1
|
Emory ZC, Culbertson HJ, Gaster CB, LaVerne JA, Burns PC. Influence of Node-Linker Connectivity on Radiolytic Stability of Thorium-Terephthalate Coordination Polymers. Inorg Chem 2025; 64:8725-8733. [PMID: 40270124 DOI: 10.1021/acs.inorgchem.5c00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Metal-organic frameworks (MOFs) are promising candidates for applications in the nuclear fuel cycle due to their high porosity and tunable properties. However, for effective use in this context, these materials must be stable under ionizing radiation conditions. While previous studies have explored variations in metal node identities, topologies, and linker types, this study focuses on maintaining consistent metal and linker components to identify structural features that enhance radiation stability. We investigated the radiation resistance of three thorium-terephthalate hybrid materials─Th(BDC)2(DMF)2 (1,4-benzenedicarboxylic acid, dimethylformamide), Th(BDC)2, and Th-UiO-66─irradiated with He-ions up to a dose of 227 MGy. Structural stability was assessed through powder X-ray diffraction (PXRD), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and density functional theory (DFT) calculations. The radiation stability thresholds were identified for Th(BDC)2(DMF)2 and Th-UiO-66, with Th(BDC)2 demonstrating exceptional stability even at the highest radiation dose. The observed stability trend is Th(BDC)2 > Th(BDC)2(DMF)2 > Th-UiO-66. Notably, the inclusion of DMF in Th(BDC)2(DMF)2 enhanced its radiation tolerance, likely due to DMF acting as a sacrificial ligand, preserving linker integrity at higher doses. Additionally, more unique node-linker connections and shorter interligand distances contributed to the improved radiolytic stability of these materials.
Collapse
Affiliation(s)
- Zoë C Emory
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame 46556, Indiana, United States
| | - Heather J Culbertson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame 46556, Indiana, United States
| | - Cale B Gaster
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame 46556, Indiana, United States
| | - Jay A LaVerne
- Radiation Laboratory, University of Notre Dame, Notre Dame 46556, Indiana, United States
- Department of Physics and Astronomy, University of Notre Dame, Notre Dame 46556, Indiana, United States
| | - Peter C Burns
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame 46556, Indiana, United States
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame 46556, Indiana, United States
| |
Collapse
|
2
|
Park KC, Lim J, Thaggard GC, Shustova NB. Mining for Metal-Organic Systems: Chemistry Frontiers of Th-, U-, and Zr-Materials. J Am Chem Soc 2024; 146:18189-18204. [PMID: 38943655 DOI: 10.1021/jacs.4c06088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
The conceptual framework presented in this Perspective overviews the design principles of innovative thorium-based materials that could address urgent needs of the medicinal, nuclear energy, and waste remediation sectors from the lens of zirconium and uranium analogs. We survey the intersections of Zr, Th, and U chemistry with a focus on how the intrinsic behavior of each metal translates to broader material properties, including, but not limited to, structural and topological diversity, preferential metal-ligand binding, and reactivity. On the example of several classes of materials, including organometallic complexes, polyoxometalates, and the primary focus of this Perspective, metal-organic frameworks (MOFs), the design principles that govern the preparation of Zr-, Th-, and U-compounds, including oxophilicity, variation in oxidation states, and stable coordination environments have been considered. Further, we highlight how the impact of the mentioned variables may shift throughout the progression from discrete molecular systems to extended structures. We discuss the common assumption that zirconium-organic materials are typically considered a close analog of thorium-based congeners in areas such as material design and preparation. Through consideration of fundamental chemistry principles, we shed light on the relationships between Zr-, Th-, and U-based materials and highlight how a critical analysis of their distinct properties can be used to target a desired material performance. As a result, we provide a detailed understanding of Th-based materials chemistry by anchoring their fundamental properties between two well-studied reference points, zirconium- and uranium-containing analogs.
Collapse
Affiliation(s)
- Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
3
|
Li J, Zhang X, Fan M, Chen Y, Ma Y, Smith GL, Vitorica-yrezabal IJ, Lee D, Xu S, Schröder M, Yang S. Direct Observation of Enhanced Iodine Binding within a Series of Functionalized Metal-Organic Frameworks with Exceptional Irradiation Stability. J Am Chem Soc 2024; 146:14048-14057. [PMID: 38713054 PMCID: PMC11117185 DOI: 10.1021/jacs.4c02405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 05/08/2024]
Abstract
Optimization of active sites and stability under irradiation are important targets for sorbent materials that might be used for iodine (I2) storage. Herein, we report the direct observation of I2 binding in a series of Cu(II)-based isostructural metal-organic frameworks, MFM-170, MFM-172, MFM-174, NJU-Bai20, and NJU-Bai21, incorporating various functional groups (-H, -CH3, - NH2, -C≡C-, and -CONH-, respectively). MFM-170 shows a reversible uptake of 3.37 g g-1 and a high packing density of 4.41 g cm-3 for physiosorbed I2. The incorporation of -NH2 and -C≡C- moieties in MFM-174 and NJU-Bai20, respectively, enhances the binding of I2, affording uptakes of up to 3.91 g g-1. In addition, an exceptional I2 packing density of 4.83 g cm-3 is achieved in MFM-174, comparable to that of solid iodine (4.93 g cm-3). In situ crystallographic studies show the formation of a range of supramolecular and chemical interactions [I···N, I···H2N] and [I···C≡C, I-C═C-I] between -NH2, -C≡C- sites, respectively, and adsorbed I2 molecules. These observations have been confirmed via a combination of solid-state nuclear magnetic resonance, X-ray photoelectron, and Raman spectroscopies. Importantly, γ-irradiation confirmed the ultraresistance of MFM-170, MFM-174, and NJU-Bai20 suggesting their potential as efficient sorbents for cleanup of radioactive waste.
Collapse
Affiliation(s)
- Jiangnan Li
- Department
of Chemistry, University of Manchester, Manchester, M13 9PL, U.K.
- College
of Chemistry and Molecular Engineering, Beijing National Laboratory
for Molecular Sciences, Peking University, Beijing 100871, China
| | - Xinran Zhang
- Department
of Chemistry, University of Manchester, Manchester, M13 9PL, U.K.
| | - Mengtian Fan
- Department
of Chemistry, University of Manchester, Manchester, M13 9PL, U.K.
| | - Yinlin Chen
- Department
of Chemistry, University of Manchester, Manchester, M13 9PL, U.K.
| | - Yujie Ma
- Department
of Chemistry, University of Manchester, Manchester, M13 9PL, U.K.
| | - Gemma L. Smith
- Department
of Chemistry, University of Manchester, Manchester, M13 9PL, U.K.
| | | | - Daniel Lee
- Department
of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, U.K.
| | - Shaojun Xu
- Department
of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, U.K.
| | - Martin Schröder
- Department
of Chemistry, University of Manchester, Manchester, M13 9PL, U.K.
| | - Sihai Yang
- Department
of Chemistry, University of Manchester, Manchester, M13 9PL, U.K.
- College
of Chemistry and Molecular Engineering, Beijing National Laboratory
for Molecular Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Lim J, Park KC, Thaggard GC, Liu Y, Maldeni Kankanamalage BKP, Toler DJ, Ta AT, Kittikhunnatham P, Smith MD, Phillpot SR, Shustova NB. Friends or Foes: Fundamental Principles of Th-Organic Scaffold Chemistry Using Zr-Analogs as a Guide. J Am Chem Soc 2024; 146:12155-12166. [PMID: 38648612 DOI: 10.1021/jacs.4c02327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The fundamental interest in actinide chemistry, particularly for the development of thorium-based materials, is experiencing a renaissance owing to the recent and rapidly growing attention to fuel cycle reactors, radiological daughters for nuclear medicine, and efficient nuclear stockpile development. Herein, we uncover fundamental principles of thorium chemistry on the example of Th-based extended structures such as metal-organic frameworks in comparison with the discrete systems and zirconium extended analogs, demonstrating remarkable over two-and-half-year chemical stability of Th-based frameworks as a function of metal node connectivity, amount of defects, and conformational linker rigidity through comprehensive spectroscopic and crystallographic analysis as well as theoretical modeling. Despite exceptional chemical stability, we report the first example of studies focusing on the reactivity of the most chemically stable Th-based frameworks in comparison with the discrete Th-based systems such as metal-organic complexes and a cage, contrasting multicycle recyclability and selectivity (>97%) of the extended structures in comparison with the molecular compounds. Overall, the presented work not only establishes the conceptual foundation for evaluating the capabilities of Th-based materials but also represents a milestone for their multifaceted future and foreshadows their potential to shape the next era of actinide chemistry.
Collapse
Affiliation(s)
- Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Yuan Liu
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Buddhima K P Maldeni Kankanamalage
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Donald J Toler
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - An T Ta
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | | | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Simon R Phillpot
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
5
|
Heaney MP, Johnson HM, Knapp JG, Bang S, Seifert S, Yaw NS, Li J, Farha OK, Zhang Q, Moreau LM. Uranyl uptake into metal-organic frameworks: a detailed X-ray structural analysis. Dalton Trans 2024; 53:5495-5506. [PMID: 38415508 DOI: 10.1039/d3dt04284g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Metal-organic frameworks (MOF) are a subclass of porous framework materials that have been used for a wide variety of applications in sensing, catalysis, and remediation. Among these myriad applications is their remarkable ability to capture substances in a variety of environments ranging from benign to extreme. Among the most common and problematic substances found throughout the world's oceans and water supplies is [UO2]2+, a common mobile ion of uranium, which is found both naturally and as a result of anthropogenic activities, leading to problematic environmental contamination. While some MOFs possess high capability for the uptake of [UO2]2+, many more of the thousands of MOFs and their modifications that have been produced over the years have yet to be studied for their ability to uptake [UO2]2+. However, studying the thousands of MOFs and their modifications presents an incredibly difficult task. As such, a way to narrow down the numbers seems imperative. Herein, we evaluate the binding behaviors as well as identify the specific binding sites of [UO2]2+ incorporated into six different Zr MOFs to elucidate specific features that improve [UO2]2+ uptake. In doing so, we also present a method for the determination and verification of these binding sites by Anomalous wide-angle X-ray scattering, X-ray fluorescence, and X-ray absorption spectroscopy. This research not only presents a way for future research into the uptake of [UO2]2+ into MOFs to be conducted but also a means to evaluate MOFs more generally for the uptake of other compounds to be applied for environmental remediation and improvement of ecosystems globally.
Collapse
Affiliation(s)
- Matthew P Heaney
- Department of Chemistry, Washington State University, Pullman, WA, 99164 USA.
| | - Hannah M Johnson
- Department of Chemistry, Washington State University, Pullman, WA, 99164 USA.
| | - Julia G Knapp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | - Shinhyo Bang
- Department of Chemistry, Washington State University, Pullman, WA, 99164 USA.
| | - Soenke Seifert
- X-ray sciences Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Natalie S Yaw
- Department of Chemistry, Washington State University, Pullman, WA, 99164 USA.
| | - Jiahong Li
- Department of Chemistry, Washington State University, Pullman, WA, 99164 USA.
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | - Qiang Zhang
- Department of Chemistry, Washington State University, Pullman, WA, 99164 USA.
| | - Liane M Moreau
- Department of Chemistry, Washington State University, Pullman, WA, 99164 USA.
| |
Collapse
|
6
|
Lu H, Zheng Z, Hou H, Bai Y, Qiu J, Wang J, Lin J. Fine-Tuning X-Ray Sensitivity in Organic-Inorganic Hybrids via an Unprecedented Mixed-Ligand Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305378. [PMID: 37939314 PMCID: PMC10767407 DOI: 10.1002/advs.202305378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/21/2023] [Indexed: 11/10/2023]
Abstract
Crystalline organic-inorganic hybrids, which exhibit colorimetric responses to ionizing radiation, have recently been recognized as promising alternatives to conventional X-ray dosimeters. However, X-ray-responsive organic-inorganic hybrids are scarce and the strategy to fine-tune their detection sensitivity remains elusive. Herein, an unprecedented mixed-ligand strategy is reported to modulate the X-ray detection efficacy of organic-inorganic hybrids. Deliberately blending the stimuli-responsive terpyridine carboxylate ligand (tpc- ) and the auxiliary pba- group with different ratios gives rise to two OD thorium-bearing clusters (Th-102 and Th-103) and a 1D coordination polymer (Th-104). Notably, distinct X-ray sensitivity is evident as a function of molar ratio of the tpc- ligand, following the trend of Th-102 > Th-103 > Th-104. Moreover, Th-102, which is exclusively built from the tpc- ligands with the highest degree of π-π interactions, exhibits the most sensitive radiochromic and fluorochromic responses toward X-ray with the lowest detection limit of 1.5 mGy. The study anticipates that this mixed-ligand strategy will be a versatile approach to tune the X-ray sensing efficacy of organic-inorganic hybrids.
Collapse
Affiliation(s)
- Huangjie Lu
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences2019 Jia Luo RoadShanghai201800P. R. China
| | - Zhaofa Zheng
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences2019 Jia Luo RoadShanghai201800P. R. China
| | - Huiliang Hou
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences2019 Jia Luo RoadShanghai201800P. R. China
| | - Yaoyao Bai
- School of Nuclear Science and TechnologyXi'an Jiaotong UniversityNo.28, West Xianning RoadXi'an710049P. R. China
| | - Jie Qiu
- School of Nuclear Science and TechnologyXi'an Jiaotong UniversityNo.28, West Xianning RoadXi'an710049P. R. China
| | - Jian‐Qiang Wang
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences2019 Jia Luo RoadShanghai201800P. R. China
| | - Jian Lin
- School of Nuclear Science and TechnologyXi'an Jiaotong UniversityNo.28, West Xianning RoadXi'an710049P. R. China
| |
Collapse
|
7
|
Lu H, Ma J, Yang J, Hou H, Lu J, Wang JQ, Wang Y, Lin J. A ratiometric radio-photoluminescence dosimeter based on a radical excimer for X-ray detection. Chem Commun (Camb) 2023; 59:12617-12620. [PMID: 37791606 DOI: 10.1039/d3cc03824f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A novel radio-photoluminescence material featuring fluorochromic responses toward UV or X-ray irradiation has been obtained. Such a unique monomer- to excimer-based luminescence transition allows for dosimetry of ionizing radiation in a ratiometric manner. Rather than quenching the luminescence, the radiation-induced radical species of Th-105 boost the excimer emission, rendering it as a rare material possessing radical-excimers.
Collapse
Affiliation(s)
- Huangjie Lu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China.
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Jingqi Ma
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China.
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Junpu Yang
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an, 710049, P. R. China.
| | - Huiliang Hou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China.
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Jiacheng Lu
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an, 710049, P. R. China.
| | - Jian-Qiang Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China.
| | - Yaxing Wang
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Jian Lin
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an, 710049, P. R. China.
| |
Collapse
|
8
|
Yan Q, Wang J, Zhang L, Liu J, Wahiduzzaman M, Yan N, Yu L, Dupuis R, Wang H, Maurin G, Hirscher M, Guo P, Wang S, Du J. A squarate-pillared titanium oxide quantum sieve towards practical hydrogen isotope separation. Nat Commun 2023; 14:4189. [PMID: 37443163 PMCID: PMC10344961 DOI: 10.1038/s41467-023-39871-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Separating deuterium from hydrogen isotope mixtures is of vital importance to develop nuclear energy industry, as well as other isotope-related advanced technologies. As one of the most promising alternatives to conventional techniques for deuterium purification, kinetic quantum sieving using porous materials has shown a great potential to address this challenging objective. From the knowledge gained in this field; it becomes clear that a quantum sieve encompassing a wide range of practical features in addition to its separation performance is highly demanded to approach the industrial level. Here, the rational design of an ultra-microporous squarate pillared titanium oxide hybrid framework has been achieved, of which we report the comprehensive assessment towards practical deuterium separation. The material not only displays a good performance combining high selectivity and volumetric uptake, reversible adsorption-desorption cycles, and facile regeneration in adsorptive sieving of deuterium, but also features a cost-effective green scalable synthesis using chemical feedstock, and a good stability (thermal, chemical, mechanical and radiolytic) under various working conditions. Our findings provide an overall assessment of the material for hydrogen isotope purification and the results represent a step forward towards next generation practical materials for quantum sieving of important gas isotopes.
Collapse
Affiliation(s)
- Qingqing Yan
- Hefei National Research Center for Physical Sciences at the Microscale, Suzhou Institute for Advanced Research, CAS Key Laboratory of Microscale Magnetic Resonance, Hefei National Laboratory, University of Science and Technology of China, 230026, Hefei, China
| | - Jing Wang
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Linda Zhang
- Max Planck Institute for Intelligent Systems, D-70569, Stuttgart, Germany.
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan.
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, 980-0845, Japan.
| | - Jiaqi Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 518055, Shenzhen, China
| | | | - Nana Yan
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
- University of Chinese Academy of Science, Bejing, 100049, China
| | - Liang Yu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 518055, Shenzhen, China
| | - Romain Dupuis
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
- LMGC, Univ. Montpellier, CNRS, Montpellier, France
| | - Hao Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 518055, Shenzhen, China
| | | | - Michael Hirscher
- Max Planck Institute for Intelligent Systems, D-70569, Stuttgart, Germany
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Peng Guo
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.
- University of Chinese Academy of Science, Bejing, 100049, China.
| | - Sujing Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Suzhou Institute for Advanced Research, CAS Key Laboratory of Microscale Magnetic Resonance, Hefei National Laboratory, University of Science and Technology of China, 230026, Hefei, China.
| | - Jiangfeng Du
- Hefei National Research Center for Physical Sciences at the Microscale, Suzhou Institute for Advanced Research, CAS Key Laboratory of Microscale Magnetic Resonance, Hefei National Laboratory, University of Science and Technology of China, 230026, Hefei, China
| |
Collapse
|
9
|
Hao M, Liu Y, Wu W, Wang S, Yang X, Chen Z, Tang Z, Huang Q, Wang S, Yang H, Wang X. Advanced porous adsorbents for radionuclides elimination. ENERGYCHEM 2023; 5:100101. [DOI: doi.org/10.1016/j.enchem.2023.100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
10
|
Gumber N, Pai RV, Bahadur J, Sengupta S, Das D, Goutam UK. γ-Resistant Microporous CAU-1 MOF for Selective Remediation of Thorium. ACS OMEGA 2023; 8:12268-12282. [PMID: 37033815 PMCID: PMC10077452 DOI: 10.1021/acsomega.2c08274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
A simple solvothermal method was used to synthesize a metal-organic framework (MOF) with an Al metal entity, viz., CAU-1 NH2. The synthesized MOF was characterized using different techniques like X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy (SEM), field emission SEM (FE-SEM), transmission electron microscopy, small-angle X-ray scattering, positron annihilation lifetime spectroscopy, and X-ray photoelectron spectroscopy. The radiation stability was evaluated by irradiating the material up to a cumulative dose of 2 MGy using 60Co for the first time. The studies showed a remarkable gamma irradiation stability of the material up to 1 MGy. The porosity and surface area of the synthesized MOF were determined by Brunauer-Emmett-Teller, which showed a high specific surface area of 550 m2/g. The pH dependence study of Th uptake from an aqueous solution was performed from pH 2-8, followed by adsorption isotherm and adsorption kinetics studies. These results revealed that the Langmuir and pseudo-second-order kinetic models can be well adapted for understanding the Th uptake and kinetics, respectively. The synthesized MOF exhibited an ∼404 mg/g thorium adsorption capacity. Selectivity studies of adsorption of Th w.r.t. to U and different metal ions such as Cu, Co, Ni, and Fe showed that Th gets adsorbed preferentially as compared to other metal ions. In addition, the MOF could be used multiple times without much deterioration.
Collapse
Affiliation(s)
- Nitin Gumber
- Fuel
Chemistry Division, Bhabha Atomic Research
Centre, Mumbai 400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai 400094, India
| | - Rajesh V. Pai
- Fuel
Chemistry Division, Bhabha Atomic Research
Centre, Mumbai 400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai 400094, India
| | - Jitendra Bahadur
- Solid
State Physics Division, Bhabha Atomic Research
Centre, Mumbai 400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai 400094, India
| | - Somnath Sengupta
- Material
Chemistry and Metal Fuel Cycle Group, Indira
Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102, India
| | - Debarati Das
- Radiochemistry
Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai 400094, India
| | - Uttam Kumar Goutam
- Technical
Physics Division, Bhabha Atomic Research
Centre, Mumbai 400085, India
| |
Collapse
|
11
|
Park KC, Kittikhunnatham P, Lim J, Thaggard GC, Liu Y, Martin CR, Leith GA, Toler DJ, Ta AT, Birkner N, Lehman-Andino I, Hernandez-Jimenez A, Morrison G, Amoroso JW, Zur Loye HC, DiPrete DP, Smith MD, Brinkman KS, Phillpot SR, Shustova NB. f-block MOFs: A Pathway to Heterometallic Transuranics. Angew Chem Int Ed Engl 2023; 62:e202216349. [PMID: 36450099 DOI: 10.1002/anie.202216349] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
A novel series of heterometallic f-block-frameworks including the first examples of transuranic heterometallic 238 U/239 Pu-metal-organic frameworks (MOFs) and a novel monometallic 239 Pu-analog are reported. In combination with theoretical calculations, we probed the kinetics and thermodynamics of heterometallic actinide(An)-MOF formation and reported the first value of a U-to-Th transmetallation rate. We concluded that formation of uranyl species could be a driving force for solid-state metathesis. Density of states near the Fermi edge, enthalpy of formation, band gap, proton affinity, and thermal/chemical stability were probed as a function of metal ratios. Furthermore, we achieved 97 % of the theoretical maximum capacity for An-integration. These studies shed light on fundamental aspects of actinide chemistry and also foreshadow avenues for the development of emerging classes of An-containing materials, including radioisotope thermoelectric generators or metalloradiopharmaceuticals.
Collapse
Affiliation(s)
- Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Yuan Liu
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Corey R Martin
- Savannah River National Laboratory, Aiken, SC 29808, USA
| | - Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Donald J Toler
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - An T Ta
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Nancy Birkner
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA.,Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management (NEESRWM), Clemson University, Clemson, SC 29634, USA
| | | | | | - Gregory Morrison
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Jake W Amoroso
- Savannah River National Laboratory, Aiken, SC 29808, USA
| | - Hans-Conrad Zur Loye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.,Savannah River National Laboratory, Aiken, SC 29808, USA
| | - Dave P DiPrete
- Savannah River National Laboratory, Aiken, SC 29808, USA
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Kyle S Brinkman
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA.,Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management (NEESRWM), Clemson University, Clemson, SC 29634, USA
| | - Simon R Phillpot
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
12
|
Chen X, Liu X, Xiao S, Xue W, Zhao X, Yang Q. A β-ray irradiation resistant MOF-based trap for efficient capture of Th(IV) ion. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Ma C, Liu H, Wolterbeek HT, Denkova AG, Serra Crespo P. Effects of High Gamma Doses on the Structural Stability of Metal-Organic Frameworks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8928-8933. [PMID: 35816708 PMCID: PMC9330767 DOI: 10.1021/acs.langmuir.2c01074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Four different MOFs were exposed to γ rays by a cobalt-60 source reaching a maximum dose of 5 MGy. The results showed that the MIL-100 (Cr) and MIL-100 (Fe) did not exhibit obvious structural damage, suggesting their excellent radiation stability. MIL-101 (Cr) showed good radiation stability up to 4 MGy, but its structure started degrading with increasing radiation dose. Furthermore, the results showed that the structure of AlFu MOFs started to decompose at a gamma dose of 1 MGy, exhibiting a much lower tolerance to γ radiation. At this radiation energy, the dominant interaction of the gamma-ray with MOFs is the Compton effect and the radiation stability of MOFs can be improved by prolific aromatic linkers, high linker connectivity, and good crystallinity. The results of this study indicate that MIL-100 and MIL-101 MOFs have a good potential to be employed in nuclear applications, where relatively high radiation doses play a role, for example, nuclear waste treatment and radionuclides production.
Collapse
|
14
|
Li ZJ, Guo X, Qiu J, Lu H, Wang JQ, Lin J. Recent advances in the applications of thorium-based metal-organic frameworks and molecular clusters. Dalton Trans 2022; 51:7376-7389. [PMID: 35438104 DOI: 10.1039/d2dt00265e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This perspective highlights the recent advances in the structural and practical aspects of thorium-based metal-organic frameworks (Th-MOFs) and molecular clusters. Thorium, as an underexplored actinide, features surprisingly rich coordination geometries and accessibility of the 5f orbital. These features lead to a myriad of topologies and electronic structures, many of which are undocumented for other tetravalent metal-containing MOFs or clusters. Moreover, Th-MOFs inherit the modularity, structural tunability, porosity, and versatile functionality of the state-of-the-art MOFs. Recognizing the radioactive nature of these thorium-bearing materials that may limit their practical uses, Th-MOFs and Th-clusters still have great potential for various applications, including radionuclide sequestration, hydrocarbon storage/separation, radiation detection, photoswitch, CO2 conversion, photocatalysis, and electrocatalysis. The objective of this updated perspective is to propose pathways for the renaissance of interest in thorium-based materials.
Collapse
Affiliation(s)
- Zi-Jian Li
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China
| | - Xiaofeng Guo
- Department of Chemistry and Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University, Pullman, WA 99164-4630, USA
| | - Jie Qiu
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Huangjie Lu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China
| | - Jian-Qiang Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China
| | - Jian Lin
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| |
Collapse
|
15
|
Leloire M, Walshe C, Devaux P, Giovine R, Duval S, Bousquet T, Chibani S, Paul JF, Moissette A, Vezin H, Nerisson P, Cantrel L, Volkringer C, Loiseau T. Capture of Gaseous Iodine in Isoreticular Zirconium-Based UiO-n Metal-Organic Frameworks: Influence of Amino Functionalization, DFT Calculations, Raman and EPR Spectroscopic Investigation. Chemistry 2022; 28:e202104437. [PMID: 35142402 DOI: 10.1002/chem.202104437] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Indexed: 01/09/2023]
Abstract
A series of Zr-based UiO-n MOF materials (n=66, 67, 68) have been studied for iodine capture. Gaseous iodine adsorption was collected kinetically from a home-made set-up allowing the continuous measurement of iodine content trapped within UiO-n compounds, with organic functionalities (-H, -CH3 , -Cl, -Br, -(OH)2 , -NO2 , -NH2 , (-NH2 )2 , -CH2 NH2 ) by in-situ UV-Vis spectroscopy. This study emphasizes the role of the amino groups attached to the aromatic rings of the ligands connecting the {Zr6 O4 (OH)4 } brick. In particular, the preferential interaction of iodine with lone-pair groups, such as amino functions, has been experimentally observed and is also based on DFT calculations. Indeed, higher iodine contents were systematically measured for amino-functionalized UiO-66 or UiO-67, compared to the pristine material (up to 1211 mg/g for UiO-67-(NH2 )2 ). However, DFT calculations revealed the highest computed interaction energies for alkylamine groups (-CH2 NH2 ) in UiO-67 (-128.5 kJ/mol for the octahedral cavity), and pointed out the influence of this specific functionality compared with that of an aromatic amine. The encapsulation of iodine within the pore system of UiO-n materials and their amino-derivatives has been analyzed by UV-Vis and Raman spectroscopy. We showed that a systematic conversion of molecular iodine (I2 ) species into anionic I- ones, stabilized as I- ⋅⋅⋅I2 or I3 - complexes within the MOF cavities, occurs when I2 @UiO-n samples are left in ambient light.
Collapse
Affiliation(s)
- Maeva Leloire
- Unité de Catalyse et Chimie du Solide, Université de Lille, Centrale Lille Université d'Artois, UMR CNRS 8181-UCCS, 59000, Lille, France
| | - Catherine Walshe
- Unité de Catalyse et Chimie du Solide, Université de Lille, Centrale Lille Université d'Artois, UMR CNRS 8181-UCCS, 59000, Lille, France
| | - Philippe Devaux
- Unité de Catalyse et Chimie du Solide, Université de Lille, Centrale Lille Université d'Artois, UMR CNRS 8181-UCCS, 59000, Lille, France
| | - Raynald Giovine
- Unité de Catalyse et Chimie du Solide, Université de Lille, Centrale Lille Université d'Artois, UMR CNRS 8181-UCCS, 59000, Lille, France
| | - Sylvain Duval
- Unité de Catalyse et Chimie du Solide, Université de Lille, Centrale Lille Université d'Artois, UMR CNRS 8181-UCCS, 59000, Lille, France
| | - Till Bousquet
- Unité de Catalyse et Chimie du Solide, Université de Lille, Centrale Lille Université d'Artois, UMR CNRS 8181-UCCS, 59000, Lille, France
| | - Siwar Chibani
- Unité de Catalyse et Chimie du Solide, Université de Lille, Centrale Lille Université d'Artois, UMR CNRS 8181-UCCS, 59000, Lille, France
| | - Jean-Francois Paul
- Unité de Catalyse et Chimie du Solide, Université de Lille, Centrale Lille Université d'Artois, UMR CNRS 8181-UCCS, 59000, Lille, France
| | - Alain Moissette
- Laboratoire de Spectroscopie pour les Interactions la Réactivité et l'Environnement, Université de Lille, UMR CNRS 8516-LASIRE, 59000, Lille, France
| | - Hervé Vezin
- Laboratoire de Spectroscopie pour les Interactions la Réactivité et l'Environnement, Université de Lille, UMR CNRS 8516-LASIRE, 59000, Lille, France
| | - Philippe Nerisson
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN) PSN-RES, 13115, Saint Paul lez Durance, France
| | - Laurent Cantrel
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN) PSN-RES, 13115, Saint Paul lez Durance, France
| | - Christophe Volkringer
- Unité de Catalyse et Chimie du Solide, Université de Lille, Centrale Lille Université d'Artois, UMR CNRS 8181-UCCS, 59000, Lille, France
| | - Thierry Loiseau
- Unité de Catalyse et Chimie du Solide, Université de Lille, Centrale Lille Université d'Artois, UMR CNRS 8181-UCCS, 59000, Lille, France
| |
Collapse
|
16
|
Lu H, Hou H, Hou YC, Zheng Z, Ma Y, Zhou Z, Guo X, Pan QJ, Wang Y, Qian Y, Wang JQ, Lin J. A New Concept of Radiation Detection Based on a Fluorochromic and Piezochromic Nanocluster. J Am Chem Soc 2022; 144:3449-3457. [DOI: 10.1021/jacs.1c11496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Huangjie Lu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Huiliang Hou
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Yu-Chang Hou
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Zhaofa Zheng
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Yingying Ma
- Center for High Pressure Science and Technology Advanced Research (HPSTAR) Beijing 100094, PR China
| | - Zhengyang Zhou
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Xiaofeng Guo
- Department of Chemistry and Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University Pullman, Washington 99164-4630, United States
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Yonggang Wang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR) Beijing 100094, PR China
| | - Yuan Qian
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Jian-Qiang Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Jian Lin
- School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, PR China
| |
Collapse
|
17
|
Khalil M, Shehata M, Ghazy O, Waly S, Ali Z. Synthesis, characterization and γ-rays irradiation of cobalt-based metal-organic framework for adsorption of Ce(III) and Eu(III) from aqueous solution. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2021.109811] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Gilson SE, Fairley M, Hanna SL, Szymanowski JES, Julien P, Chen Z, Farha OK, LaVerne JA, Burns PC. Unusual Metal-Organic Framework Topology and Radiation Resistance through Neptunyl Coordination Chemistry. J Am Chem Soc 2021; 143:17354-17359. [PMID: 34652154 DOI: 10.1021/jacs.1c08854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A Np(V) neptunyl metal-organic framework (MOF) with rod-shaped secondary building units was synthesized, characterized, and irradiated with γ rays. Single-crystal X-ray diffraction data revealed an anionic framework containing infinite helical chains of actinyl-actinyl interaction (AAI)-connected neptunyl ions linked together through tetratopic tetrahedral organic ligands (NSM). NSM exhibits an unprecedented net, demonstrating that AAIs may be exploited to give new MOFs and new topologies. To probe its radiation stability, we undertook the first irradiation study of a transuranic MOF and its organic linker building block using high doses of γ rays. Diffraction and spectroscopic data demonstrated that the radiation resistance of NSM is greater than that of its linker building block alone. Approximately 6 MGy of irradiation begins to induce notable changes in the long- and short-range order of the framework, whereas 3 MGy of irradiation induces total X-ray amorphization and changes in the local vibrational bands of the linker building block.
Collapse
Affiliation(s)
- Sara E Gilson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Melissa Fairley
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Sylvia L Hanna
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jennifer E S Szymanowski
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Patrick Julien
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Zhijie Chen
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jay A LaVerne
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Peter C Burns
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
19
|
Patra K, Ansari SA, Mohapatra PK. Metal-organic frameworks as superior porous adsorbents for radionuclide sequestration: Current status and perspectives. J Chromatogr A 2021; 1655:462491. [PMID: 34482010 DOI: 10.1016/j.chroma.2021.462491] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/28/2021] [Accepted: 08/17/2021] [Indexed: 01/03/2023]
Abstract
Efficient separation of hazardous radionuclides from radioactive waste remains a challenge to the global acceptance of nuclear power due to complex nature of the waste, high radiotoxicities and presence of large number of interfering elements. Sorption of radioactive elements from liquid phase, gas phase or their solid particulates on various synthetic organic, inorganic or biological sorbents is looked as one of the options for their remediation. In this context, highly porous materials, termed as metal-organic frameworks (MOFs), have shown promise for efficient capturing of various types of radioactive elements. Major advantages that have been advocated for the application of MOFs in radionuclide sorption are their excellent chemical stability, and their large surface area due to abundant functional groups, and porosity. In this review, recent developments on the application of MOFs for radionuclide sequestration are briefly discussed. Focus has been devoted to address the separation of few crucial radioactive elements such as Th, U, Tc, Re, Se, Sr and Cs from aqueous solutions, which are important for liquid radioactive waste management. Apart from these radioactive metal ions, removal of radionuclide bearing gases such as I2, Xe, and Kr are also discussed. Aspects related to the interaction of MOFs with the radionuclides are also discussed. Finally, a perspective for comprehensive investigation of MOFs for their applications in radioactive waste management has been outlined.
Collapse
Affiliation(s)
- Kankan Patra
- Nuclear Recycles Board, Bhabha Atomic Research Centre, Tarapur 401502, India
| | - Seraj A Ansari
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India; Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
| | - Prasanta K Mohapatra
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India; Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| |
Collapse
|
20
|
Leloire M, Dhainaut J, Devaux P, Leroy O, Desjonqueres H, Poirier S, Nerisson P, Cantrel L, Royer S, Loiseau T, Volkringer C. Stability and radioactive gaseous iodine-131 retention capacity of binderless UiO-66-NH 2 granules under severe nuclear accidental conditions. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125890. [PMID: 34492828 DOI: 10.1016/j.jhazmat.2021.125890] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 06/13/2023]
Abstract
In the present work, we aim to investigate the ability of the zirconium-based MOF-type compound UiO-66-NH2, to immobilize molecular gaseous iodine under conditions analogous to those encountered in an operating Filtered Containment Venting System (FCVS) line. Typically, the UiO-66-NH2 particles were exposed to 131I (beta and gamma emitters) and submitted to air/steam at 120 °C, under gamma irradiation (1.9 kGy h-1). In parallel to this experiment under simulated accidental conditions, the stability of the binderless UiO-66-NH2 granules under steam and gamma irradiation was investigated. In order to fit with the specifications required by typical venting systems, and to compare the efficiency of the selected MOF to porous materials commonly used by the industry, scale-up syntheses and UiO-66-NH2 millimetric-size shaping were realized. For this task, we developed an original binderless method, in order to analyze solely the efficiency of the UiO-66-NH2 material. The shaped MOF particles were then submitted separately to gamma irradiation, steam and temperature, for confirming their viability in a venting process. Their structural, textural and mechanical behaviors were characterized by the means several techniques including gas sorption, powder X-ray diffraction, infrared spectroscopy and crushing tests. Promising results were obtained to trap gaseous molecular iodine in severe accidental conditions.
Collapse
Affiliation(s)
- Maëva Leloire
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES/SEREX, Saint-Paul Lez Durance 13115, France
| | - Jérémy Dhainaut
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Philippe Devaux
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Olivia Leroy
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES/SEREX, Saint-Paul Lez Durance 13115, France
| | - Hortense Desjonqueres
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES/SCA, Gif sur Yvette 91192, France
| | - Stéphane Poirier
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES/SCA, Gif sur Yvette 91192, France
| | - Philippe Nerisson
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES/SEREX, Saint-Paul Lez Durance 13115, France
| | - Laurent Cantrel
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES/SEREX, Saint-Paul Lez Durance 13115, France
| | - Sébastien Royer
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Thierry Loiseau
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Christophe Volkringer
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France.
| |
Collapse
|
21
|
Martin CR, Leith GA, Shustova NB. Beyond structural motifs: the frontier of actinide-containing metal-organic frameworks. Chem Sci 2021; 12:7214-7230. [PMID: 34163816 PMCID: PMC8171348 DOI: 10.1039/d1sc01827b] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
In this perspective, we feature recent advances in the field of actinide-containing metal-organic frameworks (An-MOFs) with a main focus on their electronic, catalytic, photophysical, and sorption properties. This discussion deviates from a strictly crystallographic analysis of An-MOFs, reported in several reviews, or synthesis of novel structural motifs, and instead delves into the remarkable potential of An-MOFs for evolving the nuclear waste administration sector. Currently, the An-MOF field is dominated by thorium- and uranium-containing structures, with only a few reports on transuranic frameworks. However, some of the reported properties in the field of An-MOFs foreshadow potential implementation of these materials and are the main focus of this report. Thus, this perspective intends to provide a glimpse into the challenges, triumphs, and future directions of An-MOFs in sectors ranging from the traditional realm of gas sorption and separation to recently emerging areas such as electronics and photophysics.
Collapse
Affiliation(s)
- Corey R Martin
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| | - Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| |
Collapse
|
22
|
Chen H, Fan L, Hu T, Zhang X. Template-Induced {Mn 2}-Organic Framework with Lewis Acid-Base Canals as a Highly Efficient Heterogeneous Catalyst for Chemical Fixation of CO 2 and Knoevenagel Condensation. Inorg Chem 2021; 60:7276-7283. [PMID: 33945691 DOI: 10.1021/acs.inorgchem.1c00352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The target for the self-assembly of functional microporous metal-organic frameworks (MOFs) could be realized by employing ligand-directed and/or template-induced strategies, which prompted us to explore the synthetic technique of d10 secondary-building-unit-based nanoporous frameworks. Here, the exquisite combination of a paddle-wheel [Mn2(CO2)6(OH2)2] cluster and a TDP6- ligand contributes one robust honeycomb framework of {(Me2NH2)2[Mn2(TDP)(H2O)2]·3H2O·3DMF}n (NUC-31; DMF = N,N-dimethylformamide), whose activated state with the removal of associated aqueous molecules characterizes the outstanding physicochemical properties of nanochannels, penta- and tetracoordinated Mn2+ serving as highly open metal sites, rich Lewis base sites (rows of C═O groups and Npyridine atoms), and excellent thermal stability. Moreover, it is worth mentioning that Lewis acid-base sites on the inner surface of the channels in activated NUC-31 successfully form one unprecedented canal-shaped acid-base confined space with evenly distributed open metal sites of Mn2+ and Npyridine atoms as the canal bottom as well as two rows of C═O groups serving as dyke dams. Catalytic experiments displayed that activated NUC-31 could serve as an efficient heterogeneous catalyst for the chemical fixation of CO2 with epoxides into cyclic carbonates under mild conditions. Furthermore, NUC-31 could effectively catalyze the reaction Knoevenagel condensation, which should be ascribed to the synergistic polarization effect aroused from its plentiful Lewis base sites in the confined channel space. Hence, these results demonstrate that the employment of ligand-directed and template-dependent strategies could overcome the self-assembled barriers of functional microporous MOFs and achieve unexpected frameworks.
Collapse
Affiliation(s)
- Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Liming Fan
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Tuoping Hu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
23
|
Kinik FP, Ortega-Guerrero A, Ongari D, Ireland CP, Smit B. Pyrene-based metal organic frameworks: from synthesis to applications. Chem Soc Rev 2021; 50:3143-3177. [PMID: 33475661 DOI: 10.1039/d0cs00424c] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pyrene is one of the most widely investigated aromatic hydrocarbons given to its unique optical and electronic properties. Hence, pyrene-based ligands have been attractive for the synthesis of metal-organic frameworks (MOFs) in the last few years. In this review, we will focus on the most important characteristics of pyrene, in addition to the development and synthesis of pyrene-based molecules as bridging ligands to be used in MOF structures. We will summarize the synthesis attempts, as well as the post-synthetic modifications of pyrene-based MOFs by the incorporation of metals or ligands in the structure. The discussion of promising results of such MOFs in several applications; including luminescence, photocatalysis, adsorption and separation, heterogeneous catalysis, electrochemical applications and bio-medical applications will be highlighted. Finally, some insights and future prospects will be given based on the studies discussed in the review. This review will pave the way for the researchers in the field for the design and development of novel pyrene-based structures and their utilization for different applications.
Collapse
Affiliation(s)
- F Pelin Kinik
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Andres Ortega-Guerrero
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Daniele Ongari
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Christopher P Ireland
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Berend Smit
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| |
Collapse
|
24
|
Hu Z, Wang Y, Zhao D. The chemistry and applications of hafnium and cerium(iv) metal-organic frameworks. Chem Soc Rev 2021; 50:4629-4683. [PMID: 33616126 DOI: 10.1039/d0cs00920b] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The coordination connection of organic linkers to the metal clusters leads to the formation of metal-organic frameworks (MOFs), where the metal clusters and ligands are spatially entangled in a periodic manner. The immense availability of tuneable ligands of different length and functionalities gives rise to robust molecular porosity ranging from several angstroms to nanometres. Among the large family of MOFs, hafnium (Hf) based MOFs have been demonstrated to be highly promising for practical applications due to their unique and outstanding characteristics such as chemical, thermal, and mechanical stability, and acidic nature. Since the report of UiO-66(Hf) and DUT-51(Hf) in 2012, less than 200 Hf-MOFs (ca. 50 types of structures) have been reported. Besides, tetravalent cerium [Ce(iv)] has been proven to be capable of forming similar topological MOF structures to Zr and Hf since its first discovery in 2015. So far, ca. 40 Ce(iv) MOFs with 60% having UiO-66-type structure have been reported. This review will offer a holistic summary of the chemistry, uniqueness, synthesis, and applications of Hf/Ce(iv)-MOFs with a focus on presenting the development in the Hf/Ce(iv)-clusters, topologies, ligand structures, synthetic strategies, and practical applications of Hf/Ce(iv)-MOFs. In the end, we will present the research outlook for the development of Hf/Ce(iv)-MOFs in the future, including fundamental design of Hf/Ce(iv)-clusters, defect engineering, and various applications including membrane development, diversified types of catalytic reactions, irradiation absorption in nuclear waste treatment, water production and wastewater treatment, etc. We will also present the emerging computational approaches coupled with machine-learning algorithms that can be applied in screening Hf and Ce(iv) based MOF structures and identifying the best-performing MOFs for tailor-made applications in future practice.
Collapse
Affiliation(s)
- Zhigang Hu
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | | | | |
Collapse
|
25
|
Lu H, Zheng Z, Li ZJ, Bao H, Guo X, Guo X, Lin J, Qian Y, Wang JQ. Achieving UV and X-ray Dual Photochromism in a Metal-Organic Hybrid via Structural Modulation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2745-2752. [PMID: 33405513 DOI: 10.1021/acsami.0c20036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rational design and synthesis of new photochromic sensors have been active research areas of inquiry, particularly on how to predict and tailor their properties and functionalities. Herein, two thulium 2,2':6',2''-terpyridine-4'-carboxylate (TPC)-functionalized metal-organic hybrids, Tm(TPC)2(HCOO)(H2O) (TmTPC-1) and Tm(TPC)(HCOO)2 (TmTPC-2) with different photochromic response behaviors, have been successfully prepared, allowing for straightforward investigations of the structure-property correlation. Single-crystal X-ray diffraction and electron paramagnetic resonance analyses revealed that the incorporation of a unique dangling decorating TPC unit in TmTPC-1 offers a shorter and more accessible π-π interaction pathway between the adjacent TPC moieties than that in TmTPC-2. Such a structural feature leads to the production of radical species via a photoinduced intermolecular electron-transfer (IeMCT) process upon UV or X-ray irradiation, which ultimately endows TmTPC-1 with a rather unusual UV and X-ray dual photochromism. A linear relationship between the change of UV-vis absorbance intensity and X-ray dose was established, making TmTPC-1 a promising dosimeter for X-ray radiation with an extremely high energy threshold (30 kGy). To advance the development for real-world application, we have fabricated polyvinylidene fluoride (PVDF) membranes incorporating TmTPC-1 for functioning either as a UV imager or as an X-ray radiation indicator. Lastly, TmTPC-1 exhibits high thermal stability (up to 400 °C) and radioresistance (at least 900 kGy), and also excellent reversibility of photochromic transformation (at least 5 cycles).
Collapse
Affiliation(s)
- Huangjie Lu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China
- Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Zhaofa Zheng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China
- Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Zi-Jian Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China
- Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Hongliang Bao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China
- Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xiaojing Guo
- The Education Ministry Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Department of Chemistry and Chemical Engineering, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Xiaofeng Guo
- Department of Chemistry and Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University, Pullman, Washington 99164-4630, United States
| | - Jian Lin
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China
- Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yuan Qian
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China
- Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jian-Qiang Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China
- Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
- Dalian National Laboratory for Clean Energy, Dalian 116023, China
| |
Collapse
|
26
|
Chen H, Hu T, Fan L, Zhang X. One Robust Microporous Tm III-Organic Framework for Highly Catalytic Activity on Chemical CO 2 Fixation and Knoevenagel Condensation. Inorg Chem 2021; 60:1028-1036. [PMID: 33382244 DOI: 10.1021/acs.inorgchem.0c03134] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In terms of documented references, multifunctional MOFs with high catalytic performance could be constructed from the combination of metal cations and polycarboxyl-pyridine ligands, which could efficiently endow crystallized porous frameworks with the coexisting Lewis acid-base properties. Thus, by employing a ligand-directed synthetic strategy, the exquisite combination of wave-like inorganic chains of [Tm(CO2)3(OH2)]n and mononuclear units of [Tm(CO2)4(OH2)2] with the aid of the specially designed ligand of 2,6-bis(2,4-dicarboxylphenyl)-4-(4-carboxylphenyl)pyridine (H5BDCP) generates one highly robust microporous framework of {(Me2NH2)[Tm3(BDCP)2)(H2O)3]·4DMF·H2O}n (simplified as NUC-25), which contains near-rectangular nanochannels and large solvent-residing voids. Furthermore, the activated state of NUC-25 with the removal of associated water molecules is a rarely reported bifunctional heterogeneous catalyst due to the coexistence of Lewis acid-base sites including 6-coordinated Tm3+ ions, uncoordinated carboxyl oxygen atoms, and Npyridine atoms. Just as expected, NUC-25 exhibits greatly high catalytic activity for the cycloaddition reaction of epoxides with CO2 into alkyl cyclic carbonates under bland solvent-free conditions, which should be ascribed to the polarity of nitrogen-containing pyridine heterocycles as Lewis base sites on the inner surface of nano-caged voids except for recognized Lewis acid sites of rare earth cations. Moreover, the excellent pore-size-dependent catalytic property for Knoevenagel condensation reactions confirms that NUC-25 can be viewed as a recyclable bifunctional heterogeneous catalyst. Therefore, these results strongly demonstrate that microporous MOFs assembled from pre-designed polycarboxyl-heterocyclic ligands display better catalytic performance not only for chemical CO2 fixation but also for Knoevenagel condensation reactions.
Collapse
Affiliation(s)
- Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Tuoping Hu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Liming Fan
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
27
|
Chen H, Fan L, Zhang X. Highly Robust 3s-3d {CaZn}-Organic Framework for Excellent Catalytic Performance on Chemical Fixation of CO 2 and Knoevenagel Condensation Reaction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54884-54892. [PMID: 33231426 DOI: 10.1021/acsami.0c18267] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In terms of ligand-directed synthetic strategy, multifunctional metal-organic frameworks (MOFs) could be assembled by employing organic ligands with nitrogen-containing heterocycles, which could serve as Lewis base sites in crystallized porous frameworks. Here, the acidic one-pot hydrothermal reaction of CaCl2, Zn(NO3)2, and 2,4,6-tri(2,4-dicarboxyphenyl)pyridine (H6TDP) generates one robust honeycomb-shaped double-walled material of {[(CH3)2NH2]2[CaZn(TDP)(H2O)]·3DMF·3H2O}n (NUC-21), which has the excellent physicochemical characteristics of nanoscopic channels, high porosity (58.3%), large specific surface area, and high heat/water-resisting property. To the best of our knowledge, this is the first 3s-3d dinuclear [CaZn(CO2)6(OH2)]-based nanoporous host framework, whose activated state possesses the coexistence of Lewis acid-base sites including four-coordinated Zn2+ ions, four-coordinated Ca2+ ions, uncoordinated carboxyl oxygen atoms, and Npyridine atoms. As expected, because of the coexistence of Lewis acid-base nature, desolvated NUC-21 displays satisfactory catalytic activity on the chemical cycloaddition of various epoxides with CO2 into the corresponding alkyl carbonates under comparatively mild conditions. Furthermore, the efficient conversion of benzaldehydes and malononitrile confirms that NUC-21 is simultaneously a bifunctional heterogeneous catalyst for Knoevenagel condensation reactions. Hence, the achievements broaden the way for assembling nanoporous multifunctional MOFs by employing ligand-directed synthetic strategy, which can accelerate the transformation from simple structural research to socially demanding applications.
Collapse
Affiliation(s)
- Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Liming Fan
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
28
|
Li Z, Ju Y, Lu H, Wu X, Yu X, Li Y, Wu X, Zhang Z, Lin J, Qian Y, He M, Wang J. Boosting the Iodine Adsorption and Radioresistance of Th‐UiO‐66 MOFs via Aromatic Substitution. Chemistry 2020; 27:1286-1291. [DOI: 10.1002/chem.202003621] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/16/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Zi‐Jian Li
- Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences 2019 Jia Luo Road Shanghai 201800 P. R. China
- University of Chinese Academy of Sciences No.19(A) Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| | - Yu Ju
- Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences 2019 Jia Luo Road Shanghai 201800 P. R. China
- University of Chinese Academy of Sciences No.19(A) Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Changzhou University Changzhou 213164 P. R. China
| | - Huangjie Lu
- Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences 2019 Jia Luo Road Shanghai 201800 P. R. China
- University of Chinese Academy of Sciences No.19(A) Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| | - Xiaoling Wu
- Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences 2019 Jia Luo Road Shanghai 201800 P. R. China
| | - Xinle Yu
- Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences 2019 Jia Luo Road Shanghai 201800 P. R. China
| | - Yongxin Li
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 637371 Singapore Singapore
| | - Xiaowei Wu
- Key Laboratory for Soft Chemistry and Functional Materials of, Ministry of Education School of Chemical Engineering Nanjing University of Science and Technology Nanjing Jiangsu 210094 P. R. China
| | - Zhi‐Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Changzhou University Changzhou 213164 P. R. China
| | - Jian Lin
- Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences 2019 Jia Luo Road Shanghai 201800 P. R. China
- University of Chinese Academy of Sciences No.19(A) Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| | - Yuan Qian
- Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences 2019 Jia Luo Road Shanghai 201800 P. R. China
- University of Chinese Academy of Sciences No.19(A) Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| | - Ming‐Yang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Changzhou University Changzhou 213164 P. R. China
| | - Jian‐Qiang Wang
- Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences 2019 Jia Luo Road Shanghai 201800 P. R. China
- University of Chinese Academy of Sciences No.19(A) Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- Dalian National Laboratory for Clean Energy Dalian 116023 P. R. China
| |
Collapse
|
29
|
Feng L, Wang KY, Day GS, Ryder MR, Zhou HC. Destruction of Metal-Organic Frameworks: Positive and Negative Aspects of Stability and Lability. Chem Rev 2020; 120:13087-13133. [PMID: 33049142 DOI: 10.1021/acs.chemrev.0c00722] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metal-organic frameworks (MOFs), constructed from organic linkers and inorganic building blocks, are well-known for their high crystallinity, high surface areas, and high component tunability. The stability of MOFs is a key prerequisite for their potential practical applications in areas including storage, separation, catalysis, and biomedicine since it is essential to guarantee the framework integrity during utilization. However, MOFs are prone to destruction under external stimuli, considerably hampering their commercialization. In this Review, we provide an overview of the situations where MOFs undergo destruction due to external stimuli such as chemical, thermal, photolytic, radiolytic, electronic, and mechanical factors and offer guidelines to avoid unwanted degradation happened to the framework. Furthermore, we discuss possible destruction mechanisms and their varying derived products. In particular, we highlight cases that utilize MOF instability to fabricate varying materials including hierarchically porous MOFs, monolayer MOF nanosheets, amorphous MOF liquids and glasses, polymers, metal nanoparticles, metal carbide nanoparticles, and carbon materials. Finally, we provide a perspective on the utilization of MOF destruction to develop advanced materials with a superior hierarchy for various applications.
Collapse
Affiliation(s)
- Liang Feng
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Kun-Yu Wang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Gregory S Day
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.,Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Matthew R Ryder
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
30
|
Chen H, Fan L, Lv H, Zhang X. Robust Anionic LnIII–Organic Frameworks: Chemical Fixation of CO2, Tunable Light Emission, and Fluorescence Recognition of Fe3+. Inorg Chem 2020; 59:13407-13415. [DOI: 10.1021/acs.inorgchem.0c01782] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Liming Fan
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Hongxiao Lv
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| |
Collapse
|
31
|
Luca V, Veliscek-Carolan J. New insights into the radiolytic stability of metal(iv) phosphonate hybrid adsorbent materials. Phys Chem Chem Phys 2020; 22:17027-17032. [PMID: 32691030 DOI: 10.1039/d0cp02414g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stable metal(iv) phosphonate hybrids are a promising class of materials for the critical issue of nuclear waste cleanup. However, to be of practical use, adsorbent materials must demonstrate radiolytic stability and this property remains poorly understood. Therefore, the radiolytic stabilities of post-functionalised mesoporous zirconium titanate and zirconium phosphonate coordination polymers were compared. For the first time, solid-state 31P MAS-NMR was used to probe the radiolytic degradation of metal(iv) phosphonates and provide mechanistic insight. Polyphosphonate-functionalized hybrids were more stable than monophosphonate hybrids, as the monophosphonate readily detached from the oxide surface. The zirconium phosphonate coordination polymer (Zr-ATMP) demonstrated the greatest radiolytic stability, attributed to its high ligand loading and intimately mixed structure. Zr-ATMP maintained highly efficient sorption from strongly acidic solutions even after receiving doses of gamma radiation up to 2.9 MGy.
Collapse
Affiliation(s)
- Vittorio Luca
- Comisión Nacional de Energía Atómica, Av. General Paz 1499, San Martin 1650, Buenos Aires, Argentina.
| | | |
Collapse
|
32
|
Gilson SE, Fairley M, Julien P, Oliver AG, Hanna SL, Arntz G, Farha OK, LaVerne JA, Burns PC. Unprecedented Radiation Resistant Thorium–Binaphthol Metal–Organic Framework. J Am Chem Soc 2020; 142:13299-13304. [DOI: 10.1021/jacs.0c05272] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sara E. Gilson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Melissa Fairley
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Patrick Julien
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Allen G. Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Sylvia L. Hanna
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Grace Arntz
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, Virginia 24515, United States
| | - Omar K. Farha
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jay A. LaVerne
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Peter C. Burns
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|