1
|
Rogalewicz B, Czylkowska A. Recent advances in the discovery of copper(II) complexes as potential anticancer drugs. Eur J Med Chem 2025; 292:117702. [PMID: 40328033 DOI: 10.1016/j.ejmech.2025.117702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/13/2025] [Accepted: 04/27/2025] [Indexed: 05/08/2025]
Abstract
This review article offers a literature search of the most active, new copper (II) anticancer complexes based on nitrogen-containing ligands, reported in the literature over the past 5 years: from the beginning of 2019, until mid-2024. In the modern world, cancer remains one of the deadliest diseases of all. Although years of the ongoing research allowed us to better understand its nature, and thus aim more precisely at specific molecular targets and pathways, many of its aspects remain unclear. Today, chemotherapy still remains at the forefront of cancer treatment. With the ever-growing struggles to overcome chemoresistance and occurrence of serious side effects, the discovery of new, more selective and active drugs is a task of an utmost importance. At the same time, copper (II)-based compounds offer a wide array of biological activities and valuable biochemical properties. This review article provides the update on the recent advances in the discovery of new potential anticancer drugs among copper (II)-based compounds in the recent five years.
Collapse
Affiliation(s)
- Bartłomiej Rogalewicz
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland.
| | - Agnieszka Czylkowska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland.
| |
Collapse
|
2
|
Coelho MP, Farinha PF, Côrte-Real L, Ribeiro N, Luiz H, Pinho JO, Noiva R, Godinho-Santos C, Reis CP, Correia I, Gaspar MM. Liposomal nanoformulations of novel copper-based complexes exhibiting antimelanoma activity - In vitro and in vivo validation. Int J Pharm 2025; 677:125643. [PMID: 40294769 DOI: 10.1016/j.ijpharm.2025.125643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025]
Abstract
Melanoma stands as the most aggressive form of skin cancer. The lack of effective and safe therapies has led to the investigation of innovative strategies. The present work validates the in vitro and in vivo antimelanoma activity of new copper complexes of 8-hydroxyquinoline (8HQ) derivatives in free or liposomal forms. Firstly, the cytotoxic properties of several copper-based complexes were screened towards human (A375) and murine (B16F10) melanoma cell lines and human dermal fibroblasts or keratinocytes (HaCaT) cell lines. All the complexes presented lower IC50 values (<20 μM) than dacarbazine (DTIC) and temozolomide (TMZ), the positive controls (>80 μM). Aiming to solve low specificity against tumor cells and enhance its targetability to affected sites three metal-based complexes were selected, based on their antiproliferative properties, and incorporated in long blood circulating liposomes. One of them, di-2-(((2-morpholinoethyl)imino)methyl)quinolin-8-olCopper(II), designated as LCR35, was selected for further studies due to the highest incorporation parameters and cytotoxic properties observed. The antiproliferative activity of LCR35 was preserved after its association to liposomes. Moreover, in B16F10 cells this effect was potentiated. Furthermore, cell cycle analysis studies in A375 and B16F10 cell lines were performed to elucidate the mechanism of action of copper-based complex formulations. A cell cycle arrest at G2/M and G0/G1 phases in A375 and B16F10 cells, respectively, both in free and liposomal forms were observed. To validate the therapeutic potential of LCR35 two murine melanoma models were carried out: subcutaneous and metastatic. Pre-clinical studies demonstrated the high therapeutic effect of LCR35, especially after incorporation in liposomes, compared to control group or animals that received LCR35 Free and DTIC. Overall, in vitro and in vivo studies highlight the potential antimelanoma properties of the copper-based complex, LCR35.
Collapse
Affiliation(s)
- Mariana P Coelho
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa 1649 - 003 Lisboa, Portugal; i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Pedro F Farinha
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa 1649 - 003 Lisboa, Portugal
| | - Leonor Côrte-Real
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa 1049-001 Lisboa, Portugal
| | - Nádia Ribeiro
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa 1049-001 Lisboa, Portugal
| | - Hugo Luiz
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa 1649 - 003 Lisboa, Portugal
| | - Jacinta O Pinho
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa 1649 - 003 Lisboa, Portugal
| | - Rute Noiva
- CIISA - Interdisciplinary Centre of Research in Animal Health, Faculdade de Medicina Veterinaria, Universidade de Lisboa 1300 - 477 Lisboa, Portugal
| | - Catarina Godinho-Santos
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa 1649 - 003 Lisboa, Portugal
| | - Catarina Pinto Reis
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa 1649 - 003 Lisboa, Portugal; IBEB - Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, Universidade de Lisboa 1649-016 Lisboa, Portugal
| | - Isabel Correia
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa 1049-001 Lisboa, Portugal.
| | - Maria Manuela Gaspar
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa 1649 - 003 Lisboa, Portugal; IBEB - Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, Universidade de Lisboa 1649-016 Lisboa, Portugal.
| |
Collapse
|
3
|
Giang NTM, Duong TH, Cuong NT, Hai LTH. Synthesis, Structure and Photophysical Properties of Dinuclear Zinc(II) Complexes with Schiff Base Bearing p-Phenylenediamine. J Fluoresc 2025:10.1007/s10895-025-04204-2. [PMID: 40035936 DOI: 10.1007/s10895-025-04204-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/09/2025] [Indexed: 03/06/2025]
Abstract
Four new dinuclear complexes Zn1-Zn4 were synthesized by the interaction of Zn(NO3)2.4H2O with Schiff bases containing p-phenylenediamine. The data of ESI-MS, IR and 1H NMR spectroscopy showed that the ligands coordinated with Zn(II) via two sets of O, Nimine atoms. In DMSO, ligands exhibit weak luminescence while the complex solutions emit strongly at maximum wavelength in the range 409-513 nm. Notably, electron-donating groups enhance the quantum yield of the complex solutions. Particularly, Zn2 containing NEt2 substitutes has outstanding quantum yields of 74%. Besides, the lifetimes of the complexes increase in the order Zn2 < Zn4 < Zn1 < Zn3 in DMSO. Along with the experiment, the structure, absorption and emission spectra of Zn1-Zn4 have been investigated by TD-DFT calculation. The result reproduces well the experimental absorption wavelengths and shows that the absorptions of the complexes are due to the singlet S0 → S1* transition from the π to the π* orbital of the ligand in complexes and the emission occurs from minimum of the S1 state to the ground singlet state S0. The calculation results also support for the fact that Zn2 has profoundly quantum yields.
Collapse
Affiliation(s)
- Ninh Thi Minh Giang
- Faculty of Chemistry, Hanoi National University of Education, Hanoi, Vietnam
- Faculty of Natural Science and Technology, Tay Nguyen University, Đăk Lăk, Vietnam
| | - Trinh Hong Duong
- Faculty of Chemistry, Hanoi National University of Education, Hanoi, Vietnam
| | - Ngo Tuan Cuong
- Faculty of Chemistry, Hanoi National University of Education, Hanoi, Vietnam
| | - Le Thi Hong Hai
- Faculty of Chemistry, Hanoi National University of Education, Hanoi, Vietnam.
- Institute of Natural Sciences, Hanoi National University of Education, Hanoi, Vietnam.
| |
Collapse
|
4
|
Pinho JO, Coelho M, Pimpão C, Konwar J, Godinho-Santos A, Noiva RM, Thomas SR, Casini A, Soveral G, Gaspar MM. Liposomal Formulation of an Organogold Complex Enhancing Its Activity as Antimelanoma Agent-In Vitro and In Vivo Studies. Pharmaceutics 2024; 16:1566. [PMID: 39771545 PMCID: PMC11678262 DOI: 10.3390/pharmaceutics16121566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: The therapeutic management of melanoma, the most aggressive form of skin cancer, remains challenging. In the search for more effective therapeutic options, metal-based complexes are being investigated for their anticancer properties. Cisplatin was the first clinically approved platinum-based drug and, based on its success, other metals (e.g., gold) are being used to design novel compounds. Methods: the antimelanoma potential of a new organometallic cyclometalated Au(III) complex [[Au(CNOxN)Cl2] (CNOxN = 2-(phenyl-(2-pyridinylmethylene)aminoxy acetic acid))] (ST004) was evaluated in vitro and in vivo. Furthermore, the gold-based complex was incorporated in liposomes to overcome solubility and stability problems, to promote accumulation at melanoma sites and to maximize the therapeutic effect while controlling its reactivity. The antiproliferative activity of ST004 formulations was assessed in murine (B16F10) and human (A375 and MNT-1) melanoma cell lines after 24 and 48 h incubation periods. The proof-of-concept of the antimelanoma properties of ST004 formulations was carried out in subcutaneous and metastatic murine melanoma models. Results: the developed liposomal formulations showed a low mean size (around 100 nm), high homogeneity (with a low polydispersity index) and high incorporation efficiency (51 ± 15%). ST004 formulations exhibited antiproliferative activity with EC50 values in the μmolar range being cell-line- and incubation-period-dependent. On the opposite side, the benchmark antimelanoma compound, dacarbazine (DTIC), presented an EC50 > 100 μM. Cell cycle analysis revealed an arrest in G0/G1 phase for Free-ST004 in all cell lines. In turn, LIP-ST004 led to a G0/G1 halt in B16F10, and to an arrest in S phase in A375 and MNT-1 cells. Preliminary mechanistic studies in human red blood cells suggest that gold-based inhibition of glycerol permeation acts through aquaglyceroporin 3 (AQP3). In a metastatic murine melanoma, a significant reduction in lung metastases in animals receiving LIP-ST004, compared to free gold complex and DTIC, was observed. Conclusion: This study highlights the antimelanoma potential of a new gold-based complex. Additional studies, namely in vivo biodistribution profile and therapeutic validation of this organogold complex in other melanoma models, are expected to be performed in further investigations.
Collapse
Affiliation(s)
- Jacinta O. Pinho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.O.P.); (M.C.); (C.P.); (A.G.-S.); (G.S.)
| | - Mariana Coelho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.O.P.); (M.C.); (C.P.); (A.G.-S.); (G.S.)
| | - Catarina Pimpão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.O.P.); (M.C.); (C.P.); (A.G.-S.); (G.S.)
| | - Jahnobi Konwar
- Faculty of Pharmacy, Jagiellonian University Medical College, 31-008 Krakow, Poland;
| | - Ana Godinho-Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.O.P.); (M.C.); (C.P.); (A.G.-S.); (G.S.)
| | - Rute M. Noiva
- CIISA, Interdisciplinary Centre of Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Sophie R. Thomas
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, 85747 Garching bei München, Germany; (S.R.T.); (A.C.)
- Faculty of Chemistry, Department of Inorganic Chemistry, University of Vienna, Währinger Straße 42, A-1090 Wien, Austria
| | - Angela Casini
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, 85747 Garching bei München, Germany; (S.R.T.); (A.C.)
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.O.P.); (M.C.); (C.P.); (A.G.-S.); (G.S.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.O.P.); (M.C.); (C.P.); (A.G.-S.); (G.S.)
- IBEB—Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
5
|
Huang X, Li Q, Yun S, Guo J, Yang H, Wang J, Cheng J, Sun Z. Zn(II) enhances the antimicrobial effect of chloroxine and structural analogues against drug-resistant ESKAPE pathogens in vitro. Biochem Pharmacol 2024; 229:116482. [PMID: 39134284 DOI: 10.1016/j.bcp.2024.116482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/07/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
The emerging antibiotic-resistant bacteria, especially the "ESKAPE" pathogens, pose a continuous threat to global health. In this study, we explored metalloantibiotics as promising therapeutics and innovative antimicrobial agents. The role of metal in the antimicrobial activity of chloroxine (5,7-dichloro-8-hydroxyquinoline), as a metalloantibiotic, was investigated by minimal inhibit concentration (MIC) assay and a series of assays, including growth curve, time-killing, and UV-visible spectroscopy and PAR (4-(2-pyridylazo)-resorcinol) competition assays. Both chloroxine and its structural analogues exhibited increased antibacterial potency against Gram-positive bacteria compared to Gram-negative bacteria. The introduction of exogenous manganese or zinc ions significantly boosted chloroxine's antibacterial efficacy against Gram-negative bacteria, including the notorious ESKAPE pathogens. However, the enhanced antibacterial activity induced by zinc ions could be negated in the presence of copper or ferrous iron ions, as well as changes in oxygen availability, highlighting the involvement of proton motive force, oxidative and antioxidative systems. Notably, chloroxine effectively inhibited the enzymatic activity of superoxide dismutase (SOD). In addition, chloroxine could reverse polymyxin and carbapenem resistance in E. coli in vitro. Therefore, these results suggested that chloroxine with zinc ions are promising therapeutics and antibiotics potentiator to combat multidrug-resistant ESKAPE pathogens.
Collapse
Affiliation(s)
- Xiaoyong Huang
- College of Veterinary Medicine, Shanxi Agricultural University, 030801 Taigu, Shanxi, China.
| | - Qianqian Li
- College of Veterinary Medicine, Shanxi Agricultural University, 030801 Taigu, Shanxi, China
| | - Shaobo Yun
- College of Veterinary Medicine, Shanxi Agricultural University, 030801 Taigu, Shanxi, China
| | - Junhui Guo
- College of Veterinary Medicine, Shanxi Agricultural University, 030801 Taigu, Shanxi, China
| | - Huiting Yang
- College of Veterinary Medicine, Shanxi Agricultural University, 030801 Taigu, Shanxi, China
| | - Jianzhong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, 030801 Taigu, Shanxi, China
| | - Jia Cheng
- College of Veterinary Medicine, Shanxi Agricultural University, 030801 Taigu, Shanxi, China
| | - Zilong Sun
- College of Veterinary Medicine, Shanxi Agricultural University, 030801 Taigu, Shanxi, China; Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 030801 Taigu, Shanxi, China.
| |
Collapse
|
6
|
Le Thi Hong H, Nguyen H, Trinh Hong D, Nguyen Hoang N, Nguyen Nhat K, Van Meervelt L. Crystal structures and photophysical properties of mono- and dinuclear Zn II complexes flanked by tri-ethyl-ammonium. Acta Crystallogr E Crystallogr Commun 2024; 80:1210-1216. [PMID: 39712172 PMCID: PMC11660477 DOI: 10.1107/s2056989024010302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/22/2024] [Indexed: 12/24/2024]
Abstract
Two new zinc(II) complexes, tri-ethyl-ammonium di-chlorido-[2-(4-nitro-phen-yl)-4-phenyl-quinolin-8-olato]zinc(II), (C6H16N){Zn(C21H13N2O3)Cl2] (ZnOQ), and bis-(tri-ethyl-ammonium) {2,2'-[1,4-phenyl-enebis(nitrilo-methyl-idyne)]diphenolato}bis-[di-chlorido-zinc(II)], (C6H16N)2[Zn2(C20H14N2O2)Cl4] (ZnBS), were synthesized and their structures were determined using ESI-MS spectrometry, 1H NMR spectroscopy, and single-crystal X-ray diffraction. The results showed that the ligands 2-(4-nitro-phen-yl)-4-phenyl-quinolin-8-ol (HOQ) and N,N'-bis-(2-hy-droxy-benzyl-idene)benzene-1,4-di-amine (H2BS) were deprotonated by tri-ethyl-amine, forming the counter-ion Et3NH+, which inter-acts via an N-H⋯O hydrogen bond with the ligand. The ZnII atoms have a distorted trigonal-pyramidal (ZnOQ) and distorted tetra-hedral (ZnBS) geometries with a coord-ination number of four, coordinating with the ligands via N and O atoms. The N atoms coordinating with ZnII correspond to the heterocyclic nitro-gen for the HOQ ligand, while for the H2BS ligand, it is the nitro-gen of the imine (CH=N). The crystal packing of ZnOQ is characterized by C-H⋯π inter-actions, while that of ZnBS by C-H⋯Cl inter-actions. The emission spectra showed that ZnBS complex exhibits green fluorescence in the solid state with a small band-gap energy, and the ZnOQ complex does exhibit non-fluorescence.
Collapse
Affiliation(s)
- Hai Le Thi Hong
- Department of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
- Institute of Natural Sciences, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
| | - Hien Nguyen
- Department of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
| | - Duong Trinh Hong
- Department of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
| | - Ninh Nguyen Hoang
- Department of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
| | - Khanh Nguyen Nhat
- Department of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
| | - Luc Van Meervelt
- Department of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
| |
Collapse
|
7
|
Du LQ, Yang Y, Ruan L, Sun S, Mo DY, Cai JY, Liang H, Shu S, Qin QP. Insights into the antineoplastic activity and mechanisms of action of coumarin-coordinated 8-hydroxyquinoline ruthenium(II/III) compounds. J Inorg Biochem 2024; 259:112659. [PMID: 38976937 DOI: 10.1016/j.jinorgbio.2024.112659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Ruthenium(II/III) coordination compounds have gained widespread attention as chemotherapy drugs, photosensitizers, and photodynamic therapy reagents. Herein, a family of 11 novel coumarin-coordinated 8-hydroxyquinoline ruthenium(II/III) compounds, i.e., [RuII2(μ2-Cl)2(QL1a)2(DMSO)4] (YNU-4a = Yulin Normal University-4a), [RuII2(μ2-Cl)2(QL1b)2(DMSO)4] (YNU-4b), [RuII2(μ2-Cl)2(QL1c)2(DMSO)4] (YNU-4c), [RuII2(μ2-Cl)2(QL1d)2(DMSO)4]⋅2CH3OH (YNU-4d), [RuII(QL1e)2(DMSO)2] (YNU-4e), [RuIII(QL1e)2(QL3a)] (YNU-4f), [RuIII(QL1e)2(QL3b)] (YNU-4g), [RuIII(QL1e)2(QL3c)] (YNU-4h), [RuIICl2(H-QL3a)2(DMSO)2] (YNU-4i), [RuIICl2(H-QL3b)2(DMSO)2] (YNU-4j), and [RuIICl2(H-QL3c)2(DMSO)2] (YNU-4k), featuring the coligands 5,7-diiodo-8-hydroxyquinoline (H-QL1a), 5,7-dichloro-8-quinolinol (H-QL1b), 5-chloro-7-iodo-8-hydroxyquinolin (H-QL1c), 5,7-dibromo-8-hydroxyquinoline (H-QL1d), and 5,7-dichloro-8-hydroxy-2-methylquinoline (H-QL1e) and the main ligands 6,7-dichloro-3-pyridin-2-yl-chromen-2-one (H-QL3a), 6-bromo-3-pyridin-2-yl-chromen-2-one (H-QL3b), and 6-chloro-3-pyridin-2-yl-chromen-2-one (H-QL3c), respectively. The structure of compounds YNU-4a-YNU-4k was fully confirmed by conducting various spectroscopic analyses. The anticancer activity of YNU-4a-YNU-4k was evaluated in cisplatin-resistant A549/DDP lung cancer cells (LC549) versus normal embryonic kidney (HEK293) cells. Notably, compound YNU-4f bearing QL1e and QL3a ligands showed a more pronounced antiproliferative effect against LC549 cells (IC50 = 1.75 ± 0.09 μM) with high intrinsic selectivity toward LC549 cancer cells than YNU-4a-YNU-4e, H-QL1a-H-QL1e, cisplatin (PDD), YNU-4g-YNU-4k, and H-QL3a-H-QL3c. Additionally, a colocalization assay analysis of YNU-4e and YNU-4f showed that these two ruthenium(II/III) compounds were subcellularly accumulated in the mitochondria and other regions of the cytoplasm, where they induce mitophagy, adenosine triphosphate (ATP) reduction, mitochondrial respiratory chain complex I/IV(RC1/RC4) inhibition, and mitochondrial dysfunction. Accordingly, compounds YNU-4a-YNU-4k can be regarded as mitophagy inductors for the eradication of cisplatin-resistant LC549 cancer cells.
Collapse
Affiliation(s)
- Ling-Qi Du
- Guangxi Key Laboratory of Agricultural Resources, Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China
| | - Yan Yang
- Guangxi Key Laboratory of Agricultural Resources, Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China; School of food and chemical engineering, Liuzhou Institute of Technology, Liuzhou, Guangxi 545000, China
| | - Li Ruan
- Guangxi Key Laboratory of Agricultural Resources, Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China
| | - Song Sun
- School of food and chemical engineering, Liuzhou Institute of Technology, Liuzhou, Guangxi 545000, China
| | - Dong-Yin Mo
- Guangxi Key Laboratory of Agricultural Resources, Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China
| | - Jin-Yuan Cai
- School of food and chemical engineering, Liuzhou Institute of Technology, Liuzhou, Guangxi 545000, China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China
| | - Sai Shu
- School of food and chemical engineering, Liuzhou Institute of Technology, Liuzhou, Guangxi 545000, China
| | - Qi-Pin Qin
- Guangxi Key Laboratory of Agricultural Resources, Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China.
| |
Collapse
|
8
|
Alroba AAN, Aazam ES, Zaki M. Metal complexes containing vitamin B6-based scaffold as potential DNA/BSA-binding agents inducing apoptosis in hepatocarcinoma (HepG2) cells. Mol Divers 2024:10.1007/s11030-024-10986-7. [PMID: 39289257 DOI: 10.1007/s11030-024-10986-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
A ligand (HL) was synthesized from the pyridoxal hydrochloride (vitamin B6 form) and 1-(2-Aminoethyl)piperidine in one single step. The metal complexes [Zn(L)(Bpy)]NO3 (1), [Cu(L)(Bpy)]NO3 (2), and [Co(L)(Bpy)]NO3 (3) were prepared by tethering HL and 2,2'-bipyridine. The synthesized HL and metal complexes 1-3 were thoroughly characterized using spectroscopic techniques such as 1H NMR, 13C NMR, FTIR, EI-MS, molar conductance, and magnetic moment, in addition to CHN elemental analysis. The geometry of complexes was square pyramidal around the metal ions {Zn(II), Cu(II), and Co(II)}. The interaction of ligand and metal complexes with DNA and BSA macromolecules was accomplished by UV-Vis absorption and fluorescence spectroscopy in vitro. The hyperchromism in band at 303-325 with no shift supports the groove binding with some partial intercalation in grooves. Similarly, in BSA-binding studies, complex 2 shows greater binding potential in the hydrophobic core probably near the Trp-212 in the subdomain IIA. Furthermore, complex 2 shows excellent cytotoxicity on HepG2 cancer cells with IC50 = 25.0 ± 0.45 µM. The detailed analysis by cell-cycle studies shows cell arrest at the G2/M phase. The type of cell death was authenticated by an annexin V-FTIC dual staining experiment that reveals maximum death by apoptosis together with non-specific necrosis.
Collapse
Affiliation(s)
- Almuhrah A N Alroba
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia
- Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Elham Shafik Aazam
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia
| | - Mehvash Zaki
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia.
| |
Collapse
|
9
|
Savić M, Pevec A, Stevanović N, Novaković I, Matić IZ, Petrović N, Stanojković T, Milčić K, Zlatar M, Turel I, Čobeljić B, Milčić M, Gruden M. Synergy of experimental and computational chemistry: structure and biological activity of Zn(II) hydrazone complexes. Dalton Trans 2024; 53:13436-13453. [PMID: 39058304 DOI: 10.1039/d4dt01353k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
In this paper, three different Zn(II) complexes with (E)-2-(2-(1-(6-bromopyridin-2-yl)ethylidene)hydrazinyl)-N,N,N-trimethyl-2-oxoethan-1-aminium chloride (HLCl) have been synthesized and characterized by single crystal X-ray diffraction, elemental analysis, IR and NMR spectroscopy. All complexes are mononuclear, with the ligand (L) coordinated in a deprotonated formally neutral zwitterionic form via NNO donor set atoms. Complex 1 forms an octahedral geometry with the composition [ZnL2](BF4)2, while complexes 2 [ZnL(NCO)2] and 3 [ZnL(N3)2] form penta-coordinated geometry. Density functional theory (DFT) calculations were performed to enhance our understanding of the structures of the synthesized complexes and the cytotoxic activity of the complexes was tested against five human cancer cell lines (HeLa, A549, MDA-MB-231, K562, LS 174T) and normal human fibroblasts MRC-5. Additionally, antibacterial and antifungal activity of these complexes was tested against a panel of Gram-negative and Gram-positive bacteria, two fungal strains, and a yeast strain. It is noteworthy that all three complexes show selective antifungal activity comparable to that of amphotericin B. Molecular docking analysis predicted that geranylgeranyl pyrophosphate synthase, an enzyme essential for sterol biosynthesis, is the most likely target for inhibition by the tested complexes.
Collapse
Affiliation(s)
- Milica Savić
- University of Belgrade - Institute of chemistry, technology and metallurgy Department of chemistry, Njegoševa 12, P.O. Box 815, 11001 Belgrade, Serbia
| | - Andrej Pevec
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Nevena Stevanović
- University of Belgrade - Faculty of Chemistry Studentski trg 12-16, 11000 Belgrade, Serbia.
| | - Irena Novaković
- University of Belgrade - Institute of chemistry, technology and metallurgy Department of chemistry, Njegoševa 12, P.O. Box 815, 11001 Belgrade, Serbia
| | - Ivana Z Matić
- Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Nina Petrović
- Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
- "VINČA" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Tatjana Stanojković
- Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Karla Milčić
- University of Belgrade - Faculty of Chemistry Studentski trg 12-16, 11000 Belgrade, Serbia.
| | - Matija Zlatar
- University of Belgrade - Institute of chemistry, technology and metallurgy Department of chemistry, Njegoševa 12, P.O. Box 815, 11001 Belgrade, Serbia
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Božidar Čobeljić
- University of Belgrade - Faculty of Chemistry Studentski trg 12-16, 11000 Belgrade, Serbia.
| | - Miloš Milčić
- University of Belgrade - Faculty of Chemistry Studentski trg 12-16, 11000 Belgrade, Serbia.
| | - Maja Gruden
- University of Belgrade - Faculty of Chemistry Studentski trg 12-16, 11000 Belgrade, Serbia.
| |
Collapse
|
10
|
Dey S, Ghosh S, Das A, Yadav RN, Chakrabarty R, Pradhan S, Saha D, Srivastava AK, Hossain MF. Synthesis of Cu (II) and Zn (II) Complexes of a Quinoline Based Flexible Amide Receptor as Fluorescent Probe for Dihydrogen Phosphate and Hydrogen Sulphate and Their Antibacterial Activity. J Fluoresc 2024; 34:1829-1840. [PMID: 37646874 DOI: 10.1007/s10895-023-03416-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
A novel 8-hydroxy quinoline-derived amide receptor, in conjunction with its Cu (II) and Zn (II) complexes, has been strategically developed to function as remarkably efficient fluorescent receptors with a distinct capability for anion sensing. The comprehensive characterization of the synthesized compounds were achieved through UV-Vis, IR, NMR, and HRMS spectroscopic techniques. Among the Cu (II) and Zn (II) complexes, the latter exhibits superior selectivity for anions, specifically dihydrogen phosphate and hydrogen sulfate, as their tetrabutylammonium salts in a 9:1 acetonitrile-water (v/v) mixture. The Cu (II) complex demonstrates enhanced anion binding compared to the amide ligand, albeit with reduced selectivity. Furthermore, the affinity was evaluated using the Benesi-Hildebrand plot. The binding constants and Limit of Detection (LOD) for both complexes were precisely quantified. The Job plot illustrates a clear 1:1 binding interaction between the metal complexes and the guest anions. Significantly, both metal-complex receptors display a broad spectrum of antibacterial activity, against both gram-positive and gram-negative bacteria. It is worth highlighting that the Zn (II) complexed receptor outperforms the Cu (II) complexed receptor, as evidenced by its considerably lower Minimum Inhibitory Concentration (MIC) value against both bacterial strains.
Collapse
Affiliation(s)
- Sovan Dey
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, 734013, India
| | - Sandip Ghosh
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, 734013, India
| | - Arindam Das
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, 734013, India
| | - Ram Naresh Yadav
- Department of Chemistry, Faculty of Engineering & Technology, Veer Bahadur Singh Purvanchal University, Jaunpur, Uttar Pradesh, 222003, India
| | - Rinku Chakrabarty
- Department of Chemistry, Alipurduar University, Alipurduar, 736122, India.
| | - Smriti Pradhan
- Department of Biotechnology, University of North Bengal, Raja Rammohunpur, Darjeeling, 734013, India
| | - Dipanwita Saha
- Department of Biotechnology, University of North Bengal, Raja Rammohunpur, Darjeeling, 734013, India
| | - Ashok Kumar Srivastava
- Department of Chemistry, Faculty of Engineering & Technology, Veer Bahadur Singh Purvanchal University, Jaunpur, Uttar Pradesh, 222003, India
| | - Md Firoj Hossain
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, 734013, India.
| |
Collapse
|
11
|
Huang XQ, Wu RC, Liang JM, Zhou Z, Qin QP, Liang H. Anticancer activity of 8-hydroxyquinoline-triphenylphosphine rhodium(III) complexes targeting mitophagy pathways. Eur J Med Chem 2024; 272:116478. [PMID: 38718624 DOI: 10.1016/j.ejmech.2024.116478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/27/2024]
Abstract
Metallodrugs exhibiting distinct mechanisms of action compared with cisplatin hold promise for overcoming cisplatin resistance and improving the efficacy of anticancer drugs. In this study, a new series of rhodium (Rh)(III) complexes containing tris(triphenylphosphine)rhodium(I) chloride [(TPP)3RhCl] (TPP = triphenylphosphine, TPP=O = triphenylphosphine oxide) and 8-hydroxyquinoline derivatives (H-XR1-H-XR4), namely [Rh(XR1)2(TPP)Cl]·(TPP=O) (Yulin Normal University-1a [YNU-1a]), [Rh(XR2)2(TPP)Cl] (YNU-1b), [Rh(XR3)2(TPP)Cl] (YNU-1c), and [Rh(XR4)2(TPP)Cl] (YNU-1d), was synthesized and characterized via X-ray diffraction, mass spectrometry and IR. The cytotoxicity of the compounds YNU-1a-YNU-1d in Hep-G2 and HCC1806 human cancer cell lines and normal HL-7702 cell line was evaluated. YNU-1c exhibited cytotoxicity and selectivity in HCC1806 cells (IC50 = 0.13 ± 0.06 μM, selectivity factor (SF) = 384.6). The compounds YNU-1b and YNU-1c, which were selected for mechanistic studies, induced the activation of apoptotic pathways and mitophagy. In addition, these compounds released cytochrome c, cleaved caspase-3/pro-caspase-3 and downregulated the levels of mitochondrial respiratory chain complexes I/IV (M1 and M4) and ATP. The compound YNU-1c, which was selected for in vivo experiments, exhibited tumor growth inhibition (58.9 %). Importantly, hematoxylin and eosin staining and TUNEL revealed that HCC1806 tumor tissues exhibited significant apoptotic characteristics. YNU-1a-YNU-1d compounds are promising drug candidates that can be used to overcome cisplatin resistance.
Collapse
Affiliation(s)
- Xiao-Qiong Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Run-Chun Wu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Jian-Min Liang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Zhen Zhou
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China.
| |
Collapse
|
12
|
Côrte-Real L, Sergi B, Yildirim B, Colucas R, Starosta R, Fontrodona X, Romero I, André V, Acilan C, Correia I. Enhanced selectivity towards melanoma cells with zinc(II)-Schiff bases containing imidazole derivatives. Dalton Trans 2024; 53:9416-9432. [PMID: 38758025 DOI: 10.1039/d4dt00733f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Zinc(II)-complexes with the general formula [Zn(L)2] containing 8-hydroxyquinoline Schiff bases functionalized with 1-(3-aminopropyl)imidazole or 1-(3-aminopropyl)-2-methyl-1H-imidazole on 2-position and their respective ligands (HL1 or HL2) were synthesized and characterized by NMR, UV-Vis, FTIR and CD spectroscopies as well as ESI-MS spectrometry. Single crystals of HL2 and [Zn(L1)2]n were analysed by SC-XRD. [Zn(L1)2]n shows a 1D polymeric chain structure of alternating Zn(II) cations and bridging Schiff base ligands, in contrast to previously reported monomeric structures of analogous complexes. DFT calculations were performed to rationalize the polymeric X-ray structure of Zn(L1)2. Results showed that the ligands can bind as bi- or tridentate to Zn(II) and there is the possibility of a dynamic behavior for the complexes in solution. Both ligands and complexes present limited stability in aqueous media, however, in the presence of bovine serum albumin the complexes are stable. Molecular docking simulations and circular dichroism spectroscopic studies suggest binding to this protein in close proximity to the Trp213 residue. Biological studies on a panel of cancer cells revealed that the Zn(II)-complexes have a lower impact on cell viability than cisplatin, except for triple-negative breast cancer cells in which they were comparable. Notwithstanding, they display much higher selectivity towards cancer cells vs. normal cells, than cisplatin. They induce the generation of ROS and DNA double-strand breaks, primarily through apoptosis as the mode of cell death. Overall, the novel Zn(II)-complexes demonstrate improved induction of apoptosis and higher selectivity, particularly for melanoma cells, compared to previously reported analogues, making them promising candidates for clinical application.
Collapse
Affiliation(s)
- Leonor Côrte-Real
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| | - Baris Sergi
- Koç University, Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Busra Yildirim
- Koç University, Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Raquel Colucas
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| | - Radosław Starosta
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal.
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Xavier Fontrodona
- Departament de Química and Serveis Técnicas de Recerca, Universitat de Girona, Spain
| | - Isabel Romero
- Departament de Química and Serveis Técnicas de Recerca, Universitat de Girona, Spain
| | - Vânia André
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| | - Ceyda Acilan
- Koç University, School of Medicine, Sariyer, Istanbul, Turkey.
- Koç University, Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Isabel Correia
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| |
Collapse
|
13
|
Ajormal F, Bikas R, Noshiranzadeh N, Emami M, Kozakiewicz-Piekarz A. Synthesis of chiral Cu(II) complexes from pro-chiral Schiff base ligand and investigation of their catalytic activity in the asymmetric synthesis of 1,2,3-triazoles. Sci Rep 2024; 14:10603. [PMID: 38719987 PMCID: PMC11079015 DOI: 10.1038/s41598-024-60930-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
A pro-chiral Schiff base ligand (HL) was synthesized by the reaction of 2-amino-2-ethyl-1,3-propanediol and pyridine-2-carbaldehyde in methanol. The reaction of HL with CuCl2·2H2O and CuBr2 in methanol gave neutral mononuclear Cu(II) complexes with general formula of [Cu(HL)Cl2] (1) and [Cu(HL)Br2] (2), respectively. By slow evaporation of the methanolic solutions of 1 and 2, their enantiomers were isolated in crystalline format. The formation of pure chiral crystals in the racemic mixture was amply authenticated by single crystal X-ray analysis, which indicated that S-[Cu(HL)Cl2], R-[Cu(HL)Cl2], and S-[Cu(HL)Br2] are crystallized in chiral P212121 space group of orthorhombic system. Preferential crystallization was used to isolate the R and S enantiomers as single crystals and the isolated compounds were also studied by CD analysis. Structural studies indicated that the origin of the chirality in these compounds is related to the coordination mode of the employed pro-chiral ligand (HL) because one of its carbon atoms has been converted to a chiral center in the synthesized complexes. Subsequently, these complexes were used in click synthesis of a β-hydroxy-1,2,3-triazole and the results of catalytic studies indicated that 1 and 2 can act as enantioselective catalysts for the asymmetric synthesis of β-hydroxy-1,2,3-triazole product under mild condition. This study illustrates the significant capacity of the use of pro-chiral ligands in preparing chiral catalysts based on complexes which can also be considered as an effective approach to cheap chiral catalysts from achiral reagents.
Collapse
Affiliation(s)
- Fatemeh Ajormal
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Iran
| | - Rahman Bikas
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, 34148-96818, Iran.
| | - Nader Noshiranzadeh
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Iran.
| | - Marzieh Emami
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Iran
| | - Anna Kozakiewicz-Piekarz
- Department of Biomedical and Polymer Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| |
Collapse
|
14
|
Deka B, Sarkar T, Bhattacharyya A, Butcher RJ, Banerjee S, Deka S, Saikia KK, Hussain A. Synthesis, characterization, and cancer cell-selective cytotoxicity of mixed-ligand cobalt(III) complexes of 8-hydroxyquinolines and phenanthroline bases. Dalton Trans 2024; 53:4952-4961. [PMID: 38275106 DOI: 10.1039/d3dt04045c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Transition metal complexes exhibiting selective toxicity towards a broad range of cancer types are highly desirable as potential anticancer agents. Herein, we report the synthesis, characterization, and cytotoxicity studies of six new mixed-ligand cobalt(III) complexes of general formula [Co(B)2(L)](ClO4)2 (1-6), where B is a N,N-donor phenanthroline base, namely, 1,10-phenanthroline (phen in 1, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq in 3, 4), and dipyrido[3,2-a:2',3'-c]phenazine (dppz in 5, 6), and L is the monoanion of 8-hydroxyquinoline (HQ in 1, 3, 5) and 5-chloro-7-iodo-8-hydroxyquinoline (CQ in 2, 4, 6). The X-ray single crystal structures of complexes 1 and 2 as PF6- salts revealed a distorted octahedral CoN5O coordination environment. Complexes demonstrated good stability in an aqueous buffer medium and in the presence of ascorbic acid as a reductant. Cytotoxicity studies using a panel of nine cancer cell lines showed that complex 6, with the dppz and CQ ligands, was significantly toxic against most cancer cell types, yielding IC50 values in the range of 2 to 14 μM. Complexes 1, 3, and 5, containing the HQ ligand, displayed lower toxicity compared to their CQ counterparts. The phenanthroline complexes demonstrated marginal toxicity towards the tested cell lines, while the dpq complexes exhibited moderate toxicity. Interestingly, all complexes demonstrated negligible toxicity towards normal HEK-293 kidney cells (IC50 > 100 μM). The observed cytotoxicity of the complexes correlated well with their lipophilicities (dppz > dpq > phen). The cytotoxicity of complex 6 was comparable to that of the clinical drug cisplatin under similar conditions. Notably, neither the HQ nor the CQ ligands alone demonstrated noticeable toxicity against any of the tested cell lines. The Annexin-V-FITC and DCFDA assays revealed that the cell death mechanism induced by the complexes involved apoptosis, which could be attributed to the metal-assisted generation of reactive oxygen species. Overall, the dppz complex 6, with its remarkable cytotoxicity against a broad range of cancer cells and negligible toxicity toward normal cells, holds significant potential for cancer chemotherapeutic applications.
Collapse
Affiliation(s)
- Banashree Deka
- Department of Chemistry, Handique Girls' College, Guwahati 781001, Assam, India.
| | - Tukki Sarkar
- Department of Chemistry, Handique Girls' College, Guwahati 781001, Assam, India.
| | - Arnab Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India.
| | - Ray J Butcher
- Department of Chemistry, Howard University, 525 College Street, NW 20059, USA.
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, UP 221005, India.
| | - Sasanka Deka
- Department of Chemistry, University of Delhi, New Delhi 110024, India.
| | - Kandarpa K Saikia
- Department of Bioengineering and Technology, GUIST, Gauhati University, Guwahati 781014, Assam, India.
| | - Akhtar Hussain
- Department of Chemistry, Handique Girls' College, Guwahati 781001, Assam, India.
| |
Collapse
|
15
|
Martín-Montes Á, Jimenez-Falcao S, Gómez-Ruiz S, Marín C, Mendez-Arriaga JM. First-Row Transition 7-Oxo-5-phenyl-1,2,4-triazolo[1,5-a]pyrimidine Metal Complexes: Antiparasitic Activity and Release Studies. Pharmaceuticals (Basel) 2023; 16:1380. [PMID: 37895851 PMCID: PMC10610057 DOI: 10.3390/ph16101380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Leishmaniasis and Chagas disease are still considered neglected illnesses due to the lack of investment in research, despite the fact that almost one million new cases are reported every year. Four 7-oxo-5-phenyl-1,2,4-triazolo[1,5-a]pyrimidine (HftpO) first-row transition complexes (Cu, Co, Ni, Zn) have been studied for the first time in vitro against five different species of Leishmania spp. (L. infantum, L. braziliensis, L. donovani, L. peruviana and L. mexicana) as well as Trypanosoma cruzi, showing higher efficacy than the reference commercial drugs. UV and luminescence properties were also evaluated. As a proof of concept, anchoring of a model high-effective-metal complex as an antiparasitic agent on silica nanoparticles was carried out for the first time, and drug-release behaviour was evaluated, assessing this new approach for drug vehiculation.
Collapse
Affiliation(s)
- Álvaro Martín-Montes
- Departamento De Parasitología, Universidad De Granada, Avenida Fuentenueva, 18071 Granada, Spain;
| | - Sandra Jimenez-Falcao
- Organic Nanotechnology Lab, Departamento De Materiales Y Producción Aeroespacial E.T.S.I Aeronáutica Y Del Espacio, Universidad Politécnica De Madrid, 28040 Madrid, Spain;
| | - Santiago Gómez-Ruiz
- COMET-NANO Group, Departamento De Biología y Geología, Física Y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain;
| | - Clotilde Marín
- Departamento De Parasitología, Universidad De Granada, Avenida Fuentenueva, 18071 Granada, Spain;
| | - José M. Mendez-Arriaga
- COMET-NANO Group, Departamento De Biología y Geología, Física Y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain;
| |
Collapse
|