1
|
Deason TK, Grasser MA, Mofrad A, Amoroso J, DiPrete DP, Morrison G, Tisdale HB, Pellechia PJ, Estes SL, Smith MD, Besmann TM, Zur Loye HC. Ionothermal Synthesis of Am 4B 22O 42Cl 12: A Chiral Cubic Americium Borate Cluster. Inorg Chem 2025; 64:2182-2187. [PMID: 39856024 DOI: 10.1021/acs.inorgchem.4c05455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Ionic liquids were used as low temperature solvents for the synthesis of new lanthanide and transuranic-element (TRU) borate cluster structures. Ionothermal synthesis with the ionic liquid [BMIm]Cl (1-butyl-3-methylimidazolium chloride) yielded the La, Nd, and Am containing phases La4B22O42Cl12, Nd4B22O42Cl12, and Am4B22O42Cl12. The structures of the La, Nd, and Am borate clusters were determined by single crystal X-ray diffraction (SCXRD) and found to be cubic, in the chiral space group I23. Solid state NMR and Raman spectra confirm the structure descriptions. This represents the first ionothermal synthesis of an americium containing cluster compound, and the study of such low-temperature methods benefit work on TRU materials.
Collapse
Affiliation(s)
- Travis K Deason
- Center for Hierarchical Waste Form Materials, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- Savannah River National Laboratory, Aiken, South Carolina 29803, United States
| | - Matthias A Grasser
- Center for Hierarchical Waste Form Materials, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Amir Mofrad
- Center for Hierarchical Waste Form Materials, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Mechanical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jake Amoroso
- Center for Hierarchical Waste Form Materials, University of South Carolina, Columbia, South Carolina 29208, United States
- Savannah River National Laboratory, Aiken, South Carolina 29803, United States
| | - David P DiPrete
- Center for Hierarchical Waste Form Materials, University of South Carolina, Columbia, South Carolina 29208, United States
- Savannah River National Laboratory, Aiken, South Carolina 29803, United States
| | - Gregory Morrison
- Center for Hierarchical Waste Form Materials, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Hunter B Tisdale
- Center for Hierarchical Waste Form Materials, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Perry J Pellechia
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Shanna L Estes
- Department of Chemistry and Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management, Clemson University, Clemson, South Carolina 29634, United States
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Theodore M Besmann
- Center for Hierarchical Waste Form Materials, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Mechanical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Hans-Conrad Zur Loye
- Center for Hierarchical Waste Form Materials, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- Savannah River National Laboratory, Aiken, South Carolina 29803, United States
| |
Collapse
|
2
|
Woods JJ, Wacker JN, Peterson A, Abergel RJ, Ung G. Improved Energy Transfer in the Sensitization of Americium Enables Observation of Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2024:e202412535. [PMID: 39212324 DOI: 10.1002/anie.202412535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
The first example of circularly polarized luminescence (CPL) from a molecular americium (Am) complex is reported. Coordination of Am(III) by a combination of thenoyltrifluoroacetonate and a chiral diphosphine oxide ligand yielded a complex with strong sensitized metal-centered luminescence. The energy transfer process for sensitization appears to occur via a unique resonant pathway, which results in the removal of the overlap between ligand phosphorescence and sensitized Am luminescence that has often been observed. Owing to this feature, and despite the limited amount of material that could be used due to the radioactivity of 241Am, CPL could be measured. The collected luminescence and CPL spectra provide insight into the crystal field splitting of the 5D1→7F1 transition. These results pave the way for future studies of Am(III) luminescence to investigate electronic structure effects in this and other 5 f elements.
Collapse
Affiliation(s)
- Joshua J Woods
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Jennifer N Wacker
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Appie Peterson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Department of Nuclear Engineering and Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Gaël Ung
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, United States
| |
Collapse
|
3
|
Morrison G, Hines AT, Jones VG, Zamorano KP, Adams EN, Smith MD, Zur Loye HC. Flux Synthesis of Alkaline-Earth Lanthanide Borates as Potential Nuclear Waste Forms. Inorg Chem 2024; 63:15359-15367. [PMID: 39115323 DOI: 10.1021/acs.inorgchem.4c02297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Neodymium is typically considered the best surrogate for trivalent americium and can be used to identify Am3+ containing materials that are likely to form. We have explored the alkaline-earth lanthanide borate phase space using alkaline-earth halide/carbonate fluxes. This resulted in the synthesis of new compounds AE5Ln(BO3)4X (AE = Ca, Sr; Ln = Pr, Nd, Eu, Tb; X = Cl, Br) and AE3Ln2(BO3)4 (AE = Sr, Ba; Ln = Pr, Nd) as well as the synthesis of two compounds of Ba8Ln2(BO3)6(B2O5) (Ln = Eu, Tb) crystallizing in a new structure type. Ba8Ln2(BO3)6(B2O5) crystallizes in the space group P21/n with lattice parameters a = 8.6002(3) Å, b = 7.9245(3) Å, c = 17.6697(7) Å, and β = 91.3560(10)° for the Eu analogue, and the structure contains isolated LnO8 polyhedra connected into a framework by BO3 and B2O5 units. The fluorescence emission spectra of AE5Ln(BO3)4X (AE = Ca, Sr; Ln = Eu, Tb; X = Cl, Br) and Ba8Ln2(BO3)6(B2O5) (Ln = Eu, Tb) are reported.
Collapse
Affiliation(s)
- Gregory Morrison
- Center for Hierarchical Waste form Materials, Columbia, South Carolina 29208, United States
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Adrian T Hines
- Center for Hierarchical Waste form Materials, Columbia, South Carolina 29208, United States
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Virginia G Jones
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - K Pilar Zamorano
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Ethan N Adams
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Hans-Conrad Zur Loye
- Center for Hierarchical Waste form Materials, Columbia, South Carolina 29208, United States
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
4
|
Gomez Martinez D, Sperling JM, Beck NB, Wineinger HB, Brannon JP, Whitefoot MA, Horne GP, Albrecht-Schönzart TE. Comparison of Americium(III) and Neodymium(III) Monothiophosphate Complexes. Inorg Chem 2024; 63:9237-9244. [PMID: 38722713 DOI: 10.1021/acs.inorgchem.4c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Mixed-donor ligands, such as those containing a combination of O/N or O/S, have been studied extensively for the selective extraction of trivalent actinides, especially Am3+ and Cm3+, from lanthanides during the recycling of used nuclear fuel. Oxygen/sulfur donor ligand combinations also result from the hydrolytic and/or radiolytic degradation of dithiophosphates, such as the Cyanex class of extractants, which are initially converted to monothiophosphates. To understand potential differences between the binding of such degraded ligands to Nd3+ and Am3+, the monothiophosphate complexes [M(OPS(OEt)2)5(H2O)2]2- (M3+ = Nd3+, Am3+) were prepared and characterized by single-crystal X-ray diffraction and optical spectroscopy and studied as a function of pressure up to ca. 14 GPa using diamond-anvil techniques. Although Nd3+ and Am3+ have nearly identical eight-coordinated ionic radii, these structures reveal that while the M-O bond distances in these complexes are almost equal, the M-S distances are statistically different. Moreover, for [Nd(OPS(OEt)2)5(H2O)2]2-, the hypersensitive 4I9/2 → 4G5/2 transition shifts as a function of pressure by -11 cm-1/GPa. Whereas for [Am(OPS(OEt)2)5(H2O)2]2-, the 7F0 → 7F6 transition shows a slightly stronger pressure dependence with a shift of -13 cm-1/GPa and also exhibits broadening of the 5f → 5f transitions at high pressures. These data likely indicate an increased involvement of the 5f orbitals in bonding with Am3+ relative to that of Nd3+ in these complexes.
Collapse
Affiliation(s)
- Daniela Gomez Martinez
- Department of Chemistry and Nuclear Science and Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Joseph M Sperling
- Department of Chemistry and Nuclear Science and Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Nicholas B Beck
- Department of Chemistry and Nuclear Science and Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Hannah B Wineinger
- Department of Chemistry and Nuclear Science and Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Jacob P Brannon
- Department of Chemistry and Nuclear Science and Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Megan A Whitefoot
- Department of Chemistry and Nuclear Science and Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Gregory P Horne
- Center for Radiation Chemistry Research, Idaho National Laboratory, Idaho Falls, P.O. Box 1625, Idaho 83415, United States
| | - Thomas E Albrecht-Schönzart
- Department of Chemistry and Nuclear Science and Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
- Center for Radiation Chemistry Research, Idaho National Laboratory, Idaho Falls, P.O. Box 1625, Idaho 83415, United States
| |
Collapse
|
5
|
Goodwin CP, Adams RW, Gaunt AJ, Hanson SK, Janicke MT, Kaltsoyannis N, Liddle ST, May I, Miller JL, Scott BL, Seed JA, Whitehead GFS. N-Heterocyclic Carbene to Actinide d-Based π-bonding Correlates with Observed Metal-Carbene Bond Length Shortening Versus Lanthanide Congeners. J Am Chem Soc 2024; 146:10367-10380. [PMID: 38569081 PMCID: PMC11029940 DOI: 10.1021/jacs.3c12721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 04/05/2024]
Abstract
Comparison of bonding and electronic structural features between trivalent lanthanide (Ln) and actinide (An) complexes across homologous series' of molecules can provide insights into subtle and overt periodic trends. Of keen interest and debate is the extent to which the valence f- and d-orbitals of trivalent Ln/An ions engage in covalent interactions with different ligand donor functionalities and, crucially, how bonding differences change as both the Ln and An series are traversed. Synthesis and characterization (SC-XRD, NMR, UV-vis-NIR, and computational modeling) of the homologous lanthanide and actinide N-heterocyclic carbene (NHC) complexes [M(C5Me5)2(X)(IMe4)] {X = I, M = La, Ce, Pr, Nd, U, Np, Pu; X = Cl, M = Nd; X = I/Cl, M = Nd, Am; and IMe4 = [C(NMeCMe)2]} reveals consistently shorter An-C vs Ln-C distances that do not substantially converge upon reaching Am3+/Nd3+ comparison. Specifically, the difference of 0.064(6) Å observed in the La/U pair is comparable to the 0.062(4) Å difference observed in the Nd/Am pair. Computational analyses suggest that the cause of this unusual observation is rooted in the presence of π-bonding with the valence d-orbital manifold in actinide complexes that is not present in the lanthanide congeners. This is in contrast to other documented cases of shorter An-ligand vs Ln-ligand distances, which are often attributed to increased 5f vs 4f radial diffusivity leading to differences in 4f and 5f orbital bonding involvement. Moreover, in these traditional observations, as the 5f series is traversed, the 5f manifold contracts such that by americium structural studies often find no statistically significant Am3+vs Nd3+ metal-ligand bond length differences.
Collapse
Affiliation(s)
- Conrad
A. P. Goodwin
- Chemistry
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Centre
for Radiochemistry Research, The University
of Manchester, Oxford
Road, Manchester M13 9PL, U.K.
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ralph W. Adams
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Andrew J. Gaunt
- Chemistry
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Susan K. Hanson
- Chemistry
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Michael T. Janicke
- Chemistry
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nikolas Kaltsoyannis
- Centre
for Radiochemistry Research, The University
of Manchester, Oxford
Road, Manchester M13 9PL, U.K.
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Stephen T. Liddle
- Centre
for Radiochemistry Research, The University
of Manchester, Oxford
Road, Manchester M13 9PL, U.K.
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Iain May
- Chemistry
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jeffrey L. Miller
- Chemistry
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Brian L. Scott
- Materials
Physics & Applications Division, Los
Alamos National Laboratory, Los Alamos, New Mexico, 87545, United States
| | - John A. Seed
- Centre
for Radiochemistry Research, The University
of Manchester, Oxford
Road, Manchester M13 9PL, U.K.
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - George F. S. Whitehead
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
6
|
Arteaga A, Nicholas AD, Sinnwell MA, McNamara BK, Buck EC, Surbella RG. Expanding the Transuranic Metal-Organic Framework Portfolio: The Optical Properties of Americium(III) MOF-76. Inorg Chem 2023; 62:21036-21043. [PMID: 38038352 DOI: 10.1021/acs.inorgchem.3c02742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Reported is the synthesis, crystal structure, and solid-state characterization of a new americium containing metal-organic framework (MOF), [Am(C9H3O6)(H2O)], MOF-76(Am). This material is constructed from Am3+ metal centers and 1,3,5-tricarboxylic acid (BTC) ligands, forming a porous three-dimensional framework that is isostructural with several known trivalent lanthanide (Ln) analogs (e.g., Ce, Nd, and Sm-Lu). The Am3+ ions have seven coordinates and assume a distorted, capped trigonal prismatic geometry with C1 symmetry. The Am3+-O bonds were studied via infrared spectroscopy and compared to several MOF-76(Ln) analogs, where Ln = Nd3+, Eu3+, Tb3+, and Ho3+. The results show that the strength of the ligand carboxylate stretching and bending modes increase with Nd3+ < Eu3+ < Am3+ < Tb3+ < Ho3+, suggesting the metal-oxygen bonds are predominantly ionic. Optical absorbance spectroscopy measurements reveal strong f-f transitions; some exhibit pronounced crystal field splitting. The photoluminescence spectrum contains weak Am3+-based emission that is achieved through direct and indirect metal center excitation. The weak emissive behavior is somewhat surprising given that ligand-to-metal resonance energy transfer is efficient in the isoelectronic Eu3+ (4f6) and related Tb3+ (4f8) analogs. The optical properties were explored further within a series of heterometallic MOF-76(Tb1-xAmx) (x = 0.8, 0.2, and 0.1) samples, and the results reveal enhanced Am3+ photoluminescence.
Collapse
Affiliation(s)
- Ana Arteaga
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Aaron D Nicholas
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Michael A Sinnwell
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Bruce K McNamara
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Edgar C Buck
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Robert G Surbella
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| |
Collapse
|
7
|
Nicholas AD, Arteaga A, Ducati LC, Buck EC, Autschbach J, Surbella RG. Insight into the Structural and Emissive Behavior of a Three-Dimensional Americium(III) Formate Coordination Polymer. Chemistry 2023; 29:e202300077. [PMID: 36973189 DOI: 10.1002/chem.202300077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/29/2023]
Abstract
We report the structural, vibrational, and optical properties of americium formate (Am(CHO2 )3 ) crystals synthesized via the in situ hydrolysis of dimethylformamide (DMF). The coordination polymer features Am3+ ions linked by formate ligands into a three-dimensional network that is isomorphous to several lanthanide analogs, (e. g., Eu3+ , Nd3+ , Tb3+ ). Structure determination revealed a nine-coordinate Am3+ metal center that features a unique local C3v symmetry. The metal-ligand bonding interactions were investigated by vibrational spectroscopy, natural localized molecular orbital calculations, and the quantum theory of atoms in molecules. The results paint a predominantly ionic bond picture and suggest the metal-oxygen bonds increase in strength from Nd-O
Collapse
Affiliation(s)
- Aaron D Nicholas
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Ana Arteaga
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Lucas C Ducati
- Department of Fundamental Chemistry Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Edgar C Buck
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo State University of New York, Buffalo, NY, 14260-3000, USA
| | - Robert G Surbella
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| |
Collapse
|
8
|
Poe TN, Ramanantoanina H, Sperling JM, Wineinger HB, Rotermund BM, Brannon J, Bai Z, Scheibe B, Beck N, Long BN, Justiniano S, Albrecht-Schönzart TE, Celis-Barros C. Isolation of a californium(II) crown-ether complex. Nat Chem 2023; 15:722-728. [PMID: 36973433 DOI: 10.1038/s41557-023-01170-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/22/2023] [Indexed: 03/29/2023]
Abstract
The actinides, from californium to nobelium (Z = 98-102), are known to have an accessible +2 oxidation state. Understanding the origin of this chemical behaviour requires characterizing CfII materials, but investigations are hampered by the fact that they have remained difficult to isolate. This partly arises from the intrinsic challenges of manipulating this unstable element, as well as a lack of suitable reductants that do not reduce CfIII to Cf°. Here we show that a CfII crown-ether complex, Cf(18-crown-6)I2, can be prepared using an Al/Hg amalgam as a reductant. Spectroscopic evidence shows that CfIII can be quantitatively reduced to CfII, and rapid radiolytic re-oxidation in solution yields co-crystallized mixtures of CfII and CfIII complexes without the Al/Hg amalgam. Quantum-chemical calculations show that the Cf‒ligand interactions are highly ionic and that 5f/6d mixing is absent, resulting in weak 5f→5f transitions and an absorption spectrum dominated by 5f→6d transitions.
Collapse
Affiliation(s)
- Todd N Poe
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Harry Ramanantoanina
- Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal (INE), Karlsruhe, Germany
| | - Joseph M Sperling
- Department of Chemistry and Nuclear Science & Engineering Center, Colorado School of Mines, Golden, USA
| | - Hannah B Wineinger
- Department of Chemistry and Nuclear Science & Engineering Center, Colorado School of Mines, Golden, USA
| | - Brian M Rotermund
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Jacob Brannon
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Zhuanling Bai
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Benjamin Scheibe
- Department of Chemistry and Nuclear Science & Engineering Center, Colorado School of Mines, Golden, USA
| | - Nicholas Beck
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Brian N Long
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Samantha Justiniano
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | | | - Cristian Celis-Barros
- Department of Chemistry and Nuclear Science & Engineering Center, Colorado School of Mines, Golden, USA.
| |
Collapse
|
9
|
Colla CA, Colliard I, Sawvel AM, Nyman M, Mason HE, Deblonde GJP. Contrasting Trivalent Lanthanide and Actinide Complexation by Polyoxometalates via Solution-State NMR. Inorg Chem 2022; 62:6242-6254. [PMID: 36580490 DOI: 10.1021/acs.inorgchem.2c04014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Deciphering the solution chemistry and speciation of actinides is inherently difficult due to radioactivity, rarity, and cost constraints, especially for transplutonium elements. In this context, the development of new chelating platforms for actinides and associated spectroscopic techniques is particularly important. In this study, we investigate a relatively overlooked class of chelators for actinide binding, namely, polyoxometalates (POMs). We provide the first NMR measurements on americium-POM and curium-POM complexes, using one-dimensional (1D) 31P NMR, variable-temperature NMR, and spin-lattice relaxation time (T1) experiments. The proposed POM-NMR approach allows for the study of trivalent f-elements even when only microgram amounts are available and in phosphate-containing solutions where f-elements are typically insoluble. The solution-state speciation of trivalent americium, curium, plus multiple lanthanide ions (La3+, Nd3+, Sm3+, Eu3+, Yb3+, and Lu3+), in the presence of the model POM ligand PW11O397- was elucidated and revealed the concurrent formation of two stable complexes, [MIII(PW11O39)(H2O)x]4- and [MIII(PW11O39)2]11-. Interconversion reaction constants, reaction enthalpies, and reaction entropies were derived from the NMR data. The NMR results also provide experimental evidence of the weakly paramagnetic nature of the Am3+ and Cm3+ ions in solution. Furthermore, the study reveals a previously unnoticed periodicity break along the f-element series with the reversal of T1 relaxation times of the 1:1 and 1:2 complexes and the preferential formation of the long T1 species for the early lanthanides versus the short T1 species for the late lanthanides, americium, and curium. Given the broad variety of POM ligands that exist, with many of them containing NMR-active nuclei, the combined POM-NMR approach reported here opens a new avenue to investigate difficult-to-study elements such as heavy actinides and other radionuclides.
Collapse
Affiliation(s)
- Christopher A Colla
- Atmospheric, Earth and Energy Division, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Ian Colliard
- Glenn T. Seaborg Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States.,Department of Chemistry, Oregon State University, Corvallis, Oregon97331, United States
| | - April M Sawvel
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, Oregon97331, United States
| | - Harris E Mason
- Atmospheric, Earth and Energy Division, Lawrence Livermore National Laboratory, Livermore, California94550, United States.,Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Gauthier J-P Deblonde
- Glenn T. Seaborg Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States.,Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| |
Collapse
|
10
|
Beck NB, Bai Z, Brannon JP, Martinez DG, Grödler D, Long BN, Poe TN, Rotermund BM, Albrecht-Schönzart TE, Sperling JM. Two Neptunium(III) Mellitate Coordination Polymers: Completing the Series Np–Cf of Trans-Uranic An(III) Mellitates. Inorg Chem 2022; 61:17730-17737. [DOI: 10.1021/acs.inorgchem.2c02873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nicholas B. Beck
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Zhuanling Bai
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Jacob P. Brannon
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Daniela Gomez Martinez
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Dennis Grödler
- Department of Chemistry, Institute for Inorganic Chemistry, University of Cologne, Greinstr. 4-6, Cologne 50939, Germany
| | - Brian N. Long
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Todd N. Poe
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Brian M. Rotermund
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | | | - Joseph M. Sperling
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
11
|
Long BN, Beltrán-Leiva MJ, Celis-Barros C, Sperling JM, Poe TN, Baumbach RE, Windorff CJ, Albrecht-Schönzart TE. Cyclopentadienyl coordination induces unexpected ionic Am-N bonding in an americium bipyridyl complex. Nat Commun 2022; 13:201. [PMID: 35017503 PMCID: PMC8752859 DOI: 10.1038/s41467-021-27821-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/15/2021] [Indexed: 11/09/2022] Open
Abstract
Variations in bonding between trivalent lanthanides and actinides is critical for reprocessing spent nuclear fuel. The ability to tune bonding and the coordination environment in these trivalent systems is a key factor in identifying a solution for separating lanthanides and actinides. Coordination of 4,4'-bipyridine (4,4'-bpy) and trimethylsilylcyclopentadienide (Cp') to americium introduces unexpectedly ionic Am-N bonding character and unique spectroscopic properties. Here we report the structural characterization of (Cp'3Am)2(μ - 4,4'-bpy) and its lanthanide analogue, (Cp'3Nd)2(μ - 4,4'-bpy), by single-crystal X-ray diffraction. Spectroscopic techniques in both solid and solution phase are performed in conjunction with theoretical calculations to probe the effects the unique coordination environment has on the electronic structure.
Collapse
Affiliation(s)
- Brian N Long
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL, 32306, USA
| | - María J Beltrán-Leiva
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL, 32306, USA
| | - Cristian Celis-Barros
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL, 32306, USA
| | - Joseph M Sperling
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL, 32306, USA
| | - Todd N Poe
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL, 32306, USA
| | - Ryan E Baumbach
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, FL, 32310, USA
| | - Cory J Windorff
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL, 32306, USA.,Department of Chemistry and Biochemistry, New Mexico State University, MSC 3C, PO box 30001, Las Cruces, NM, 88003, USA
| | - Thomas E Albrecht-Schönzart
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL, 32306, USA.
| |
Collapse
|
12
|
Zhang Y, Duan W, Wang Q, Zheng L, Wang J, Chen J, Sun T. Covalency between the uranyl ion and dithiophosphinate by sulfur K-edge X-ray absorption spectroscopy and density functional theory. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:11-20. [PMID: 34985418 PMCID: PMC8733989 DOI: 10.1107/s160057752101198x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
The dithiophosphinic acids (HS2PR2) have been used for the selective separation of trivalent actinides (AnIII) from lanthanides (LnIII) over the past decades. The substituents on the dithiophosphinic acids dramatically impact the separation performance, but the mechanism is still open for debate. In this work, two dithiophosphinic acids with significantly different AnIII/LnIII separation performance, i.e. diphenyl dithiophosphinic acid (HS2PPh2) and bis(ortho-trifluoromethylphenyl) dithiophosphinic acid [HS2P(o-CF3C6H4)2], are employed to understand the substituent effect on the bonding covalency between the S2PR2- anions (R = Ph and o-CF3C6H4) and the uranyl ion by sulfur K-edge X-ray absorption spectroscopy (XAS) in combination with density functional theory calculations. The two UO2(S2PR2)(EtOH) complexes display similar XAS spectra, in which the first pre-edge feature with an intensity of 0.16 is entirely attributed to the transitions from S 1s orbitals to the unoccupied molecular orbitals due to the mixing between U 5f and S 3p orbitals. The Mulliken population analysis indicates that the amount of \% S 3p character in these orbitals is essentially identical for the UO2(S2PPh2)2(EtOH) and UO2[S2P(o-CF3C6H4)2]2(EtOH) complexes, which is lower than that in the U 6d-based orbitals. The essentially identical covalency in U-S bonds for the two UO2(S2PR2)2(EtOH) complexes are contradictory to the significantly different AnIII/LnIII separation performance of the two dithiophosphinic acids, thus the covalency seems to be unable to account for substituent effects in the AnIII/LnIII separation by the dithiophosphinic acids. The results in this work provide valuable insight into the understanding of the mechanism in the AnIII/LnIII separation by the dithiophosphinic acids.
Collapse
Affiliation(s)
- Yusheng Zhang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Wuhua Duan
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Qiang Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Lei Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Jianchen Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Jing Chen
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Taoxiang Sun
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
13
|
Goodwin CAP, Janicke MT, Scott BL, Gaunt AJ. [AnI 3(THF) 4] (An = Np, Pu) Preparation Bypassing An 0 Metal Precursors: Access to Np 3+/Pu 3+ Nonaqueous and Organometallic Complexes. J Am Chem Soc 2021; 143:20680-20696. [PMID: 34854294 DOI: 10.1021/jacs.1c07967] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Direct comparison of homologous molecules provides a foundation from which to elucidate both subtle and patent changes in reactivity patterns, redox processes, and bonding properties across a series of elements. While trivalent molecular U chemistry is richly developed, analogous Np or Pu research has long been hindered by synthetic routes often requiring scarcely available metallic-phase source material, high-temperature solid-state reactions producing poorly soluble binary halides, or the use of pyrophoric reagents. The development of routes to nonaqueous Np3+/Pu3+ from widely available precursors can potentially transform the scope and pace of research into actinide periodicity. Here, aqueous stocks of An4+ (An = Np, Pu) are dehydrated to well-defined [AnCl4(DME)2] (DME = 1,2-dimethoxyethane), and then a single-step halide exchange/reduction employing Me3SiI produces [AnI3(THF)4] (THF = tetrahydrofuran) in a high to nearly quantitative crystalline yield (with I2 and Me3SiCl as easily removed byproducts). We demonstrate the synthetic utility of these An-iodide molecules, prepared by metal0-free routes, through characterization of archetypal complexes including the tris-silylamide, [Np{N(SiMe3)2}3], and bent metallocenes, [An(C5Me5)2(I)(THF)] (An = Np, Pu)─chosen because both motifs are ubiquitous in Th, U, and lanthanide research. The synthesis of [Np{N(Se═PPh2)2}3] is also reported, completing an isomorphous series that now extends from U to Am and is the first characterized Np3+-Se bond.
Collapse
Affiliation(s)
- Conrad A P Goodwin
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Michael T Janicke
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Brian L Scott
- Materials Physics & Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Andrew J Gaunt
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
14
|
Gray NAG, Price JS, Emslie DJH. Uranium(IV) Thio- and Selenoether Complexes: Syntheses, Structures, and Computational Investigation of U-ER 2 Interactions. Chemistry 2021; 28:e202103580. [PMID: 34875126 DOI: 10.1002/chem.202103580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Indexed: 11/07/2022]
Abstract
Rigid thioether- and selenoether-containing pincer proligands H[AS2 Ph 2 ] (1) and H[ASe2 Ph 2 ] (2) were synthesized, and deprotonation provided the potassium salts [K(AS2 Ph 2 )(dme)] (3) and [K(ASe2 Ph 2 )(dme)2 ] (4). Reaction of two equivalents of 3 or 4 with [UI4 (dioxane)2 ] afforded the uranium thioether complex [(AS2 Ph 2 )2 UI2 ] (5) and the first example of a uranium-selenoether complex, [(ASe2 Ph 2 )2 UI2 ] (6). X-ray structures revealed distorted square antiprismatic geometries in which the AE2 Ph 2 ligands are κ3 -coordinated. The nature of the U-ER2 bonding in 5 and 6, as well as methyl-free analogues of 5 and 6 and a hypothetical ether analogue, was investigated computationally (including NBO, AIM, and ELF calculations) illustrating increasing covalency from O to S to Se.
Collapse
Affiliation(s)
- Novan A G Gray
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | - Jeffrey S Price
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | - David J H Emslie
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| |
Collapse
|
15
|
Goodwin CAP, Schlimgen AW, Albrecht‐Schönzart TE, Batista ER, Gaunt AJ, Janicke MT, Kozimor SA, Scott BL, Stevens LM, White FD, Yang P. Structural and Spectroscopic Comparison of Soft‐Se vs. Hard‐O Donor Bonding in Trivalent Americium/Neodymium Molecules. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | - Enrique R. Batista
- Theoretical Division Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Andrew J. Gaunt
- Chemistry Division Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Michael T. Janicke
- Chemistry Division Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Stosh A. Kozimor
- Chemistry Division Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Brian L. Scott
- Materials Physics and Applications Division Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Lauren M. Stevens
- Chemistry Division Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Frankie D. White
- Chemistry Division Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Ping Yang
- Theoretical Division Los Alamos National Laboratory Los Alamos NM 87545 USA
| |
Collapse
|
16
|
Goodwin CAP, Schlimgen AW, Albrecht-Schönzart TE, Batista ER, Gaunt AJ, Janicke MT, Kozimor SA, Scott BL, Stevens LM, White FD, Yang P. Structural and Spectroscopic Comparison of Soft-Se vs. Hard-O Donor Bonding in Trivalent Americium/Neodymium Molecules. Angew Chem Int Ed Engl 2021; 60:9459-9466. [PMID: 33529478 DOI: 10.1002/anie.202017186] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Indexed: 11/06/2022]
Abstract
Covalency is often considered to be an influential factor in driving An3+ vs. Ln3+ selectivity invoked by soft donor ligands. This is intensely debated, particularly the extent to which An3+ /Ln3+ covalency differences prevail and manifest as the f-block is traversed, and the effects of periodic breaks beyond Pu. Herein, two Am complexes, [Am{N(E=PPh2 )2 }3 ] (1-Am, E=Se; 2-Am, E=O) are compared to isoradial [Nd{N(E=PPh2 )2 }3 ] (1-Nd, 2-Nd) complexes. Covalent contributions are assessed and compared to U/La and Pu/Ce analogues. Through ab initio calculations grounded in UV-vis-NIR spectroscopy and single-crystal X-ray structures, we observe differences in f orbital involvement between Am-Se and Nd-Se bonds, which are not present in O-donor congeners.
Collapse
Affiliation(s)
- Conrad A P Goodwin
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Anthony W Schlimgen
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Thomas E Albrecht-Schönzart
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL, 32306, USA
| | - Enrique R Batista
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Andrew J Gaunt
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Michael T Janicke
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Stosh A Kozimor
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Brian L Scott
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Lauren M Stevens
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Frankie D White
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Ping Yang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|