1
|
Li J, Gao T, Liang Z, Zhang Y, Zhang H, Peng Q, Zhu X, Abd-El-Aziz A, Zhang X, Ma N, Ma L. Rubber-like Deep Eutectic Solvent-Assisted Poly( N-acryloylglycinamide) Hydrogel for Highly Sensitive Pressure Detecting. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8434-8444. [PMID: 39849903 DOI: 10.1021/acsami.4c22299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Deep eutectic solvent (DES)-based conductive hydrogels have attracted great interest in the building of flexible electronic devices that can be used to replace conventional temperature-intolerant hydrogels and expensive ionic liquid gels. However, current DES-based conductive hydrogels obtained have limited mechanical strength, high hysteresis, and poor microdeformation sensitivity of the assembled sensors. In this work, a rubber-like conductive hydrogel based on N-acryloylglycinamide (NAGA) and DES (acetylcholine chloride/acrylamide) has been synthesized by a one-step method. The prepared conductive PNAGA-DES hydrogel has exhibited excellent mechanical strength, stability, and resilience during the long-term loading-unloading cycles, endowed with service durability. Besides, the as-prepared PNAGA-DES also possesses high transparency, high conductivity, and favorable antienvironmental disturbance, which can enhance the designability and robustness of the PNAGA-DES-based devices. Based on the remarkable properties, the PNAGA-DES hydrogel can be used for wearable pressure-strain sensors with high sensitivity of tiny strain for transferring information (gauge factor (GF) = 8.18, 0.2-2% strain) and long-term stability. Furthermore, it can also sensitively detect the large strain of human motion, showing potential application in information interaction and wearable electronics.
Collapse
Affiliation(s)
- Jizheng Li
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China
- National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
| | - Tianyuan Gao
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China
| | - Zihang Liang
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China
| | - Yihan Zhang
- National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
| | - Haibing Zhang
- National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
| | - Qihe Peng
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China
| | - Xu Zhu
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China
| | - Alaa Abd-El-Aziz
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China
| | - Xinyue Zhang
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China
| | - Ning Ma
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China
| | - Li Ma
- National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
| |
Collapse
|
2
|
Dong L, Jia R, Liu Z, Aiyiti W, Shuai C, Li Z, Fu Q, Li X. Tannic acid based multifunctional hydrogels with mechanical stability for wound healing. Colloids Surf B Biointerfaces 2024; 243:114127. [PMID: 39079186 DOI: 10.1016/j.colsurfb.2024.114127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/17/2024]
Abstract
Conventional wound dressings have poor tissue adhesion and mechanical stability, restricting their applications in dynamic motion environments. Tannic acid (TA) was ideal candidates for current dressing materials due to their well-known antioxidant and anti-inflammatory properties. However, the inevitable polymerization problem of TA limited the one-step synthesis of dressings. Herein, we reported a simple one-pot method to prepare double-network hydrogels containing N-acryloyl glycinamide (NAGA), N-hydroxyethyl acrylamide (HEAA) and TA. The resulting NHT hydrogel exhibited excellent tensile properties, fatigue resistance, and notch insensitivity to ensure mechanical stability under large deformation and stress in vitro. The NHT hydrogel also demonstrated room-temperature self-healing, broad adhesion to various substrates, synergistic swelling ability. In addition, catechol and benzene rings from TA helped shield against UV radiation and acted as free radical scavengers to relieve oxidative stress in wound damage. As a result, full-layer wounds in mice treated with NHT patches showed a higher healing rate, in which epithelialization was completed within 14 days. The integrated function enables hydrogel to maintain mechanical stability in dynamic motion environments with high strain and defects, with great potential for future clinical translation.
Collapse
Affiliation(s)
- Lanlan Dong
- School of Mechanical Engineering, Xinjiang University, Urumqi 830017, PR China.
| | - Ru Jia
- School of Mechanical Engineering, Xinjiang University, Urumqi 830017, PR China
| | - Zhong Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| | - Wurikaixi Aiyiti
- School of Mechanical Engineering, Xinjiang University, Urumqi 830017, PR China
| | - Cijun Shuai
- School of Mechanical Engineering, Xinjiang University, Urumqi 830017, PR China; Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, PR China
| | - Zhongwang Li
- School of Mechanical Engineering, Xinjiang University, Urumqi 830017, PR China
| | - Qiang Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China.
| | - Xiang Li
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
3
|
Khan MUA, Stojanović GM, Rehman RA, Moradi AR, Rizwan M, Ashammakhi N, Hasan A. Graphene Oxide-Functionalized Bacterial Cellulose-Gelatin Hydrogel with Curcumin Release and Kinetics: In Vitro Biological Evaluation. ACS OMEGA 2023; 8:40024-40035. [PMID: 37929099 PMCID: PMC10620874 DOI: 10.1021/acsomega.2c06825] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 05/05/2023] [Indexed: 11/07/2023]
Abstract
Biopolymer-based bioactive hydrogels are excellent wound dressing materials for wound healing applications. They have excellent properties, including hydrophilicity, tunable mechanical and morphological properties, controllable functionality, biodegradability, and desirable biocompatibility. The bioactive hydrogels were fabricated from bacterial cellulose (BC), gelatin, and graphene oxide (GO). The GO-functionalized-BC (GO-f-BC) was synthesized by a hydrothermal method and chemically crosslinked with bacterial cellulose and gelatin using tetraethyl orthosilicate (TEOS) as a crosslinker. The structural, morphological, and wettability properties were studied using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and a universal testing machine (UTM), respectively. The swelling analysis was conducted in different media, and aqueous medium exhibited maximum hydrogel swelling compared to other media. The Franz diffusion method was used to study curcumin (Cur) release (Max = 69.32%, Min = 49.32%), and Cur release kinetics followed the Hixson-Crowell model. Fibroblast (3T3) cell lines were employed to determine the cell viability and proliferation to bioactive hydrogels. Antibacterial activities of bioactive hydrogels were evaluated against infection-causing bacterial strains. Bioactive hydrogels are hemocompatible due to their less than 0.5% hemolysis against fresh human blood. The results show that bioactive hydrogels can be potential wound dressing materials for wound healing applications.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department
of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical
Research Center, Qatar University, Doha 2713, Qatar
| | - Goran M. Stojanović
- Department
of Electronics, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Roselinda Ab Rehman
- Oral
and Maxillofacial Surgery Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ali-Reza Moradi
- Department
of Physics, Institute for Advanced Studies
in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Muhammad Rizwan
- Department
of Chemistry, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nureddin Ashammakhi
- Department
of Biomedical Engineering and the Institute for Quantitative Health
Science & Engineering, Michigan State
University, East Lansing, Michigan 48824, United States
| | - Anwarul Hasan
- Department
of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical
Research Center, Qatar University, Doha 2713, Qatar
| |
Collapse
|
4
|
Tang Y, Wang H, Liu S, Pu L, Hu X, Ding J, Xu G, Xu W, Xiang S, Yuan Z. A review of protein hydrogels: Protein assembly mechanisms, properties, and biological applications. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Du L, Liao R, Zhang H, Qu X, Hu X. Redox-activity of polydopamine for ultrafast preparation of self-healing and adhesive hydrogels. Colloids Surf B Biointerfaces 2022; 214:112469. [PMID: 35339902 DOI: 10.1016/j.colsurfb.2022.112469] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
Abstract
The high adhesive property of polydopamine (PDA) has spurred various hydrogels for biological and medical applications. Herein, a dual-catalytic redox system was constructed by using the inner dynamic redox-activity of PDA and free radical initiator ammonium persulfate (APS) to initiate the polymerization of acrylic acid (AA) monomer to obtain Fe-PDA hydrogels within 2 h at room temperature. Fe-PDA NPs functions as both initiator to activate APS to generate free radicals and promotes the formation of the hydrogel and dynamic cross-linking mediator between the polymer chains. The tensile strength and ductility of the obtained hydrogels vary with the content of Fe-PDA NPs. Hydrogel with 0.15 wt% of Fe-PDA NPs has the highest tensile strength (~0.62 MPa) and hydrogel with 0.6 wt% of Fe-PDA NPs has the highest elongation, about ~650%. The introduction of PDA NPs imparts PAA hydrogel with reproducible adhesive properties and self-healing ability. The doped iron ion further endows hydrogel enhanced photothermal properties (up to 160 ℃ with 808 nm laser irradiation for 120 s) and conductivity.
Collapse
Affiliation(s)
- Lulu Du
- Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Rixin Liao
- Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Huijuan Zhang
- Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Xiongwei Qu
- Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, PR China.
| | - Xiuli Hu
- Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, PR China.
| |
Collapse
|
6
|
Dai S, Yue S, Ning Z, Jiang N, Gan Z. Polydopamine Nanoparticle-Reinforced Near-Infrared Light-Triggered Shape Memory Polycaprolactone-Polydopamine Polyurethane for Biomedical Implant Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14668-14676. [PMID: 35311259 DOI: 10.1021/acsami.2c03172] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Near-infrared (NIR) light-triggered shape memory polymers are expected to have a more promising prospect in biomedical applications compared with traditional heat-triggered shape memory polymers. In this work, a new kind of polyurethane with NIR light-triggered shape memory property was prepared by using polycaprolactone (PCL), polydopamine nanoparticles (PDANPs), hexamethylene diisocyanate (HDI), and 1,4-butanediol (BDO). The synthesized PCL-PDA polyurethanes, especially when the weight content of PDANPs was 0.17%, showed excellent mechanical properties because the PDANPs were well-dispersed in polyurethanes by the chain extension reaction. Moreover, it also showed an NIR light-triggered rapid shape recovery because of the photothermal effect of polydopamine. The in vitro and in vivo tests showed that the PCL-PDA polyurethane would not inhibit cell proliferation nor induce a strong host inflammatory response, revealing the non-cytotoxicity and good biocompatibility of the material. In addition, the PCL-PDA polyurethane exhibited excellent in vivo NIR light-triggered shape memory performance under an 808 nm laser with low intensity (0.33 W cm-2), which was harmless to the human skin. These results demonstrated the potential of the PCL-PDA polyurethane in biomedical implant applications.
Collapse
Affiliation(s)
- Suyang Dai
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Saisai Yue
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhenbo Ning
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ni Jiang
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhihua Gan
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
7
|
Liu Y, Xu D, Ding Y, Lv X, Huang T, Yuan B, Jiang L, Sun X, Yao Y, Tang J. A conductive polyacrylamide hydrogel enabled by dispersion-enhanced MXene@chitosan assembly for highly stretchable and sensitive wearable skin. J Mater Chem B 2021; 9:8862-8870. [PMID: 34671799 DOI: 10.1039/d1tb01798e] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
MXene is recognized as an ideal material for sensitive wearable strain sensors because of its unique advantages of conductivity, hydrophilicity and mechanical properties. However, conventional hydrogel sensors utilizing MXene as a conductive material inevitably encounter the excessive accumulation of MXene nanosheets during the process of synthesis, which limits the electron transmission, reduces the conductivity, and concurrently weakens the mechanical capability and sensitivity of sensors. Herein, we construct a dispersion-enhanced MXene hydrogel (DEMH) through a chitosan-induced self-assembly strategy for the first time. Charge transfer is carried out through the flow of a material or a collection of material microstructures, and thus the highly interconnected 3D MXene@Chitosan network provides fast transport channels for electrons, and the DEMH exhibits excellent conductivity and sensibility simultaneously. Besides, the electrostatic self-assembly between MXene and chitosan, and the supramolecular interactions between MXene, chitosan and polyacrylamide chain segment result in excellent mechanical strength (of up to 1900%) and flexibility of DEMH. Furthermore, the introduction of chitosan which possesses a high density of positively charged groups and MXene with semiconducting properties also endows sensor versatility, such as self-adhesion properties and antibacterial activity. This work develops a simple and cut-price strategy for combining MXene unaggregated into a hydrogel as a sensor with high conductivity, sensibility and flexibility. A simple and inexpensive strategy for avoiding self-stacking of two-dimensional conductive materials is proposed, which paves the way for a broad range of applications in electronic skin, human motion detection and intelligent devices.
Collapse
Affiliation(s)
- Yaqing Liu
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Daren Xu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Qianjin Avenue 2699, Changchun 130012, P. R. China
| | - Yi Ding
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Xiaoxiao Lv
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Tingting Huang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Bolei Yuan
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Lin Jiang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Xueying Sun
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Yuanqing Yao
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Jun Tang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
8
|
Yu Q, Zheng Z, Dong X, Cao R, Zhang S, Wu X, Zhang X. Mussel-inspired hydrogels as tough, self-adhesive and conductive bioelectronics: a review. SOFT MATTER 2021; 17:8786-8804. [PMID: 34596200 DOI: 10.1039/d1sm00997d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To overcome the wearable sensor's defects and achieve the goal of robust mechanical properties, long-term adhesion, sensitive electrical conductivity, the multifunctional hydrogels were inspired by various mussels on the base of catechol and its analogues. In this review, we review the strategies for improving the mechanical strength, adhesion, conductivity and antibacterial properties of mussel-inspired hydrogels as bioelectronics. Double network structures, nanocomposites, supramolecular block polymers and other strategies were utilized for achieving tough hydrogels to prevent tensile fractures under high deformation. Many mussel-inspired chemistries were incorporated for constructing skin-attachable hydrogel strain sensors and some strategies for controlling the oxidation of catechol were employed to achieve long-term adhesion. In addition, electrolytes, conductive fillers, conductive polymers and their relevant hydrophilic modifications were introduced for fabricating the conductive hydrogel bioelectronics to enhance the conductivity properties. Finally, the challenges and outlooks in this promising field are featured from the perspective of materials chemistry.
Collapse
Affiliation(s)
- Qin Yu
- South China University of Technology, Chemistry and Chemical Engineering, Guangzhou, 510006, China
- Northeast Petroleum University, Chemistry and Chemical Engineering, Daqing, 163318, China
| | - Zirong Zheng
- Northeast Petroleum University, Chemistry and Chemical Engineering, Daqing, 163318, China
| | - Xinhao Dong
- Northeast Petroleum University, Chemistry and Chemical Engineering, Daqing, 163318, China
| | - Rui Cao
- Northeast Petroleum University, Chemistry and Chemical Engineering, Daqing, 163318, China
| | - Shuheng Zhang
- Northeast Petroleum University, Chemistry and Chemical Engineering, Daqing, 163318, China
| | - Xiaolin Wu
- Daqing Research Institute of Exploration and Development, Daqing Oilfield Co., Ltd, 163318, China
| | - Xinya Zhang
- South China University of Technology, Chemistry and Chemical Engineering, Guangzhou, 510006, China
| |
Collapse
|
9
|
Vazquez-Perez F, Gila-Vilchez C, Duran J, Zubarev A, Alvarez de Cienfuegos L, Rodriguez-Arco L, Lopez-Lopez M. Composite polymer hydrogels with high and reversible elongation under magnetic stimuli. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
|
11
|
Shi X, Zhang K, Zhao L, Jiang B, Huang Y. Robust, Self-Healable Siloxane Elastomers Constructed by Multiple Dynamic Bonds for Stretchable Electronics and Microsystems. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05238] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xiangrong Shi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Kuiyuan Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Liwei Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Bo Jiang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yudong Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
12
|
Qiu X, Guo Q, Wang Y, Huang X, Cao J, Zheng Z, Zhang X. Self-Healing and Reconfigurable Actuators Based on Synergistically Cross-Linked Supramolecular Elastomer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41981-41990. [PMID: 32835472 DOI: 10.1021/acsami.0c11708] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stimulus-responsive soft actuators show great potential in intelligent robot systems for their various virtues, such as arbitrary shape morphing, outstanding adaptability to environment, and multidegrees of freedom. However, it is extremely challenging to achieve a combination of excellent actuating performance and robust mechanical strength as well as self-healing property. Herein we report a near-infrared light-responsive soft actuator based on the synergistic effects of a crystalline physical cross-linked network and a hydrogen bonding supramolecular network. The actuator exhibits outstanding comprehensive performance including fast and reliable light-responsive behavior (bending angle over 90° within 1.6 s), robust mechanical strength (12.52 MPa), superfast self-healing speed (2 s), and satisfactory self-healing efficiency in both mechanical (87.68%) and actuating (99.50%) performance. In addition, it is convenient to fabricate and reconfigure the actuators by a mild-temperature molding strategy to acquire various three-dimensional structures, thus achieving diverse actuating locomotion. This work provides a powerful and facile strategy to prepare soft actuators with intriguing performance, allowing significant progress in broadening their practical application.
Collapse
Affiliation(s)
- Xiaoyan Qiu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Quanquan Guo
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Yuyan Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Xin Huang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Jie Cao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Zhuo Zheng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|