1
|
Eerlapally R, Hareendran DL, Velasco L, Charisiadis A, Sauvan M, Debnath J, Moonshiram D, Draksharapu A. Impact of Lewis Acids on the Reactivity of a High-Valent Cu(III) Complex. Inorg Chem 2025; 64:5734-5744. [PMID: 40074670 DOI: 10.1021/acs.inorgchem.5c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Redox-inactive metal ions functioning as Lewis acids (LA) play a significant role in modulating the redox reactivity of metal-oxygen intermediates such as metal-oxo, metal-superoxo, and metal-peroxo species. In photosystem II (PS-II), the redox-inactive metal ion CaII is critical for O2 activation, although its precise function remains unclear. Inspired by nature's use of redox-inactive metal ions, this study aims to characterize complexes of high-valent Cu(III) bound Lewis acids, 2-M (where M = ZnII, EuIII, YbIII, and ScIII), through various spectroscopic techniques, including UV-vis and resonance Raman spectroscopic analyses. These experimental findings are further supported by computational studies. Furthermore, the binding of a redox-active Lewis acid like CeIII was also investigated, where inner-sphere electron transfer between 2 and CeIII is witnessed. Notably, the electron transfer rate between CeIII and 2 is greatly influenced by the binding of other Lewis acids. Additionally, we demonstrated the impact of LA on electron transfer (ET) and hydrogen atom transfer (HAT) reactivity. Our findings show that while the introduction of LA decreases the HAT reaction rate, it conversely leads to enhanced electron transfer reactivity.
Collapse
Affiliation(s)
- Raju Eerlapally
- Southern Laboratories - 208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Divya Lakshmi Hareendran
- Southern Laboratories - 208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Lucia Velasco
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Sor Juana Ines de la Cruz, 3, 28049 Madrid, Spain
- Departamento de Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Asterios Charisiadis
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Sor Juana Ines de la Cruz, 3, 28049 Madrid, Spain
| | - Maxime Sauvan
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Sor Juana Ines de la Cruz, 3, 28049 Madrid, Spain
| | - Jayashrita Debnath
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Dooshaye Moonshiram
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Sor Juana Ines de la Cruz, 3, 28049 Madrid, Spain
| | - Apparao Draksharapu
- Southern Laboratories - 208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
2
|
Kumar R, Maji A, Biswas B, Draksharapu A. Amphoteric reactivity of a putative Cu(II)- mCPBA intermediate. Dalton Trans 2024; 53:5401-5406. [PMID: 38426906 DOI: 10.1039/d3dt03747a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
In copper-based enzymes, Cu-hydroperoxo/alkylperoxo species are proposed as key intermediates for their biological activity. A vast amount of literature is available on the functional and structural mimics of enzymatic systems with heme and non-heme ligand frameworks to stabilize high valent metal intermediates, mostly at low temperatures. Herein, we report a reaction between [CuI(NCCH3)4]+ and meta-chloroperoxybenzoic acid (mCPBA) in CH3CN that produces a putative CuII(mCPBA) species (1). 1 was characterized by UV/Vis, resonance Raman, and EPR spectroscopies. 1 can catalyze both electrophilic and nucleophilic reactions, demonstrating its amphoteric behavior. Additionally, 1 can also conduct electron transfer reactions with a weak reducing agent such as diacetyl ferrocene, making it one of the reactive copper-based intermediates. One of the most important aspects of the current work is the easy synthesis of a CuII(mCPBA) adduct with no complicated ligands for stabilization. Over time, 1 decays to form a CuII paddle wheel complex (2) and is found to be unreactive towards substrate oxidation.
Collapse
Affiliation(s)
- Rakesh Kumar
- Southern Laboratories - 208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Anweshika Maji
- Southern Laboratories - 208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Bhargab Biswas
- Southern Laboratories - 208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Apparao Draksharapu
- Southern Laboratories - 208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| |
Collapse
|
3
|
Lionetti D, Suseno S, Shiau AA, de Ruiter G, Agapie T. Redox Processes Involving Oxygen: The Surprising Influence of Redox-Inactive Lewis Acids. JACS AU 2024; 4:344-368. [PMID: 38425928 PMCID: PMC10900226 DOI: 10.1021/jacsau.3c00675] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 03/02/2024]
Abstract
Metalloenzymes with heteromultimetallic active sites perform chemical reactions that control several biogeochemical cycles. Transformations catalyzed by such enzymes include dioxygen generation and reduction, dinitrogen reduction, and carbon dioxide reduction-instrumental transformations for progress in the context of artificial photosynthesis and sustainable fertilizer production. While the roles of the respective metals are of interest in all these enzymatic transformations, they share a common factor in the transfer of one or multiple redox equivalents. In light of this feature, it is surprising to find that incorporation of redox-inactive metals into the active site of such an enzyme is critical to its function. To illustrate, the presence of a redox-inactive Ca2+ center is crucial in the Oxygen Evolving Complex, and yet particularly intriguing given that the transformation catalyzed by this cluster is a redox process involving four electrons. Therefore, the effects of redox inactive metals on redox processes-electron transfer, oxygen- and hydrogen-atom transfer, and O-O bond cleavage and formation reactions-mediated by transition metals have been studied extensively. Significant effects of redox inactive metals have been observed on these redox transformations; linear free energy correlations between Lewis acidity and the redox properties of synthetic model complexes are observed for several reactions. In this Perspective, these effects and their relevance to multielectron processes will be discussed.
Collapse
Affiliation(s)
| | - Sandy Suseno
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| | - Angela A. Shiau
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| | - Graham de Ruiter
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| |
Collapse
|
4
|
Son Y, Jeong D, Kim K, Cho J. Mechanistic Insights into Nitrile Activation by Cobalt(III)-Hydroperoxo Intermediates: The Influence of Ligand Basicity. JACS AU 2023; 3:3204-3212. [PMID: 38034966 PMCID: PMC10685436 DOI: 10.1021/jacsau.3c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 12/02/2023]
Abstract
The versatile applications of nitrile have led to the widespread use of nitrile activation in the synthesis of pharmacologically and industrially valuable compounds. We reported the activation of nitriles using mononuclear cobalt(III)-hydroperoxo complexes, [CoIII(Me3-TPADP)(O2H)(RCN)]2+ [R = Me (2) and Ph (2Ph)], to form cobalt(III)-peroxyimidato complexes, [CoIII(Me3-TPADP)(R-C(=NH)O2)]2+ [R = Me (3) and Ph (3Ph)]. The independence of the rate on the nitrile concentration and the positive Hammett value of 3.2(2) indicated that the reactions occur via an intramolecular nucleophilic attack of the hydroperoxide ligand to the coordinated nitrile carbon atom. In contrast, the previously reported cobalt(III)-hydroperoxo complex, [CoIII(TBDAP)(O2H)(CH3CN)]2+ (2TBDAP), exhibited the deficiency of reactivity toward nitrile. The comparison of pKa values and redox potentials of 2 and 2TBDAP showed that Me3-TPADP had a stronger ligand field strength than that of TBDAP. The density functional theory calculations for 2 and 2TBDAP support that the strengthened ligand field in 2 is mainly due to the replacement of two tert-butyl amine donors in TBDAP with methyl groups in Me3-TPADP, resulting in the compression of the Co-Nax bond lengths. These results provide mechanistic evidence of nitrile activation by the cobalt(III)-hydroperoxo complex and indicate that the basicity dependent on the ligand framework contributes to the ability of nitrile activation.
Collapse
Affiliation(s)
- Yeongjin Son
- Department
of Chemistry, Ulsan National Institute of
Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department
of Emerging Materials Science, Daegu Gyeongbuk
Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Donghyun Jeong
- Department
of Chemistry, Ulsan National Institute of
Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyungmin Kim
- Department
of Chemistry, Ulsan National Institute of
Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department
of Emerging Materials Science, Daegu Gyeongbuk
Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jaeheung Cho
- Department
of Chemistry, Ulsan National Institute of
Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate
School of Carbon Neutrality, Ulsan National
Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
5
|
Chen Y, Chen G, Man WL. Effect of Alkyl Group on Aerobic Peroxidation of Hydrocarbons Catalyzed by Cobalt(III) Alkylperoxo Complexes. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yunzhou Chen
- Hong Kong Baptist University Chemistry HONG KONG
| | - Gui Chen
- Dongguan University of Technology School of Environment and Civil Engineering HONG KONG
| | - Wai-Lun Man
- Hong Kong Baptist University Chemistry Waterloo RoadKowloong Tong 0000 Hong Kong HONG KONG
| |
Collapse
|
6
|
Teptarakulkarn P, Lorpaiboon W, Anusanti T, Laowiwatkasem N, Chainok K, Sangtrirutnugul P, Surawatanawong P, Chantarojsiri T. Incorporation of Cation Affects the Redox Reactivity of Fe- NNN Complexes on C-H Oxidation. Inorg Chem 2022; 61:11066-11074. [PMID: 35815773 DOI: 10.1021/acs.inorgchem.2c00762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cations such as Lewis acids have been shown to enhance the catalytic activity of high-valent Fe-oxygen intermediates. Herein, we present a pyridine diamine ethylene glycol macrocycle, which can form Zn(II)- or Fe(III)-complex with the NNN site, while allowing redox-inactive cations to bind to the ethylene glycol moiety. The addition of alkali, alkali earth, and lanthanum ions resulted in positive shifts to the Fe(III/II) redox potential. Calculation of dissociation constants showed the tightest binding with a Ba2+ ion. Density functional theory calculations were used to elucidate the effects of redox inactive cations toward the electronic structures of Fe complexes. Although the Fe-NNN complexes, both in the absence and presence of cations, can catalyze C-H oxidation of 9,10-dihydroanthracene, to give anthracene [hydrogen atom transfer (HAT) product], anthrone, and anthraquinone [oxygen atom transfer (OAT) products], highest overall activity and OAT/HAT product ratios were obtained in the presence of dications, that is, Ba2+ and Mg2+, respectively.
Collapse
Affiliation(s)
- Pathorn Teptarakulkarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Wanutcha Lorpaiboon
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Thana Anusanti
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Natchapol Laowiwatkasem
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand
| | - Preeyanuch Sangtrirutnugul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Panida Surawatanawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Teera Chantarojsiri
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
7
|
Vargo NP, Harland JB, Musselman BW, Lehnert N, Ertem MZ, Robinson JR. Calcium‐Ion Binding Mediates the Reversible Interconversion of
Cis
and
Trans
Peroxido Dicopper Cores. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Natasha P. Vargo
- Department of Chemistry Brown University 324 Brook Street Providence RI 02912 USA
| | - Jill B. Harland
- Department of Chemistry and Department of Biophysics University of Michigan 930 North University Avenue Ann Arbor MI 41809-1055 USA
| | - Bradley W. Musselman
- Department of Chemistry and Department of Biophysics University of Michigan 930 North University Avenue Ann Arbor MI 41809-1055 USA
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics University of Michigan 930 North University Avenue Ann Arbor MI 41809-1055 USA
| | - Mehmed Z. Ertem
- Chemistry Division, Energy & Photon Sciences Brookhaven National Laboratory PO Box 5000 Upton NY 11973-5000 USA
| | - Jerome R. Robinson
- Department of Chemistry Brown University 324 Brook Street Providence RI 02912 USA
| |
Collapse
|
8
|
Vargo NP, Harland JB, Musselman BW, Lehnert N, Ertem MZ, Robinson JR. Calcium-Ion Binding Mediates the Reversible Interconversion of Cis and Trans Peroxido Dicopper Cores. Angew Chem Int Ed Engl 2021; 60:19836-19842. [PMID: 34101958 DOI: 10.1002/anie.202105421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/07/2021] [Indexed: 01/27/2023]
Abstract
Coupled dinuclear copper oxygen cores (Cu2 O2 ) featured in type III copper proteins (hemocyanin, tyrosinase, catechol oxidase) are vital for O2 transport and substrate oxidation in many organisms. μ-1,2-cis peroxido dicopper cores (C P) have been proposed as key structures in the early stages of O2 binding in these proteins; their reversible isomerization to other Cu2 O2 cores are directly relevant to enzyme function. Despite the relevance of such species to type III copper proteins and the broader interest in the properties and reactivity of bimetallic C P cores in biological and synthetic systems, the properties and reactivity of C P Cu2 O2 species remain largely unexplored. Herein, we report the reversible interconversion of μ-1,2-trans peroxido (T P) and C P dicopper cores. CaII mediates this process by reversible binding at the Cu2 O2 core, highlighting the unique capability for metal-ion binding events to stabilize novel reactive fragments and control O2 activation in biomimetic systems.
Collapse
Affiliation(s)
- Natasha P Vargo
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI, 02912, USA
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 41809-1055, USA
| | - Bradley W Musselman
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 41809-1055, USA
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 41809-1055, USA
| | - Mehmed Z Ertem
- Chemistry Division, Energy & Photon Sciences, Brookhaven National Laboratory, PO Box 5000, Upton, NY, 11973-5000, USA
| | - Jerome R Robinson
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI, 02912, USA
| |
Collapse
|
9
|
Kim K, Cho D, Noh H, Ohta T, Baik MH, Cho J. Controlled Regulation of the Nitrile Activation of a Peroxocobalt(III) Complex with Redox-Inactive Lewis Acidic Metals. J Am Chem Soc 2021; 143:11382-11392. [PMID: 34313127 DOI: 10.1021/jacs.1c01674] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Redox-inactive metal ions play vital roles in biological O2 activation and oxidation reactions of various substrates. Recently, we showed a distinct reactivity of a peroxocobalt(III) complex bearing a tetradentate macrocyclic ligand, [CoIII(TBDAP)(O2)]+ (1) (TBDAP = N,N'-di-tert-butyl-2,11-diaza[3.3](2,6)pyridinophane), toward nitriles that afforded a series of hydroximatocobalt(III) complexes, [CoIII(TBDAP)(R-C(═NO)O)]+ (R = Me (3), Et, and Ph). In this study, we report the effects of redox-inactive metal ions on nitrile activation of 1. In the presence of redox-inactive metal ions such as Zn2+, La3+, Lu3+, and Y3+, the reaction does not form the hydroximatocobalt(III) complex but instead gives peroxyimidatocobalt(III) complexes, [CoIII(TBDAP)(R-C(═NH)O2)]2+ (R = Me (2) and Ph (2Ph)). These new intermediates were characterized by various physicochemical methods including X-ray diffraction analysis. The rates of the formation of 2 are found to correlate with the Lewis acidity of the additive metal ions. Moreover, complex 2 was readily converted to 3 by the addition of a base. In the presence of Al3+, Sc3+, or H+, 1 is converted to [CoIII(TBDAP)(O2H)(MeCN)]2+ (4), and further reaction with nitriles did not occur. These results reveal that the reactivity of the peroxocobalt(III) complex 1 in nitrile activation can be regulated by the redox-inactive metal ions and their Lewis acidity. DFT calculations show that the redox-inactive metal ions stabilize the peroxo character of end-on Co-η1-O2 intermediate through the charge reorganization from a CoII-superoxo to a CoIII-peroxo intermediate. A complete mechanistic model explaining the role of the Lewis acid is presented.
Collapse
Affiliation(s)
- Kyungmin Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.,Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Dasol Cho
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Hyeonju Noh
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Takehiro Ohta
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSCLP Center, 679-5148 Hyogo, Japan
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Jaeheung Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.,Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
10
|
Negative catalysis / non-Bell-Evans-Polanyi reactivity by metalloenzymes: Examples from mononuclear heme and non-heme iron oxygenases. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213914] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Bagha UK, Satpathy JK, Mukherjee G, Sastri CV, de Visser SP. A comprehensive insight into aldehyde deformylation: mechanistic implications from biology and chemistry. Org Biomol Chem 2021; 19:1879-1899. [PMID: 33406196 DOI: 10.1039/d0ob02204g] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aldehyde deformylation is an important reaction in biology, organic chemistry and inorganic chemistry and the process has been widely applied and utilized. For instance, in biology, the aldehyde deformylation reaction has wide differences in biological function, whereby cyanobacteria convert aldehydes into alkanes or alkenes, which are used as natural products for, e.g., defense mechanisms. By contrast, the cytochromes P450 catalyse the biosynthesis of hormones, such as estrogen, through an aldehyde deformylation reaction step. In organic chemistry, the aldehyde deformylation reaction is a common process for replacing functional groups on a molecule, and as such, many different synthetic methods and procedures have been reported that involve an aldehyde deformylation step. In bioinorganic chemistry, a variety of metal(iii)-peroxo complexes have been synthesized as biomimetic models and shown to react efficiently with aldehydes through deformylation reactions. This review paper provides an overview of the various aldehyde deformylation reactions in organic chemistry, biology and biomimetic model systems, and shows a broad range of different chemical reaction mechanisms for this process. Although a nucleophilic attack at the carbonyl centre is the consensus reaction mechanism, several examples of an alternative electrophilic reaction mechanism starting with hydrogen atom abstraction have been reported as well. There is still much to learn and to discover on aldehyde deformylation reactions, as deciphered in this review paper.
Collapse
Affiliation(s)
- Umesh Kumar Bagha
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | | | - Gourab Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Sam P de Visser
- Manchester Institute of Biotechnology and the Department of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
12
|
Devi T, Lee YM, Fukuzumi S, Nam W. Acid-promoted hydride transfer from an NADH analogue to a Cr(iii)-superoxo complex via a proton-coupled hydrogen atom transfer. Dalton Trans 2021; 50:675-680. [PMID: 33331375 DOI: 10.1039/d0dt04004e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The sequential transfer of an electron, a proton and an electron in a hydride transfer from dihydronicotinamide adenine dinucleotide (NADH) and its analogues has never been separated well. In addition, the effect of acids on hydride transfer from an NADH analogue to a metal-superoxo species has yet to be reported. We report herein the first example of an acid-promoted hydride transfer from an NADH analogue, 10-methyl-9,10-dihydroacridine (AcrH2), to a Cr(iii)-superoxo complex, [(TMC)CrIII(O2)]2+, in the presence of HOTf in MeCN at 233 K. The acid-promoted hydride transfer from AcrH2 to [(TMC)CrIII(O2)]2+ occurs via a proton-coupled hydrogen atom transfer from AcrH2 to [(TMC)CrIII(O2)]2+ to produce a radical cation (AcrH2˙+) with an inverse deuterium isotope effect (KIE) of 0.93(5). AcrH2˙+ decayed via a proton transfer from AcrH2˙+ to AcrH2 with a KIE of 2.0(1), followed by the reaction of 10-methylacridinyl radical (AcrH˙) with [(TMC)CrIII(H2O2)]3+ to produce a 10-methylacridinium ion (AcrH+) and [(TMC)CrIII]3+. This work provides valuable insights into the mechanism of hydride transfer of NADH analogues by metal-superoxo intermediates, such as the switchover of the reaction mechanism from a one-step to a separated multi-step pathway in the presence of an acid.
Collapse
Affiliation(s)
- Tarali Devi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea. and Faculty of Science and Engineering, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea. and Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|