynbio.2c00339] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cell-free systems derived from crude cell extracts have developed into tools for gene expression, with applications in prototyping, biosensing, and protein production. Key to the development of these systems is optimization of cell extract preparation methods. However, the applied nature of these optimizations often limits investigation into the complex nature of the extracts themselves, which contain thousands of proteins and reaction networks with hundreds of metabolites. Here, we sought to uncover the black box of proteins and metabolites in Escherichia coli cell-free reactions based on different extract preparation methods. We assess changes in transcription and translation activity from σ70 promoters in extracts prepared with acetate or glutamate buffer and the common post-lysis processing steps of a runoff incubation and dialysis. We then utilize proteomic and metabolomic analyses to uncover potential mechanisms behind these changes in gene expression, highlighting the impact of cold shock-like proteins and the role of buffer composition.
Collapse
Affiliation(s)
- Blake J Rasor
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Payal Chirania
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.,Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Grant A Rybnicky
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States.,Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard J Giannone
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Nancy L Engle
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Timothy J Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Robert L Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States.,Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
9
|
Selim AS, Perry JM, Nasr MA, Pimprikar JM, Shih SCC. A Synthetic Biosensor for Detecting Putrescine in Beef Samples. ACS APPLIED BIO MATERIALS 2022; 5:5487-5496. [PMID: 36356104 DOI: 10.1021/acsabm.2c00824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Biogenic amines (BAs) are toxicological risks present in many food products. Putrescine is the most common foodborne BA and is frequently used as a quality control marker. Currently, there is a lack of regulation concerning safe putrescine limits in food as well as outdated food handling practices leading to unnecessary putrescine intake. Conventional methods used to evaluate BAs in food are generally time-consuming and resource-heavy with few options for on-site analysis. In response to this challenge, we have developed a transcription factor-based biosensor for the quantification of putrescine in beef samples. In this work, we use a naturally occurring putrescine responsive repressor-operator pair (PuuR-puuO) native to Escherichia coli. Moreover, we demonstrate the use of the cell-free putrescine biosensor on a paper-based device that enables rapid low-cost detection of putrescine in beef samples stored at different temperatures. The results presented demonstrate the potential role of using paper-based biosensors for on-site testing, particularly as an index for determining meat product stability and quality.
Collapse
Affiliation(s)
- Alaa S Selim
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, QuébecH4B 1R6, Canada.,Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, QuébecH4B 1R6, Canada
| | - James M Perry
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, QuébecH4B 1R6, Canada.,Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, QuébecH4B 1R6, Canada
| | - Mohamed A Nasr
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, QuébecH4B 1R6, Canada.,Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, QuébecH4B 1R6, Canada
| | - Jay M Pimprikar
- Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, QuébecH4B 1R6, Canada.,Department of Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montréal, QuébecH3G 1M8, Canada
| | - Steve C C Shih
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, QuébecH4B 1R6, Canada.,Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, QuébecH4B 1R6, Canada.,Department of Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montréal, QuébecH3G 1M8, Canada
| |
Collapse
|
10
|
Sridharan H, Piorino F, Styczynski MP. Systems biology-based analysis of cell-free systems. Curr Opin Biotechnol 2022; 75:102703. [PMID: 35247659 DOI: 10.1016/j.copbio.2022.102703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/07/2021] [Accepted: 02/03/2022] [Indexed: 11/28/2022]
Abstract
Cell-free expression systems are becoming increasingly widely used due to their diverse applications in biotechnology. Despite this rapid expansion in adoption, many aspects of cell-free systems remain surprisingly poorly understood. Systems biology approaches make it possible to characterize cell-free systems deeply and broadly to better understand their underlying complexity. Here, we review recent systems biology studies that have provided insight into cell-free systems. We focus on characterization of the cell-free proteome, including its dependence on preparation protocol and host strain, as well as the cell-free metabolome and the relationship of endogenous metabolism to system performance. We conclude by highlighting promising future research directions.
Collapse
Affiliation(s)
- Harini Sridharan
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA, 30332-0100, United States
| | - Fernanda Piorino
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA, 30332-0100, United States
| | - Mark P Styczynski
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA, 30332-0100, United States.
| |
Collapse
|
11
|
Cell-Free Protein Synthesis with Fungal Lysates for the Rapid Production of Unspecific Peroxygenases. Antioxidants (Basel) 2022; 11:antiox11020284. [PMID: 35204167 PMCID: PMC8868270 DOI: 10.3390/antiox11020284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
Unspecific peroxygenases (UPOs, EC 1.11.2.1) are fungal biocatalysts that have attracted considerable interest for application in chemical syntheses due to their ability to selectively incorporate peroxide-oxygen into non-activated hydrocarbons. However, the number of available and characterized UPOs is limited, as it is difficult to produce these enzymes in homologous or hetero-logous expression systems. In the present study, we introduce a third approach for the expression of UPOs: cell-free protein synthesis using lysates from filamentous fungi. Biomass of Neurospora crassa and Aspergillus niger, respectively, was lysed by French press and tested for translational activity with a luciferase reporter enzyme. The upo1 gene from Cyclocybe (Agrocybe) aegerita (encoding the main peroxygenase, AaeUPO) was cell-free expressed with both lysates, reaching activities of up to 105 U L−1 within 24 h (measured with veratryl alcohol as substrate). The cell-free expressed enzyme (cfAaeUPO) was successfully tested in a substrate screening that included prototypical UPO substrates, as well as several pharmaceuticals. The determined activities and catalytic performance were comparable to that of the wild-type enzyme (wtAaeUPO). The results presented here suggest that cell-free expression could become a valuable tool to gain easier access to the immense pool of putative UPO genes and to expand the spectrum of these sought-after biocatalysts.
Collapse
|
12
|
Gonzales D, Yandrapalli N, Robinson T, Zechner C, Tang TYD. Cell-Free Gene Expression Dynamics in Synthetic Cell Populations. ACS Synth Biol 2022; 11:205-215. [PMID: 35057626 PMCID: PMC8787815 DOI: 10.1021/acssynbio.1c00376] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Indexed: 11/29/2022]
Abstract
The ability to build synthetic cellular populations from the bottom-up provides the groundwork to realize minimal living tissues comprising single cells which can communicate and bridge scales into multicellular systems. Engineered systems made of synthetic micron-sized compartments and integrated reaction networks coupled with mathematical modeling can facilitate the design and construction of complex and multiscale chemical systems from the bottom-up. Toward this goal, we generated populations of monodisperse liposomes encapsulating cell-free expression systems (CFESs) using double-emulsion microfluidics and quantified transcription and translation dynamics within individual synthetic cells of the population using a fluorescent Broccoli RNA aptamer and mCherry protein reporter. CFE dynamics in bulk reactions were used to test different coarse-grained resource-limited gene expression models using model selection to obtain transcription and translation rate parameters by likelihood-based parameter estimation. The selected model was then applied to quantify cell-free gene expression dynamics in populations of synthetic cells. In combination, our experimental and theoretical approaches provide a statistically robust analysis of CFE dynamics in bulk and monodisperse synthetic cell populations. We demonstrate that compartmentalization of CFESs leads to different transcription and translation rates compared to bulk CFE and show that this is due to the semipermeable lipid membrane that allows the exchange of materials between the synthetic cells and the external environment.
Collapse
Affiliation(s)
- David
T. Gonzales
- Max
Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Center
for Systems Biology Dresden, 01307 Dresden, Germany
| | | | - Tom Robinson
- Max
Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Christoph Zechner
- Max
Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Center
for Systems Biology Dresden, 01307 Dresden, Germany
- Physics
of Life, Cluster of Excellence, TU Dresden, 01603 Dresden, Germany
| | - T-Y. Dora Tang
- Max
Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Center
for Systems Biology Dresden, 01307 Dresden, Germany
- Physics
of Life, Cluster of Excellence, TU Dresden, 01603 Dresden, Germany
| |
Collapse
|
13
|
Miguez AM, Zhang Y, Styczynski MP. Metabolomics Analysis of Cell-Free Expression Systems Using Gas Chromatography-Mass Spectrometry. Methods Mol Biol 2022; 2433:217-226. [PMID: 34985747 PMCID: PMC9814356 DOI: 10.1007/978-1-0716-1998-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metabolomics is the systems-scale study of the biochemical intermediates of metabolism. This approach has great potential to uncover how metabolic intermediates are used and generated in cell-free expression systems, something that is to date not well understood. Here, we present a detailed metabolomics protocol for characterization of the small molecules in cell-free systems. We specifically focus on the analysis of Escherichia coli lysate-based cell-free systems using gas chromatography coupled to mass spectrometry. Measuring and monitoring the metabolic changes in cell-free systems can provide insight into the ways that metabolites affect the productivity of cell-free reactions, ultimately allowing for more informed engineering and optimization efforts for cell-free systems.
Collapse
Affiliation(s)
- April M Miguez
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yan Zhang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mark P Styczynski
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
14
|
Zhang Y, Steppe PL, Kazman MW, Styczynski MP. Point-of-Care Analyte Quantification and Digital Readout via Lysate-Based Cell-Free Biosensors Interfaced with Personal Glucose Monitors. ACS Synth Biol 2021; 10:2862-2869. [PMID: 34672518 PMCID: PMC9807263 DOI: 10.1021/acssynbio.1c00282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Field-deployable diagnostics based on cell-free systems have advanced greatly, but on-site quantification of target analytes remains a challenge. Here we demonstrate that Escherichia coli lysate-based cell-free biosensors coupled to a personal glucose monitor (PGM) can enable on-site analyte quantification, with the potential for straightforward reconfigurability to diverse types of analytes. We show that analyte-responsive regulators of transcription and translation can modulate the production of the reporter enzyme β-galactosidase, which in turn converts lactose into glucose for PGM quantification. Because glycolysis is active in the lysate and would readily deplete converted glucose, we decoupled enzyme production and glucose conversion to increase the end point signal output. However, this lysate metabolism did allow for one-pot removal of glucose present in complex samples (like human serum) without confounding target quantification. Taken together, our results show that integrating lysate-based cell-free biosensors with PGMs enables accessible target detection and quantification at the point of need.
Collapse
|
15
|
|
16
|
Miguez AM, Zhang Y, Piorino F, Styczynski MP. Metabolic Dynamics in Escherichia coli-Based Cell-Free Systems. ACS Synth Biol 2021; 10:2252-2265. [PMID: 34478281 PMCID: PMC9807262 DOI: 10.1021/acssynbio.1c00167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The field of metabolic engineering has yielded remarkable accomplishments in using cells to produce valuable molecules, and cell-free expression (CFE) systems have the potential to push the field even further. However, CFE systems still face some outstanding challenges, including endogenous metabolic activity that is poorly understood yet has a significant impact on CFE productivity. Here, we use metabolomics to characterize the temporal metabolic changes in CFE systems and their constituent components, including significant metabolic activity in central carbon and amino acid metabolism. We find that while changing the reaction starting state via lysate preincubation impacts protein production, it has a comparatively small impact on metabolic state. We also demonstrate that changes to lysate preparation have a larger effect on protein yield and temporal metabolic profiles, though general metabolic trends are conserved. Finally, while we improve protein production through targeted supplementation of metabolic enzymes, we show that the endogenous metabolic activity is fairly resilient to these enzymatic perturbations. Overall, this work highlights the robust nature of CFE reaction metabolism as well as the importance of understanding the complex interdependence of metabolites and proteins in CFE systems to guide optimization efforts.
Collapse
|
17
|
Falgenhauer E, von Schönberg S, Meng C, Mückl A, Vogele K, Emslander Q, Ludwig C, Simmel FC. Evaluation of an E. coli Cell Extract Prepared by Lysozyme-Assisted Sonication via Gene Expression, Phage Assembly and Proteomics. Chembiochem 2021; 22:2805-2813. [PMID: 34240805 PMCID: PMC8518995 DOI: 10.1002/cbic.202100257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Indexed: 11/08/2022]
Abstract
Over the past decades, starting from crude cell extracts, a variety of successful preparation protocols and optimized reaction conditions have been established for the production of cell-free gene expression systems. One of the crucial steps during the preparation of cell extract-based expression systems is the cell lysis procedure itself, which largely determines the quality of the active components of the extract. Here we evaluate the utility of an E. coli cell extract, which was prepared using a combination of lysozyme incubation and a gentle sonication step. As quality measure, we demonstrate the cell-free expression of YFP at concentrations up to 0.6 mg/mL. In addition, we produced and assembled T7 bacteriophages up to a titer of 108 PFU/mL. State-of-the-art quantitative proteomics was used to compare the produced extracts with each other and with a commercial extract. The differences in protein composition were surprisingly small between lysozyme-assisted sonication (LAS) extracts, but we observed an increase in the release of DNA-binding proteins for increasing numbers of sonication cycles. Proteins taking part in carbohydrate metabolism, glycolysis, amino acid and nucleotide related pathways were found to be more abundant in the LAS extract, while proteins related to RNA modification and processing, DNA modification and replication, transcription regulation, initiation, termination and the TCA cycle were found enriched in the commercial extract.
Collapse
Affiliation(s)
- Elisabeth Falgenhauer
- Physics of Synthetic Biological Systems, Physics Department E14Technical University of MunichAm Coulombwall 4a85748GarchingGermany
| | - Sophie von Schönberg
- Physics of Synthetic Biological Systems, Physics Department E14Technical University of MunichAm Coulombwall 4a85748GarchingGermany
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS)Technical University of MunichGregor-Mendel-Strasse 485354FreisingGermany
| | - Andrea Mückl
- Physics of Synthetic Biological Systems, Physics Department E14Technical University of MunichAm Coulombwall 4a85748GarchingGermany
| | - Kilian Vogele
- Physics of Synthetic Biological Systems, Physics Department E14Technical University of MunichAm Coulombwall 4a85748GarchingGermany
| | - Quirin Emslander
- Physics of Synthetic Biological Systems, Physics Department E14Technical University of MunichAm Coulombwall 4a85748GarchingGermany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS)Technical University of MunichGregor-Mendel-Strasse 485354FreisingGermany
| | - Friedrich C. Simmel
- Physics of Synthetic Biological Systems, Physics Department E14Technical University of MunichAm Coulombwall 4a85748GarchingGermany
| |
Collapse
|
18
|
Duran‐Villalobos CA, Ogonah O, Melinek B, Bracewell DG, Hallam T, Lennox B. Multivariate statistical data analysis of cell‐free protein synthesis toward monitoring and control. AIChE J 2021. [DOI: 10.1002/aic.17257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Olotu Ogonah
- Department of Biochemical Engineering University College London London UK
| | - Beatrice Melinek
- Department of Biochemical Engineering University College London London UK
| | | | - Trevor Hallam
- Sutro Biopharma, Inc. South San Francisco California USA
| | - Barry Lennox
- Department of Electrical and Electronic Engineering The University of Manchester Manchester UK
| |
Collapse
|
19
|
Batista AC, Soudier P, Kushwaha M, Faulon J. Optimising protein synthesis in cell‐free systems, a review. ENGINEERING BIOLOGY 2021; 5:10-19. [PMID: 36968650 PMCID: PMC9996726 DOI: 10.1049/enb2.12004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 12/25/2022] Open
Abstract
Over the last decades, cell-free systems have been extensively used for in vitro protein expression. A vast range of protocols and cellular sources varying from prokaryotes and eukaryotes are now available for cell-free technology. However, exploiting the maximum capacity of cell free systems is not achieved by using traditional protocols. Here, what are the strategies and choices one can apply to optimise cell-free protein synthesis have been reviewed. These strategies provide robust and informative improvements regarding transcription, translation and protein folding which can later be used for the establishment of individual best cell-free reactions per lysate batch.
Collapse
Affiliation(s)
- Angelo C. Batista
- Université Paris‐Saclay INRAE AgroParisTech Micalis Institute Jouy‐en‐Josas France
| | - Paul Soudier
- Université Paris‐Saclay INRAE AgroParisTech Micalis Institute Jouy‐en‐Josas France
| | - Manish Kushwaha
- Université Paris‐Saclay INRAE AgroParisTech Micalis Institute Jouy‐en‐Josas France
| | - Jean‐Loup Faulon
- Université Paris‐Saclay INRAE AgroParisTech Micalis Institute Jouy‐en‐Josas France
- SYNBIOCHEM Center School of Chemistry Manchester Institute of Biotechnology The University of Manchester Manchester UK
| |
Collapse
|
20
|
Cole SD, Miklos AE, Chiao AC, Sun ZZ, Lux MW. Methodologies for preparation of prokaryotic extracts for cell-free expression systems. Synth Syst Biotechnol 2020; 5:252-267. [PMID: 32775710 PMCID: PMC7398980 DOI: 10.1016/j.synbio.2020.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022] Open
Abstract
Cell-free systems that mimic essential cell functions, such as gene expression, have dramatically expanded in recent years, both in terms of applications and widespread adoption. Here we provide a review of cell-extract methods, with a specific focus on prokaryotic systems. Firstly, we describe the diversity of Escherichia coli genetic strains available and their corresponding utility. We then trace the history of cell-extract methodology over the past 20 years, showing key improvements that lower the entry level for new researchers. Next, we survey the rise of new prokaryotic cell-free systems, with associated methods, and the opportunities provided. Finally, we use this historical perspective to comment on the role of methodology improvements and highlight where further improvements may be possible.
Collapse
Affiliation(s)
- Stephanie D. Cole
- US Army Combat Capabilities Development Command Chemical Biological Center, 8567 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA
| | - Aleksandr E. Miklos
- US Army Combat Capabilities Development Command Chemical Biological Center, 8567 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA
| | - Abel C. Chiao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Synvitrobio Inc., San Francisco, CA, USA
| | - Zachary Z. Sun
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Synvitrobio Inc., San Francisco, CA, USA
| | - Matthew W. Lux
- US Army Combat Capabilities Development Command Chemical Biological Center, 8567 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA
| |
Collapse
|
21
|
Dopp JL, Reuel NF. Simple, functional, inexpensive cell extract for in vitro prototyping of proteins with disulfide bonds. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Mohr B, Giannone RJ, Hettich RL, Doktycz MJ. Targeted Growth Medium Dropouts Promote Aromatic Compound Synthesis in Crude E. coli Cell-Free Systems. ACS Synth Biol 2020; 9:2986-2997. [PMID: 33044063 DOI: 10.1021/acssynbio.9b00524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Progress in cell-free protein synthesis (CFPS) has spurred resurgent interest in engineering complex biological metabolism outside of the cell. Unlike purified enzyme systems, crude cell-free systems can be prepared for a fraction of the cost and contain endogenous cellular pathways that can be activated for biosynthesis. Endogenous activity performs essential functions in cell-free systems including substrate biosynthesis and energy regeneration; however, use of crude cell-free systems for bioproduction has been hampered by the under-described complexity of the metabolic networks inherent to a crude lysate. Physical and chemical cultivation parameters influence the endogenous activity of the resulting lysate, but targeted efforts to engineer this activity by manipulation of these nongenetic factors has been limited. Here growth medium composition was manipulated to improve the one-pot in vitro biosynthesis of phenol from glucose via the expression of Pasteurella multocida phenol-tyrosine lyase in crude E. coli lysates. Crude cell lysate metabolic activity was focused toward the limiting precursor tyrosine by targeted growth medium dropouts guided by proteomics. The result is the activation of a 25-step enzymatic reaction cascade involving at least three endogenous E. coli metabolic pathways. Additional modification of this system, through CFPS of feedback intolerant AroG improves yield. This effort demonstrates the ability to activate a long, complex pathway in vitro and provides a framework for harnessing the metabolic potential of diverse organisms for cell-free metabolic engineering. The more than 6-fold increase in phenol yield with limited genetic manipulation demonstrates the benefits of optimizing growth medium for crude cell-free extract production and illustrates the advantages of a systems approach to cell-free metabolic engineering.
Collapse
Affiliation(s)
- Benjamin Mohr
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Richard J. Giannone
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Robert L. Hettich
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, Tennessee 37996, United States
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Mitchel J. Doktycz
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
23
|
Müller J, Siemann-Herzberg M, Takors R. Modeling Cell-Free Protein Synthesis Systems-Approaches and Applications. Front Bioeng Biotechnol 2020; 8:584178. [PMID: 33195146 PMCID: PMC7655533 DOI: 10.3389/fbioe.2020.584178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/29/2020] [Indexed: 01/03/2023] Open
Abstract
In vitro systems are ideal setups to investigate the basic principles of biochemical reactions and subsequently the bricks of life. Cell-free protein synthesis (CFPS) systems mimic the transcription and translation processes of whole cells in a controlled environment and allow the detailed study of single components and reaction networks. In silico studies of CFPS systems help us to understand interactions and to identify limitations and bottlenecks in those systems. Black-box models laid the foundation for understanding the production and degradation dynamics of macromolecule components such as mRNA, ribosomes, and proteins. Subsequently, more sophisticated models revealed shortages in steps such as translation initiation and tRNA supply and helped to partially overcome these limitations. Currently, the scope of CFPS modeling has broadened to various applications, ranging from the screening of kinetic parameters to the stochastic analysis of liposome-encapsulated CFPS systems and the assessment of energy supply properties in combination with flux balance analysis (FBA).
Collapse
Affiliation(s)
| | | | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
24
|
Dudley QM, Karim AS, Nash CJ, Jewett MC. In vitro prototyping of limonene biosynthesis using cell-free protein synthesis. Metab Eng 2020; 61:251-260. [PMID: 32464283 DOI: 10.1016/j.ymben.2020.05.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 01/03/2023]
Abstract
Metabolic engineering of microorganisms to produce sustainable chemicals has emerged as an important part of the global bioeconomy. Unfortunately, efforts to design and engineer microbial cell factories are challenging because design-build-test cycles, iterations of re-engineering organisms to test and optimize new sets of enzymes, are slow. To alleviate this challenge, we demonstrate a cell-free approach termed in vitro Prototyping and Rapid Optimization of Biosynthetic Enzymes (or iPROBE). In iPROBE, a large number of pathway combinations can be rapidly built and optimized. The key idea is to use cell-free protein synthesis (CFPS) to manufacture pathway enzymes in separate reactions that are then mixed to modularly assemble multiple, distinct biosynthetic pathways. As a model, we apply our approach to the 9-step heterologous enzyme pathway to limonene in extracts from Escherichia coli. In iterative cycles of design, we studied the impact of 54 enzyme homologs, multiple enzyme levels, and cofactor concentrations on pathway performance. In total, we screened over 150 unique sets of enzymes in 580 unique pathway conditions to increase limonene production in 24 h from 0.2 to 4.5 mM (23-610 mg/L). Finally, to demonstrate the modularity of this pathway, we also synthesized the biofuel precursors pinene and bisabolene. We anticipate that iPROBE will accelerate design-build-test cycles for metabolic engineering, enabling data-driven multiplexed cell-free methods for testing large combinations of biosynthetic enzymes to inform cellular design.
Collapse
Affiliation(s)
- Quentin M Dudley
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Ashty S Karim
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Connor J Nash
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
25
|
Kelwick RJR, Webb AJ, Freemont PS. Biological Materials: The Next Frontier for Cell-Free Synthetic Biology. Front Bioeng Biotechnol 2020; 8:399. [PMID: 32478045 PMCID: PMC7235315 DOI: 10.3389/fbioe.2020.00399] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Advancements in cell-free synthetic biology are enabling innovations in sustainable biomanufacturing, that may ultimately shift the global manufacturing paradigm toward localized and ecologically harmonized production processes. Cell-free synthetic biology strategies have been developed for the bioproduction of fine chemicals, biofuels and biological materials. Cell-free workflows typically utilize combinations of purified enzymes, cell extracts for biotransformation or cell-free protein synthesis reactions, to assemble and characterize biosynthetic pathways. Importantly, cell-free reactions can combine the advantages of chemical engineering with metabolic engineering, through the direct addition of co-factors, substrates and chemicals -including those that are cytotoxic. Cell-free synthetic biology is also amenable to automatable design cycles through which an array of biological materials and their underpinning biosynthetic pathways can be tested and optimized in parallel. Whilst challenges still remain, recent convergences between the materials sciences and these advancements in cell-free synthetic biology enable new frontiers for materials research.
Collapse
Affiliation(s)
- Richard J. R. Kelwick
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Alexander J. Webb
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Paul S. Freemont
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
- The London Biofoundry, Imperial College Translation & Innovation Hub, London, United Kingdom
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London, London, United Kingdom
| |
Collapse
|
26
|
Silverman AD, Karim AS, Jewett MC. Cell-free gene expression: an expanded repertoire of applications. Nat Rev Genet 2019; 21:151-170. [DOI: 10.1038/s41576-019-0186-3] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2019] [Indexed: 12/24/2022]
|