1
|
Ye JY, Gerard TJ, Lee WT. [2Fe-2S] model compounds. Chem Commun (Camb) 2025; 61:2926-2940. [PMID: 39846454 DOI: 10.1039/d4cc04794j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
This feature article reviews the synthesis, structural comparison, and physical properties of [2Fe-2S] model compounds, which serve as vital tools for understanding the structure and function of Fe-S clusters in biological systems. We explore various synthetic methods for constructing [2Fe-2S] cores, offering insights into their biomimetic relevance. A comprehensive analysis and comparison of Mössbauer spectroscopy data between model compounds and natural protein systems are provided, highlighting the structural and electronic parallels. Additionally, we discuss the redox potentials of synthetic [2Fe-2S] compounds, their deviation from biological systems, and potential strategies to align them with natural counterparts. The review concludes with a discussion of future research directions, particularly the development of models capable of mimicking biological processes such as catalysis and electron transfer reactions. This article serves as a valuable resource for researchers in inorganic chemistry, bioinorganic chemistry, biochemistry, and related fields, offering both fundamental insights and potential applications of [2Fe-2S] clusters.
Collapse
Affiliation(s)
- Jun-Yang Ye
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan.
| | - Theodore J Gerard
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Wei-Tsung Lee
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan.
| |
Collapse
|
2
|
Miller JD, Walsh MM, Lee K, Moore CE, Thomas CM. Hydrogen atom abstraction as a synthetic route to a square planar Co II complex with a redox-active tetradentate PNNP ligand. Chem Sci 2024:d4sc03364g. [PMID: 39220158 PMCID: PMC11362828 DOI: 10.1039/d4sc03364g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Redox-active ligands improve the reactivity of transition metal complexes by facilitating redox processes independent of the transition metal center. A tetradentate square planar (PNCH2CH2NP)CoII (1) complex was synthesized and the ethylene backbone was dehydrogenated through hydrogen atom abstraction to afford (PNCHCHNP)CoII (2), which now contains a redox-active ligand. The ligand backbone of 2 can be readily hydrogenated with H2 to regenerate 1. Reduction of 1 and 2 with KC8 in the presence of 18-crown-6 results in cobalt-based reductions to afford [(PNCH2CH2NP)CoI][K(18-crown-6)] (3) and [(PNCHCHNP)CoI][K(18-crown-6)] (4), respectively. Cyclic voltammetry revealed two reversible oxidation processes for 2, presumed to be ligand-based. Following treatment of 2 with one equivalent of FcPF6, the one-electron oxidation product {[(PNCHCHNP)CoII(THF)][PF6]}·THF (5) was obtained. Treating 5 with an additional equivalent of FcPF6 affords the two-electron oxidation product [(PNCHCHNP)CoII][PF6]2 (6). Addition of PMe3 to 5 produced [(PNCHCHNP)CoII(PMe3)][PF6] (7). A host of characterization methods including nuclear magnetic resonance (NMR) spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, cyclic voltammetry, magnetic susceptibility measurements using SQUID magnetometry, single-crystal X-ray diffraction, and density functional theory calculations were used to assign 5 and 6 as ligand-based oxidation products of 2.
Collapse
Affiliation(s)
- Justin D Miller
- Department of Chemistry and Biochemistry, The Ohio State University 100 W. 18th Ave Columbus OH 43210 USA
| | - Mitchell M Walsh
- Department of Chemistry and Biochemistry, The Ohio State University 100 W. 18th Ave Columbus OH 43210 USA
| | - Kyounghoon Lee
- Department of Chemistry and Biochemistry, The Ohio State University 100 W. 18th Ave Columbus OH 43210 USA
- Department of Chemical Education and Research Institute of Natural Sciences, Gyeongsang National University Gyeongnam 52828 Republic of Korea
| | - Curtis E Moore
- Department of Chemistry and Biochemistry, The Ohio State University 100 W. 18th Ave Columbus OH 43210 USA
| | - Christine M Thomas
- Department of Chemistry and Biochemistry, The Ohio State University 100 W. 18th Ave Columbus OH 43210 USA
| |
Collapse
|
3
|
Zhang X, Jiang X, Zhao Q, Li Y, Feng L, Ye S, Tung CH, Wang W. Synthesis and Characterization of Bridging-Diazene Diiron Half-Sandwich Complexes: The Role of Sulfur Hydrogen Bonding. Inorg Chem 2024; 63:14040-14049. [PMID: 39007501 DOI: 10.1021/acs.inorgchem.4c01783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
We report two bridging-diazene diiron complexes [Cp*Fe(8-quinolinethiolate)]2(μ-N2H2) (1-N2H2) and [Cp*Fe(1,2-Cy2PC6H4S)]2(μ-N2H2) (2-N2H2), synthesized by the reaction of hydrazine with the corresponding thiolate-based iron half-sandwich complex, [Cp*Fe(8-quinolinethiolate)]2 (1) and Cp*Fe(1,2-Cy2PC6H4S) (2). Crystallographic analysis reveals that the thiolate sites in 1-N2H2 and 2-N2H2 can engage in N-H···S hydrogen bonding with the diazene protons. 1-N2H2 is thermally stable in both solid and solution states, allowing for one-electron oxidation to afford a cationic diazene radical complex [1-N2H2]+ at room temperature. In contrast, 2-N2H2 tends to undergo N2H2/N2 transformation, leading to the formation of a Fe(III)-H species by the loss of N2. In addition to stabilizing HN=NH species through the hydrogen bonding, the thiolate-based ligands also seem to facilitate proton-coupled electron transfer, thereby promoting N-H cleavage.
Collapse
Affiliation(s)
- Xin Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xuebin Jiang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuting Zhao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yongxian Li
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lei Feng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wenguang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Zars E, Gravogl L, Gau MR, Carroll PJ, Meyer K, Mindiola DJ. Isostructural bridging diferrous chalcogenide cores [Fe II(μ-E)Fe II] (E = O, S, Se, Te) with decreasing antiferromagnetic coupling down the chalcogenide series. Chem Sci 2023; 14:6770-6779. [PMID: 37350823 PMCID: PMC10283490 DOI: 10.1039/d3sc01094e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023] Open
Abstract
Iron compounds containing a bridging oxo or sulfido moiety are ubiquitous in biological systems, but substitution with the heavier chalcogenides selenium and tellurium, however, is much rarer, with only a few examples reported to date. Here we show that treatment of the ferrous starting material [(tBupyrpyrr2)Fe(OEt2)] (1-OEt2) (tBupyrpyrr2 = 3,5-tBu2-bis(pyrrolyl)pyridine) with phosphine chalcogenide reagents E = PR3 results in the neutral phosphine chalcogenide adduct series [(tBupyrpyrr2)Fe(EPR3)] (E = O, S, Se; R = Ph; E = Te; R = tBu) (1-E) without any electron transfer, whereas treatment of the anionic starting material [K]2[(tBupyrpyrr2)Fe2(μ-N2)] (2-N2) with the appropriate chalcogenide transfer source yields cleanly the isostructural ferrous bridging mono-chalcogenide ate complexes [K]2[(tBupyrpyrr2)Fe2(μ-E)] (2-E) (E = O, S, Se, and Te) having significant deviation in the Fe-E-Fe bridge from linear in the case of E = O to more acute for the heaviest chalcogenide. All bridging chalcogenide complexes were analyzed using a variety of spectroscopic techniques, including 1H NMR, UV-Vis electronic absorbtion, and 57Fe Mössbauer. The spin-state and degree of communication between the two ferrous ions were probed via SQUID magnetometry, where it was found that all iron centers were high-spin (S = 2) FeII, with magnetic exchange coupling between the FeII ions. Magnetic studies established that antiferromagnetic coupling between the ferrous ions decreases as the identity of the chalcogen is tuned from O to the heaviest congener Te.
Collapse
Affiliation(s)
- Ethan Zars
- Department of Chemistry, University of Pennsylvania 231 S 34th St Philadelphia PA 19104 USA
| | - Lisa Gravogl
- Department of Chemistry & Pharmacy, Friedrich-Alexander-Universität Erlangen - Nürnberg (FAU) Egerlandstr. 1 91058 Erlangen Bavaria Germany
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania 231 S 34th St Philadelphia PA 19104 USA
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania 231 S 34th St Philadelphia PA 19104 USA
| | - Karsten Meyer
- Department of Chemistry & Pharmacy, Friedrich-Alexander-Universität Erlangen - Nürnberg (FAU) Egerlandstr. 1 91058 Erlangen Bavaria Germany
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania 231 S 34th St Philadelphia PA 19104 USA
| |
Collapse
|
5
|
Activation of unsaturated small molecules by bio-relevant multinuclear metal-sulfur clusters. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Tanabe Y, Nishibayashi Y. Recent advances in catalytic nitrogen fixation using transition metal–dinitrogen complexes under mild reaction conditions. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Nitrogen reduction by the Fe sites of synthetic [Mo 3S 4Fe] cubes. Nature 2022; 607:86-90. [PMID: 35794270 DOI: 10.1038/s41586-022-04848-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/09/2022] [Indexed: 11/08/2022]
Abstract
Nitrogen (N2) fixation by nature, which is a crucial process for the supply of bio-available forms of nitrogen, is performed by nitrogenase. This enzyme uses a unique transition-metal-sulfur-carbon cluster as its active-site co-factor ([(R-homocitrate)MoFe7S9C], FeMoco)1,2, and the sulfur-surrounded iron (Fe) atoms have been postulated to capture and reduce N2 (refs. 3-6). Although there are a few examples of synthetic counterparts of the FeMoco, metal-sulfur cluster, which have shown binding of N2 (refs. 7-9), the reduction of N2 by any synthetic metal-sulfur cluster or by the extracted form of FeMoco10 has remained elusive, despite nearly 50 years of research. Here we show that the Fe atoms in our synthetic [Mo3S4Fe] cubes11,12 can capture a N2 molecule and catalyse N2 silylation to form N(SiMe3)3 under treatment with excess sodium and trimethylsilyl chloride. These results exemplify the catalytic silylation of N2 by a synthetic metal-sulfur cluster and demonstrate the N2-reduction capability of Fe atoms in a sulfur-rich environment, which is reminiscent of the ability of FeMoco to bind and activate N2.
Collapse
|
8
|
Mei T, Yang D, Di K, Zhang Y, Zhao J, Wang B, Qu J. Synthesis, Characterization, and Catalytic Reactivity of Dithiolate-Bridged Diiron Complexes Supported by Bulky Cyclopentadienyl Ligands. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tao Mei
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Kai Di
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yanpeng Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jinfeng Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai,200231, P. R. China
| |
Collapse
|
9
|
Feng H, Yang D, Mei T, Zhang Y, Wang B, Qu J. Synthesis and Structure of Thiolate‐Bridged Diiron and Dicobalt Complexes Supported by Modified β‐Diketiminate Ligand. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Huajin Feng
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Dawei Yang
- Dalian University of Technology State Key Laboratory of Fine Chemicals 2# Linggong Road 116024 Dalian CHINA
| | - Tao Mei
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Yahui Zhang
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Baomin Wang
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Jingping Qu
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| |
Collapse
|
10
|
Li S, Ouyang Z, Zou J, Wang D, Xu B, Deng L. A Mononuclear Iron Thiolate Complex with N-Heterocyclic Carbene Ligation. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Suhr S, Walter R, Beerhues J, Albold U, Sarkar B. Rhodium Diamidobenzene Complexes: A Tale of Different Substituents on the Diamidobenzene Ligand. Chem Sci 2022; 13:10532-10545. [PMID: 36277629 PMCID: PMC9473529 DOI: 10.1039/d2sc03227a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/15/2022] [Indexed: 11/21/2022] Open
Abstract
Diamidobenzene ligands are a prominent class of redox-active ligands owing to their electron reservoir behaviour, as well as the possibility of tuning the steric and the electronic properties of such ligands through the substituents on the N-atoms of the ligands. In this contribution, we present Rh(iii) complexes with four differently substituted diamidobenzene ligands. By using a combination of crystallography, NMR spectroscopy, electrochemistry, UV-vis-NIR/EPR spectroelectrochemistry, and quantum chemical calculations we show that the substituents on the ligands have a profound influence on the bonding, donor, electrochemical and spectroscopic properties of the Rh complexes. We present, for the first time, design strategies for the isolation of mononuclear Rh(ii) metallates whose redox potentials span across more than 850 mV. These Rh(ii) metallates undergo typical metalloradical reactivity such as activation of O2 and C–Cl bond activations. Additionally, we also show that the substituents on the ligands dictate the one versus two electron nature of the oxidation steps of the Rh complexes. Furthermore, the oxidative reactivity of the metal complexes with a [CH3]+ source leads to the isolation of a unprecedented, homobimetallic, heterovalent complex featuring a novel π-bonded rhodio-o-diiminoquionone. Our results thus reveal several new potentials of the diamidobenzene ligand class in organometallic reactivity and small molecule activation with potential relevance for catalysis. Diamidobenzene ligands are versatile platforms in organometallic Rh-chemistry. They allow the isolation of tunable mononuclear ate-complexes, and the formation of a unprecedented homobimetallic, heterovalent complex.![]()
Collapse
Affiliation(s)
- Simon Suhr
- Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie, Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Robert Walter
- Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie, Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Julia Beerhues
- Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie, Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Uta Albold
- Institut für Chemie und Biochemie, Freie Universität Berlin Fabeckstr. 34-36 14195 Berlin Germany
| | - Biprajit Sarkar
- Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie, Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| |
Collapse
|
12
|
Role of a Redox-Active Ligand Close to a Dinuclear Activating Framework. TOP ORGANOMETAL CHEM 2022. [DOI: 10.1007/3418_2022_77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|