1
|
Nam KJ, Mohamed AMO, Seong J, An H, Kang DY, Economou IG, Lee JS. Cobalt-Based ZIF Composite Membranes: In Situ Defect Engineering for Enhanced Water Stability and Gas Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409515. [PMID: 39679852 DOI: 10.1002/smll.202409515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/28/2024] [Indexed: 12/17/2024]
Abstract
Porous coordination polymers with excellent molecular sieving ability, high dispersibility, and good compatibility with engineered polymer matrices hold promise for various industrial applications, such as gas separation and battery separators. Here, an in situ defect engineering approach is proposed for highly processable cobalt (Co)-based zeolitic imidazolate frameworks (ZIFs) with enhanced molecular sieving ability and water stability. By varying alkylamine (AA) modulators, the pore structures and textural properties of ZIFs can be fine-tuned. The resulting high-loading composite membrane exhibits excellent C3H6/C3H8 separation performance and mechanical properties. This in situ defect engineering approach enables efficient interfacial engineering for high-performance composite membranes.
Collapse
Affiliation(s)
- Ki Jin Nam
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Amro M O Mohamed
- Chemical Engineering Program, Texas A&M University at Qatar, Doha, 23874, Qatar
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Doha, Qatar
| | - Jeongho Seong
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Heseong An
- Department of Chemical Engineering, Sunchon National University, Jeollanam-do, 57922, Republic of Korea
| | - Dun-Yen Kang
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Ioannis G Economou
- Chemical Engineering Program, Texas A&M University at Qatar, Doha, 23874, Qatar
| | - Jong Suk Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
- Institute of Energy and Environmental Technology, Sogang University, Seoul, 04107, Republic of Korea
| |
Collapse
|
2
|
Bharatee RK, Quaff AR, Jaiswal SK. Advances in perovskite membranes for carbon capture & utilization: A sustainable approach to CO 2 emissions reduction - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124924. [PMID: 40088825 DOI: 10.1016/j.jenvman.2025.124924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Despite agreements like the Paris Agreement, the world continues to face rising temperatures, extreme weather, and ecosystem disruptions, driven by continued use fossil fuel, agricultural emissions, and industrial activities and leading to greenhouse gas contributing to the serious fuelling climate change. Carbon capture and utilization (CCU), particularly thermochemical carbon dioxide (CO2) splitting powered by thermal energy, offers a promising solution. Perovskite-based inorganic membranes, known for their high selectivity and permeability toward various gases, efficiency, and energy-saving potential, have attracted significant interest in gas separation, production and emerged as a leading technology for carbon capture and hydrogen purification. This review explores advancements in perovskite materials, focusing on H2/CO2 separation, CO2 conversion to CO, and optimal operating conditions. It addresses key questions such as improving material performance through innovations in double and composite perovskites, enhancing oxygen removal via thermochemical or electrochemical pumps, and integrating CO2 splitting with fuel production. These strategies aim to reduce costs, boost efficiency, and provide sustainable pathways for addressing climate change.
Collapse
Affiliation(s)
- Ranjeet Kumar Bharatee
- Civil Engineering Department, National Institute of Technology Patna, Bihar-800005, India.
| | - Abdur Rahman Quaff
- Civil Engineering Department, National Institute of Technology Patna, Bihar-800005, India.
| | | |
Collapse
|
3
|
Piotrowska J, Jordan C, Harasek M, Bica-Schröder K. Development of Hollow Fiber Membranes Functionalized with Ionic Liquids for Enhanced CO 2 Separation. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:12236-12248. [PMID: 39148517 PMCID: PMC11323277 DOI: 10.1021/acssuschemeng.4c04597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
The combination of CO2-selective ionic liquids (ILs) with block copolymers, such as Pebax 1657, has demonstrated an enhancement of the gas separation capabilities of polymeric membranes. In the current work, the development of composite membranes by applying a thin, concentrated selective layer made of Pebax/imidazolium-based ionic liquids (ILs) is presented. The objective of the experiments was to determine the optimized IL loading and investigate how the alteration of the anion impacts the properties of the membranes. Two membrane configurations have been studied: coated flat sheet membranes, supported on a porous poly(ether sulfone) (PES) layer, as well as composite hollow fiber membranes, supported on commercial polypropylene (PP) hollow fibers. Coated hollow fiber composites were fabricated using a continuous coating method, offering a straightforward scalability in the manufacturing process. The determined mechanical pressure stability of hollow fiber composites reached up to 5 bar, indicating their potential for various industrial gas separation applications. It was found that the Pebax 1657-based coating containing 40 wt % [C6mim][NTf2] yielded membranes with the best gas separation properties, for both the coated flat sheet and the hollow fiber configurations. The CO2 permeance of hollow fibers reached 23.29 GPU, whereas the CO2/N2 ideal selectivity stood at 8.7, suggesting the necessity of the further enhancement of the coating technique, which can be achieved, for example, through application of multiple coatings. Nonetheless, the superior ideal selectivity of the CO2/CO separation, reaching 12.44, gave a promising outlook for further novel membrane applications, which involve the separation of the aforementioned gases.
Collapse
Affiliation(s)
- Julia
A. Piotrowska
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, Vienna 1060, Austria
| | - Christian Jordan
- Institute
of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9/E166, Vienna 1060, Austria
| | - Michael Harasek
- Institute
of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9/E166, Vienna 1060, Austria
| | - Katharina Bica-Schröder
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, Vienna 1060, Austria
| |
Collapse
|
4
|
Lundin STB, Ikeda A, Hasegawa Y. On the Maximum Obtainable Purity and Resultant Maximum Useful Membrane Selectivity of a Membrane Separator. MEMBRANES 2024; 14:143. [PMID: 38921510 PMCID: PMC11206096 DOI: 10.3390/membranes14060143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Design considerations concerning the maximum purity of a membrane separator, and the resultant maximum effective selectivity of the membranes were explored by modeling a binary gas membrane separator (pressure-driven permeance) using a dimensionless form. Although the maximum purity has an analytical solution at the limit of zero recovery or stage cut, this solution over-predicts the obtained purity as the recovery is increased. Furthermore, at combinations of high recovery, low feed mole fraction, and low pressure ratio, the maximum purity becomes independent of selectivity above some critical selectivity. As a consequence of this purity limitation, a maximum selectivity is defined at which further increases in selectivity will result in less than a 1% change in the final purity. An equation is obtained that specifies the region in which a limiting purity is less than unity (indicating the existence of a limiting selectivity); operating at less than the limiting pressure ratio results in a purity limitation less than unity. This regime becomes larger and more significant as the inlet mole fraction decreases (e.g., inlet feed mole fraction of 10% and pressure ratio of 100 results in a maximum useful membrane selectivity of only 130 at 95% recovery). These results suggest that membrane research should focus on increasing permeance rather than selectivity for low-concentration separations. The results found herein can be used to set benchmarks for membrane development in various gas separation applications.
Collapse
Affiliation(s)
- Sean-Thomas B. Lundin
- Research Institute of Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), 4-2-1 Nigatake, Miyagino-ku, Sendai 983-8551, Japan; (A.I.); (Y.H.)
| | | | | |
Collapse
|
5
|
Gao J, Sun Y, Kang F, Guo F, He G, Wang H, Yang Z, Ma C, Jiang X, Xiao W. Amidoxime Modified UiO-66@PIM-1 Mixed-Matrix Membranes to Enhance CO 2 Separation and Anti-Aging Performance. MEMBRANES 2023; 13:781. [PMID: 37755203 PMCID: PMC10536640 DOI: 10.3390/membranes13090781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023]
Abstract
Mixed matrix membranes (MMMs) generally have some fatal defects, such as poor compatibility between the two phases leading to non-selective pores. In this work, PIM-1 was chosen as the polymer matrix, and UiO-66 modified with amidoxime (UiO-66-AO) was used as the filler to prepare the MMMs. In the MMMs, the amino and hydroxyl groups on UO-66-AO form a rich hydrogen bond network with the N and O atoms in the polymer PIM-1 chain to improve the compatibility between the polymer matrix and the filler. In addition, the selective adsorption of CO2 by the amidoxime group can promote the transport of CO2 in the membrane, which enhances the gas selectivity. The CO2 permeability and CO2/N2 selectivity of UiO-66-AO@PIM-1 MMMs are increased by 35.2% and 45.2% compared to pure PIM-1 membranes, reaching 7535.5 Barrer and 26.9, surpassing the Robeson Upper Bound (2008) and close to the 2019 Upper Bound. After 38 days of the aging experiment, the CO2 permeability is approximately 74% of the original. The results show that the addition of UiO-66-AO has an obvious effect on improving the aging properties of the membrane. The UiO-66-AO@PIM-1 MMMs have a bright prospect for CO2 separation in the future.
Collapse
Affiliation(s)
- Jiaming Gao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China; (J.G.); (Y.S.); (F.K.); (F.G.); (C.M.); (X.J.)
| | - Yongchao Sun
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China; (J.G.); (Y.S.); (F.K.); (F.G.); (C.M.); (X.J.)
| | - Feifei Kang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China; (J.G.); (Y.S.); (F.K.); (F.G.); (C.M.); (X.J.)
| | - Fei Guo
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China; (J.G.); (Y.S.); (F.K.); (F.G.); (C.M.); (X.J.)
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China; (J.G.); (Y.S.); (F.K.); (F.G.); (C.M.); (X.J.)
| | - Hanli Wang
- Shandong Huaxia Shenzhou New Material Co., Ltd., Zibo 256401, China; (H.W.); (Z.Y.)
| | - Zhendong Yang
- Shandong Huaxia Shenzhou New Material Co., Ltd., Zibo 256401, China; (H.W.); (Z.Y.)
| | - Canghai Ma
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China; (J.G.); (Y.S.); (F.K.); (F.G.); (C.M.); (X.J.)
| | - Xiaobin Jiang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China; (J.G.); (Y.S.); (F.K.); (F.G.); (C.M.); (X.J.)
| | - Wu Xiao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China; (J.G.); (Y.S.); (F.K.); (F.G.); (C.M.); (X.J.)
| |
Collapse
|
6
|
Pedico A, Baudino L, Aixalà-Perelló A, Lamberti A. Green Methods for the Fabrication of Graphene Oxide Membranes: From Graphite to Membranes. MEMBRANES 2023; 13:429. [PMID: 37103856 PMCID: PMC10145855 DOI: 10.3390/membranes13040429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Graphene oxide (GO) has shown great potential as a membrane material due to its unique properties, including high mechanical strength, excellent thermal stability, versatility, tunability, and outperforming molecular sieving capabilities. GO membranes can be used in a wide range of applications, such as water treatment, gas separation, and biological applications. However, the large-scale production of GO membranes currently relies on energy-intensive chemical methods that use hazardous chemicals, leading to safety and environmental concerns. Therefore, more sustainable and greener approaches to GO membrane production are needed. In this review, several strategies proposed so far are analyzed, including a discussion on the use of eco-friendly solvents, green reducing agents, and alternative fabrication techniques, both for the preparation of the GO powders and their assembly in membrane form. The characteristics of these approaches aiming to reduce the environmental impact of GO membrane production while maintaining the performance, functionality, and scalability of the membrane are evaluated. In this context, the purpose of this work is to shed light on green and sustainable routes for GO membranes' production. Indeed, the development of green approaches for GO membrane production is crucial to ensure its sustainability and promote its widespread use in various industrial application fields.
Collapse
Affiliation(s)
- Alessandro Pedico
- Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia (DISAT), Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
- Istituto Italiano di Tecnologia, Center for Sustainable Future Technologies, Via Livorno, 60, 10144 Torino, Italy
| | - Luisa Baudino
- Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia (DISAT), Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
| | - Anna Aixalà-Perelló
- Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia (DISAT), Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
- Istituto Italiano di Tecnologia, Center for Sustainable Future Technologies, Via Livorno, 60, 10144 Torino, Italy
| | - Andrea Lamberti
- Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia (DISAT), Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
- Istituto Italiano di Tecnologia, Center for Sustainable Future Technologies, Via Livorno, 60, 10144 Torino, Italy
| |
Collapse
|
7
|
Fakhar A, Zarabadipoor M, Talakesh MM, Sadeghi M. Gas permeation through polyethylene glycol/polytetramethylene glycol based polyurethane–silica mixed matrix membranes and interfacial morphology study via modeling approach. J Appl Polym Sci 2023. [DOI: 10.1002/app.53831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Afsaneh Fakhar
- Department of Chemical Engineering Isfahan University of Technology Isfahan Iran
| | | | | | - Morteza Sadeghi
- Department of Chemical Engineering Isfahan University of Technology Isfahan Iran
- Department of Science and Engineering Macquarie University Macquarie Park New South Wales Australia
| |
Collapse
|
8
|
Tuning interchain cavity of fluorinated polyimide by DABA for improved gas separation performance. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
9
|
Integrated Membrane Material Design and System Synthesis. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2022.118406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Towards large-scale application of nanoporous materials in membranes for separation of energy-relevant gas mixtures. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Fundamental investigation on the development of composite membrane with a thin ion gel layer for CO2 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Longo M, Monteleone M, Esposito E, Fuoco A, Tocci E, Ferrari MC, Comesaña-Gándara B, Malpass-Evans R, McKeown NB, Jansen JC. Thin Film Composite Membranes Based on the Polymer of Intrinsic Microporosity PIM-EA(Me 2)-TB Blended with Matrimid ®5218. MEMBRANES 2022; 12:881. [PMID: 36135900 PMCID: PMC9502825 DOI: 10.3390/membranes12090881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
In this work, thin film composite (TFC) membranes were fabricated with the selective layer based on a blend of polyimide Matrimid®5218 and polymer of intrinsic microporosity (PIM) composed of Tröger's base, TB, and dimethylethanoanthracene units, PIM-EA(Me2)-TB. The TFCs were prepared with different ratios of the two polymers and the effect of the PIM content in the blend of the gas transport properties was studied for pure He, H2, O2, N2, CH4, and CO2 using the well-known time lag method. The prepared TFC membranes were further characterized by IR spectroscopy and scanning electron microscopy (SEM). The role of the support properties for the TFC membrane preparation was analysed for four different commercial porous supports (Nanostone Water PV 350, Vladipor Fluoroplast 50, Synder PAN 30 kDa, and Sulzer PAN UF). The Sulzer PAN UF support with a relatively small pore size favoured the formation of a defect-free dense layer. All the TFC membranes supported on Sulzer PAN UF presented a synergistic enhancement in CO2 permeance, and CO2/CH4 and CO2/N2 ideal selectivity. The permeance increased about two orders of magnitude with respect to neat Matrimid, up to ca. 100 GPU, the ideal CO2/CH4 selectivity increased from approximately 10 to 14, and the CO2/N2 selectivity from approximately 20 to 26 compared to the thick dense reference membrane of PIM-EA(Me2)-TB. The TFC membranes exhibited lower CO2 permeances than expected on the basis of their thickness-most likely due to enhanced aging of thin films and to the low surface porosity of the support membrane, but a higher selectivity for the gas pairs CO2/N2, CO2/CH4, O2/N2, and H2/N2.
Collapse
Affiliation(s)
- Mariagiulia Longo
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), Via P. Bucci, 17/C, 87036 Rende, Italy
| | - Marcello Monteleone
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), Via P. Bucci, 17/C, 87036 Rende, Italy
| | - Elisa Esposito
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), Via P. Bucci, 17/C, 87036 Rende, Italy
| | - Alessio Fuoco
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), Via P. Bucci, 17/C, 87036 Rende, Italy
| | - Elena Tocci
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), Via P. Bucci, 17/C, 87036 Rende, Italy
| | - Maria-Chiara Ferrari
- School of Engineering, University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, UK
| | - Bibiana Comesaña-Gándara
- EaStCHEM, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Richard Malpass-Evans
- EaStCHEM, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Neil B. McKeown
- EaStCHEM, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Johannes C. Jansen
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), Via P. Bucci, 17/C, 87036 Rende, Italy
| |
Collapse
|
13
|
Deng Y, Wang Y, Xiao X, Saucedo BJ, Zhu Z, Xie M, Xu X, Yao K, Zhai Y, Zhang Z, Chen J. Progress in Hybridization of Covalent Organic Frameworks and Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202928. [PMID: 35986438 DOI: 10.1002/smll.202202928] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) hybrid materials are a class of porous crystalline materials that integrate MOFs and COFs with hierarchical pore structures. As an emerging porous frame material platform, MOF/COF hybrid materials have attracted tremendous attention, and the field is advancing rapidly and extending into more diverse fields. Extensive studies have shown that a broad variety of MOF/COF hybrid materials with different structures and specific properties can be synthesized from diverse building blocks via different chemical reactions, driving the rapid growth of the field. The allowed complementary utilization of π-conjugated skeletons and nanopores for functional exploration has endowed these hybrid materials with great potential in challenging energy and environmental issues. It is necessary to prepare a "family tree" to accurately trace the developments in the study of MOF/COF hybrid materials. This review comprehensively summarizes the latest achievements and advancements in the design and synthesis of MOF/COF hybrid materials, including COFs covalently bonded to the surface functional groups of MOFs (MOF@COF), MOFs grown on the surface of COFs (COF@MOF), bridge reaction between COF and MOF (MOF+COF), and their various applications in catalysis, energy storage, pollutant adsorption, gas separation, chemical sensing, and biomedicine. It concludes with remarks concerning the trend from the structural design to functional exploration and potential applications of MOF/COF hybrid materials.
Collapse
Affiliation(s)
- Yang Deng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Yue Wang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Brett Jacob Saucedo
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhijun Zhu
- Institute of Molecular Metrics, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Mingsen Xie
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Xinru Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Kun Yao
- Shenzhen Zhongxing New Material Technology Company Ltd., Shenzhen, 518000, P. R. China
| | - Yanling Zhai
- Institute of Molecular Metrics, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
14
|
Daglar H, Keskin S. Combining Machine Learning and Molecular Simulations to Unlock Gas Separation Potentials of MOF Membranes and MOF/Polymer MMMs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32134-32148. [PMID: 35818710 PMCID: PMC9305976 DOI: 10.1021/acsami.2c08977] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Due to the enormous increase in the number of metal-organic frameworks (MOFs), combining molecular simulations with machine learning (ML) would be a very useful approach for the accurate and rapid assessment of the separation performances of thousands of materials. In this work, we combined these two powerful approaches, molecular simulations and ML, to evaluate MOF membranes and MOF/polymer mixed matrix membranes (MMMs) for six different gas separations: He/H2, He/N2, He/CH4, H2/N2, H2/CH4, and N2/CH4. Single-component gas uptakes and diffusivities were computed by grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations, respectively, and these simulation results were used to assess gas permeabilities and selectivities of MOF membranes. Physical, chemical, and energetic features of MOFs were used as descriptors, and eight different ML models were developed to predict gas adsorption and diffusion properties of MOFs. Gas permeabilities and membrane selectivities of 5249 MOFs and 31,494 MOF/polymer MMMs were predicted using these ML models. To examine the transferability of the ML models, we also focused on computer-generated, hypothetical MOFs (hMOFs) and predicted the gas permeability and selectivity of 1000 hMOF/polymer MMMs. The ML models that we developed accurately predict the uptake and diffusion properties of He, H2, N2, and CH4 gases in MOFs and will significantly accelerate the assessment of separation performances of MOF membranes and MOF/polymer MMMs. These models will also be useful to direct the extensive experimental efforts and computationally demanding molecular simulations to the fabrication and analysis of membrane materials offering high performance for a target gas separation.
Collapse
|
15
|
Abejón R, Casado-Coterillo C, Garea A. Techno-Economic Optimization of Multistage Membrane Processes with Innovative Hollow Fiber Modules for the Production of High-Purity CO 2 and CH 4 from Different Sources. Ind Eng Chem Res 2022; 61:8149-8165. [PMID: 35726248 PMCID: PMC9204776 DOI: 10.1021/acs.iecr.2c01138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 11/29/2022]
Abstract
Within the current climate emergency framework and in order to avoid the most severe consequences of global warming, membrane separation processes have become critical for the implementation of carbon capture, storage, and utilization technologies. Mixtures of CO2 and CH4 are relevant energy resources, and the design of innovative membranes specifically designed to improve their separation is a hot topic. This work investigated the potential of modified polydimethylsiloxane and ionic liquid-chitosan composite membranes for separation of CO2 and CH4 mixtures from different sources, such as biogas upgrading, natural gas sweetening, or CO2 enhanced oil recovery. The techno-economic optimization of multistage processes at a real industrial scale was carried out, paying special attention to the identification of the optimal configuration of the hollow fiber modules and the selection of the best membrane scheme. The results demonstrated that a high initial content of CH4 in the feed stream (like in the case of natural gas sweetening) might imply a great challenge for the separation performance, where only membranes with exceptional selectivity might achieve the requirements in a two-stage process. The effective lifetime of the membranes is a key parameter for the successful implementation of innovative membranes in order to avoid severe economic penalties due to excessively frequent membrane replacement. The scale of the process had a great influence on the economic competitiveness of the process, but large-scale installations can operate under competitive conditions with total costs below 0.050 US$ per m3 STP of treated feed gas.
Collapse
Affiliation(s)
- Ricardo Abejón
- Departamento
de Ingeniería Química, Universidad
de Santiago de Chile (USACH), Av. Libertador Bernardo O’Higgins 3363, Estación Central, Santiago 9170019, Chile
| | - Clara Casado-Coterillo
- Departamento
de Ingenierías Química y Biomolecular, Universidad de Cantabria, Av. Los Castros s/n, Santander 39005, Spain
| | - Aurora Garea
- Departamento
de Ingenierías Química y Biomolecular, Universidad de Cantabria, Av. Los Castros s/n, Santander 39005, Spain
| |
Collapse
|
16
|
Matesanz-Niño L, Aguilar-Lugo C, Prádanos P, Hernandez A, Bartolomé C, de la Campa JG, Palacio L, González-Ortega A, Galizia M, Álvarez C, Lozano ÁE. Gas separation membranes obtained by partial pyrolysis of polyimides exhibiting polyethylene oxide moieties. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Liu M, Nothling MD, Zhang S, Fu Q, Qiao GG. Thin film composite membranes for postcombustion carbon capture: Polymers and beyond. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Moral G, Ortiz-Imedio R, Ortiz A, Gorri D, Ortiz I. Hydrogen Recovery from Coke Oven Gas. Comparative Analysis of Technical Alternatives. Ind Eng Chem Res 2022; 61:6106-6124. [PMID: 35578731 PMCID: PMC9103049 DOI: 10.1021/acs.iecr.1c04668] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023]
Abstract
![]()
The recovery of energy
and valuable compounds from exhaust gases
in the iron and steel industry deserves special attention due to the
large power consumption and CO2 emissions of the sector.
In this sense, the hydrogen content of coke oven gas (COG) has positioned
it as a promising source toward a hydrogen-based economy which could
lead to economic and environmental benefits in the iron and steel
industry. COG is presently used for heating purposes in coke batteries
or furnaces, while in high production rate periods, surplus COG is
burnt in flares and discharged into the atmosphere. Thus, the recovery
of the valuable compounds of surplus COG, with a special focus on
hydrogen, will increase the efficiency in the iron and steel industry
compared to the conventional thermal use of COG. Different routes
have been explored for the recovery of hydrogen from COG so far: i)
separation/purification processes with pressure swing adsorption or
membrane technology, ii) conversion routes that provide additional
hydrogen from the chemical transformation of the methane contained
in COG, and iii) direct use of COG as fuel for internal combustion
engines or gas turbines with the aim of power generation. In this
study, the strengths and bottlenecks of the main hydrogen recovery
routes from COG are reviewed and discussed.
Collapse
Affiliation(s)
- Gonzalo Moral
- Department of Chemical & Biomolecular Engineering, University of Cantabria, Av. Los Castros s/n., 39005 Santander, Spain
| | - Rafael Ortiz-Imedio
- Department of Chemical & Biomolecular Engineering, University of Cantabria, Av. Los Castros s/n., 39005 Santander, Spain
| | - Alfredo Ortiz
- Department of Chemical & Biomolecular Engineering, University of Cantabria, Av. Los Castros s/n., 39005 Santander, Spain
| | - Daniel Gorri
- Department of Chemical & Biomolecular Engineering, University of Cantabria, Av. Los Castros s/n., 39005 Santander, Spain
| | - Inmaculada Ortiz
- Department of Chemical & Biomolecular Engineering, University of Cantabria, Av. Los Castros s/n., 39005 Santander, Spain
| |
Collapse
|
19
|
Lakmehsari MS, Yeganegi S, Matta CF, Ghandi K, Ziaie F. The diffusion of light gases through polyvinyl butyral: Molecular hydrogen, helium, and neon. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
MOF-based MMMs breaking the upper bounds of polymers for a large variety of gas separations. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119811] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
21
|
Abdul Hamid MR, Qian Y, Wei R, Li Z, Pan Y, Lai Z, Jeong HK. Polycrystalline metal-organic framework (MOF) membranes for molecular separations: Engineering prospects and challenges. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119802] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Daglar H, Erucar I, Keskin S. Recent advances in simulating gas permeation through MOF membranes. MATERIALS ADVANCES 2021; 2:5300-5317. [PMID: 34458845 PMCID: PMC8366394 DOI: 10.1039/d1ma00026h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/21/2021] [Indexed: 05/20/2023]
Abstract
In the last two decades, metal organic frameworks (MOFs) have gained increasing attention in membrane-based gas separations due to their tunable structural properties. Computational methods play a critical role in providing molecular-level information about the membrane properties and identifying the most promising MOF membranes for various gas separations. In this review, we discuss the current state-of-the-art in molecular modeling methods to simulate gas permeation through MOF membranes and review the recent advancements. We finally address current opportunities and challenges of simulating gas permeation through MOF membranes to guide the development of high-performance MOF membranes in the future.
Collapse
Affiliation(s)
- Hilal Daglar
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu Sariyer 34450 Istanbul Turkey +90-(212)-338-1362
| | - Ilknur Erucar
- Department of Natural and Mathematical Sciences, Faculty of Engineering, Ozyegin University, Cekmekoy 34794 Istanbul Turkey
| | - Seda Keskin
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu Sariyer 34450 Istanbul Turkey +90-(212)-338-1362
| |
Collapse
|
23
|
Advances in the Use of Nanocomposite Membranes for Carbon Capture Operations. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1155/2021/6666242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The adoption of nanodoped membranes in the areas of gas stream separation, water, and wastewater treatments due to the physical and operational advantages of such membranes has significantly increased. The literature has shown that the surface structure and physicochemical properties of nanodoped membranes contribute significantly to the interaction and rejection characteristics when compared to bare membranes. This study reviews the recent developments on nanodoped membranes, and their hybrids for carbon capture and gas separation operations. Features such as the nanoparticles/materials and hybrids used for membrane doping and the effect of physicochemical properties and water vapour in nanodoped membrane performance for carbon capture are discussed. The highlights of this review show that nanodoped membrane is a facile modification technique which improves the membrane performance in most cases and holds a great potential for carbon capture. Membrane module design and material, thickness, structure, and configuration were identified as key factors that contribute directly, to nanodoped membrane performance. This study also affirms that the three core parameters satisfied before turning a microporous material into a membrane are as follows: high permeability and selectivity, ease of fabrication, and robust structure. From the findings, it is also observed that the application of smart models and knowledge-based systems have not been extensively studied in nanoparticle-/material-doped membranes. More studies are encouraged because technical improvements are needed in order to achieve high performance of carbon capture using nanodoped membranes, as well as improving their durability, permeability, and selectivity of the membrane.
Collapse
|
24
|
Current and future trends in polymer membrane-based gas separation technology: A comprehensive review. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Abdul Hamid MR, Shean Yaw TC, Mohd Tohir MZ, Wan Abdul Karim Ghani WA, Sutrisna PD, Jeong HK. Zeolitic imidazolate framework membranes for gas separations: Current state-of-the-art, challenges, and opportunities. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Capture and Reuse of Carbon Dioxide (CO2) for a Plastics Circular Economy: A Review. Processes (Basel) 2021. [DOI: 10.3390/pr9050759] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Plastic production has been increasing at enormous rates. Particularly, the socioenvironmental problems resulting from the linear economy model have been widely discussed, especially regarding plastic pieces intended for single use and disposed improperly in the environment. Nonetheless, greenhouse gas emissions caused by inappropriate disposal or recycling and by the many production stages have not been discussed thoroughly. Regarding the manufacturing processes, carbon dioxide is produced mainly through heating of process streams and intrinsic chemical transformations, explaining why first-generation petrochemical industries are among the top five most greenhouse gas (GHG)-polluting businesses. Consequently, the plastics market must pursue full integration with the circular economy approach, promoting the simultaneous recycling of plastic wastes and sequestration and reuse of CO2 through carbon capture and utilization (CCU) strategies, which can be employed for the manufacture of olefins (among other process streams) and reduction of fossil-fuel demands and environmental impacts. Considering the previous remarks, the present manuscript’s purpose is to provide a review regarding CO2 emissions, capture, and utilization in the plastics industry. A detailed bibliometric review of both the scientific and the patent literature available is presented, including the description of key players and critical discussions and suggestions about the main technologies. As shown throughout the text, the number of documents has grown steadily, illustrating the increasing importance of CCU strategies in the field of plastics manufacture.
Collapse
|
27
|
Improved CO2/N2 separation performance of Pebax composite membrane containing polyethyleneimine functionalized ZIF-8. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118190] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Ali Z, Wang Y, Ogieglo W, Pacheco F, Vovusha H, Han Y, Pinnau I. Gas separation and water desalination performance of defect-free interfacially polymerized para-linked polyamide thin-film composite membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118572] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Hollow Fiber Membrane Contactors for Post-Combustion Carbon Capture: A Review of Modeling Approaches. MEMBRANES 2020; 10:membranes10120382. [PMID: 33266013 PMCID: PMC7759912 DOI: 10.3390/membranes10120382] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 11/24/2022]
Abstract
Hollow fiber membrane contactors (HFMCs) can effectively separate CO2 from post-combustion flue gas by providing a high contact surface area between the flue gas and a liquid solvent. Accurate models of carbon capture HFMCs are necessary to understand the underlying transport processes and optimize HFMC designs. There are various methods for modeling HFMCs in 1D, 2D, or 3D. These methods include (but are not limited to): resistance-in-series, solution-diffusion, pore flow, Happel’s free surface model, and porous media modeling. This review paper discusses the state-of-the-art methods for modeling carbon capture HFMCs in 1D, 2D, and 3D. State-of-the-art 1D, 2D, and 3D carbon capture HFMC models are then compared in depth, based on their underlying assumptions. Numerical methods are also discussed, along with modeling to scale up HFMCs from the lab scale to the commercial scale.
Collapse
|
30
|
Influence of ionic liquid-like cationic pendants composition in cellulose based polyelectrolytes on membrane-based CO 2 separation. Carbohydr Polym 2020; 255:117375. [PMID: 33436206 DOI: 10.1016/j.carbpol.2020.117375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/02/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
Cellulose acetate (CA) is an attractive membrane polymer for CO2 capture market. However, its low CO2 permeability hampers its application as part of a membrane for most relevant types of CO2 containing feeds. This work investigates the enhancement of CA separation performance by incorporating ionic liquid-like pendants (1-methylimidazol, 1-methylpyrrolidine, and 2-hydroxyethyldimethylamine (HEDMA) on the CA backbone. These CA-based polyelectrolytes (PEs), synthesised by covalent grafting of cationic pendants with anion metathesis, were characterised by NMR, FTIR, DSC/TGA, and processed into thin-film composite membranes. The membrane performance in CO2/N2 mixed-gas permeation experiments shows a decrease in CO2 and N2 permeability and an initial decrease and then gradual increase in CO2/N2 selectivity with increasing HEDMA content. The amount of HEDMA attached to the CA backbone determines overall separation process in bifunctional PEs. This indicates that the hydroxy-substituted cationic pendants alter interactions between PEs network and permeating CO2 molecules, suggesting possibilities for further improvements.
Collapse
|
31
|
Deng J, Dai Z, Deng L. Effects of the Morphology of the ZIF on the CO 2 Separation Performance of MMMs. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01946] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing Deng
- Department of Chemical Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- School of Chemical, Biological and Material Engineering, University of Oklahoma, 73019 Norman, Oklahoma, United States
| | - Zhongde Dai
- Department of Chemical Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- College of Architecture & Environment, Sichuan University, 610065 Chengdu, China
| | - Liyuan Deng
- Department of Chemical Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
32
|
Norouzbahari S, Gharibi R. UV Cross-Linked Poly(ethylene glycol)-Based Membranes with Different Fractional Free Volumes for CO2 Capture: Synthesis, Characterization, and Thiol-ene Modification Evaluation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | - Reza Gharibi
- Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, Iran
| |
Collapse
|