1
|
Szternfeld P, Van Leeuw V, Scippo ML, Vinkx C, Van Hoeck E, Joly L. Characterisation of new sources of acrylamide in food marketed in Belgium. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2025; 18:86-98. [PMID: 39763213 DOI: 10.1080/19393210.2024.2440362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/06/2024] [Indexed: 02/21/2025]
Abstract
This study provides occurrence data for acrylamide in various foodstuffs, including those covered by Recommendation (EU) 2019/1888, from 210 samples purchased on the Belgian market. Detection frequencies exceeded 84% in potato-based products other than fries, vegetable crisps, black olives, cocoa powders, coffee substitutes and cereals and snacks. Large variations in acrylamide levels were found in cereals and snacks, with no correlation between cereal type or processing. Snacks containing chia did not show higher acrylamide levels than other cereal-based snacks. Maximum levels found were 4389 and 3063 µg kg-1 in coffee substitutes and vegetable crisps, respectively. Potato-based products contained 2 to 27 times less acrylamide when prepared in oven, compared to deep fryer processing. Artificially oxidised "Californian-style" black olives contained five times more acrylamide than "Greek-style" olives. In bread, pastries, nuts, oilseeds, dried fruits and confectionaries, detection frequencies varied from 27 to 69% and the average acrylamide content was <30 µg kg-1.
Collapse
Affiliation(s)
| | - Virginie Van Leeuw
- Chemical & Physical Health Risks Department, Sciensano, Brussels, Belgium
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège, Belgium
| | - Christine Vinkx
- Federal Public Service Health, Food Chain Safety and Environment, Brussel, Belgium
| | - Els Van Hoeck
- Chemical & Physical Health Risks Department, Sciensano, Brussels, Belgium
| | - Laure Joly
- Chemical & Physical Health Risks Department, Sciensano, Brussels, Belgium
| |
Collapse
|
2
|
Zahir A, Khan IA, Nasim M, Azizi MN, Azi F. Food process contaminants: formation, occurrence, risk assessment and mitigation strategies - a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1242-1274. [PMID: 39038046 DOI: 10.1080/19440049.2024.2381210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 07/24/2024]
Abstract
Thermal treatment of food can lead to the formation of potentially harmful chemicals, known as process contaminants. These are adventitious contaminants that are formed in food during processing and preparation. Various food processing techniques, such as heating, drying, grilling, and fermentation, can generate hazardous chemicals such as acrylamide (AA), advanced glycation end products (AGEs), heterocyclic aromatic amines (HAAs), furan, polycyclic aromatic hydrocarbons (PAHs), N-nitroso compounds (NOCs), monochloropropane diols (MCPD) and their esters (MCPDE) which can be detrimental to human health. Despite efforts to prevent the formation of these compounds during processing, eliminating them is often challenging due to their unknown formation mechanisms. It is critical to identify the potential harm to human health in processed food and understand the mechanisms by which harmful compounds form during processing, as prolonged exposure to these toxic compounds can lead to health problems. Various mitigation strategies, such as the use of diverse pre- and post-processing treatments, product reformulation, additives, variable process conditions, and novel integrated processing techniques, have been proposed to control these food hazards. In this review, we summarize the formation and occurrence, the potential for harm to human health produced by process contaminants in food, and potential mitigation strategies to minimize their impact.
Collapse
Affiliation(s)
- Ahmadullah Zahir
- Faculty of Veterinary Sciences, Department of Food Science and Technology, Afghanistan National Agricultural Sciences & Technology University, Kandahar, Afghanistan
| | - Iftikhar Ali Khan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Maazullah Nasim
- Faculty of Agriculture, Department of Horticulture, Kabul University, Kabul, Afghanistan
| | - Mohammad Naeem Azizi
- Faculty of Veterinary Sciences, Department of Pre-Clinic, Afghanistan National Agricultural Sciences & Technology University, Kandahar, Afghanistan
| | - Fidelis Azi
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, China
| |
Collapse
|
3
|
Oh J, Lee Y, Lee KG. Analytical methods, risk assessment, and mitigation strategies for furan in processed foods in various countries. Food Sci Biotechnol 2024; 33:2427-2440. [PMID: 39144195 PMCID: PMC11319557 DOI: 10.1007/s10068-024-01578-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/09/2024] [Accepted: 04/01/2024] [Indexed: 08/16/2024] Open
Abstract
This article provides an overview of analytical methods for measuring furan levels in food. Given the potential carcinogenicity of furans in humans, several studies have focused on assessing furan levels in various food products. In this review, we specifically examine furan levels in foods that are central to regional culinary traditions and summarize the results of country-specific risk assessments. Consequently, we have identified foods that contribute significantly to dietary furan exposure in each region. Coffee and baby foods, regardless of region, emerged as the primary sources of furan intake among adults and infants, respectively. Several previous studies have been conducted to develop various mitigation strategies aimed at reducing exposure to furan through food intake. Therefore, in this paper, we categorize effective mitigation strategies into two main groups: alterations to processing conditions and the addition or removal of food additives and ingredients.
Collapse
Affiliation(s)
- Jeongeun Oh
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, 10326 Gyeonggi-do Republic of Korea
| | - Yoojeong Lee
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, 10326 Gyeonggi-do Republic of Korea
| | - Kwang-Geun Lee
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, 10326 Gyeonggi-do Republic of Korea
| |
Collapse
|
4
|
Nabavi Fard A, Sereshti H. Polyether sulfone flat-sheet membrane impregnated with Mn-Al layered double hydroxide nanoparticles for green microfiltration of acrylamide in cocoa products. Mikrochim Acta 2024; 191:385. [PMID: 38860988 DOI: 10.1007/s00604-024-06462-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024]
Abstract
A new polyether sulfone (PES) membrane modified with manganese-aluminum layered double hydroxide (Mn-Al LDH) was prepared and utilized in the membrane micro-solid phase extraction (M-µSPE) of acrylamide for the first time. The analyses were conducted using HPLC-UV. The extraction efficiency of the PES membrane was enhanced two-fold with the addition of LDH. The fabricated LDH@PES was characterized using ATR-FTIR, SEM, XRD, and nitrogen adsorption/desorption isotherms. The specific surface area, average pore diameter, thickness, cross-sectional channels, and LDH particle size of the LDH@PES membrane were determined. The extraction key factors including membrane composition, desorption conditions, sample pH, and salt concentration were studied. The method was validated by determining the limit of detection, the limit of quantification, linear range, r2, matrix effect, enrichment factor, and precision. Extraction recoveries ranged from 87.4 to 103.5% with RSD < 5.9%. Finally, the method's green features were assessed with the AGREE protocol. This is the first report on the application of LDH@PES for microfiltration/extraction of acrylamide in various chocolate and cocoa products.
Collapse
Affiliation(s)
- Azin Nabavi Fard
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Hassan Sereshti
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Medina-Orjuela ME, Barrios-Rodríguez YF, Carranza C, Amorocho-Cruz C, Gentile P, Girón-Hernández J. Enhancing analysis of neo-formed contaminants in two relevant food global commodities: Coffee and cocoa. Heliyon 2024; 10:e31506. [PMID: 38818199 PMCID: PMC11137541 DOI: 10.1016/j.heliyon.2024.e31506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Neo-formed contaminants (NFCs) are common in many foods, especially those subjected to high-temperature processing. Among these contaminants, products arising from the Maillard reaction, sugar reduction, thermal degradation of polyphenols and lipid oxidation, including acrylamide, furan, furfuryl alcohol, and hydroxymethylfurfural, are consistently linked to potential neoplastic effects. NFCs are found in globally traded commodities like coffee and cocoa, posing a significant risk due to their frequent consumption by consumers. A direct correlation exists between consumption frequency, exposure levels, and health risks. Hence, it's crucial to establish reliable methods to determine levels in both matrices, aiming to mitigate their formation and minimise risks to consumers. This review offers a comprehensive examination, discussion, and identification of emerging trends and opportunities to enhance existing methodologies for extracting and quantifying NFCs in coffee and cocoa. By presenting an in-depth analysis of performance parameters, we aim to guide the selection of optimal extraction techniques for quantifying individual NFCs. Based on the reviewed data, headspace extraction is recommended for furan, while solid and dispersive solid phase extractions are preferred for acrylamide when quantified using gas and liquid chromatography, respectively. However, it is worth noting that the reported linearity tests for certain methods did not confirm the absence of matrix effects unless developed through standard addition, leading to uncertainties in the reported values. There is a need for further research to verify method parameters, especially for determining NFCs like furfuryl alcohol. Additionally, optimising extraction and separation methods is essential to ensure complete compound depletion from samples. Ideally, developed methods should offer comprehensive NFC determination, reduce analysis time and solvent use, and adhere to validation parameters. This review discusses current methods for extracting and quantifying NFCs in coffee and cocoa, highlighting emerging trends and emphasising the need to improve existing techniques, especially for compounds like furfuryl alcohol.
Collapse
Affiliation(s)
- María E. Medina-Orjuela
- Centro Surcolombiano de Investigación en Café (CESURCAFÉ), Universidad Surcolombiana, Av. Pastrana Borrero Carera 1, 410001, Neiva, Colombia
| | - Yeison F. Barrios-Rodríguez
- Centro Surcolombiano de Investigación en Café (CESURCAFÉ), Universidad Surcolombiana, Av. Pastrana Borrero Carera 1, 410001, Neiva, Colombia
- i-Food, Instituto Universitario de Ingeniería de Alimentos-FoodUPV, Universitat Politècnica de València, Camino de Vera s/n, 46021, Valencia, Spain
| | - Carlos Carranza
- Escuela de ciencias agrícolas, pecuarias y del medio ambiente, Universidad Nacional Abierta a Distancia, Calle 14 Sur # 14 - 23, 111511, Bogotá, Colombia
| | - Claudia Amorocho-Cruz
- Centro Surcolombiano de Investigación en Café (CESURCAFÉ), Universidad Surcolombiana, Av. Pastrana Borrero Carera 1, 410001, Neiva, Colombia
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
| | - Joel Girón-Hernández
- Centro Surcolombiano de Investigación en Café (CESURCAFÉ), Universidad Surcolombiana, Av. Pastrana Borrero Carera 1, 410001, Neiva, Colombia
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, NE1 8ST Newcastle upon Tyne, United Kingdom
| |
Collapse
|
6
|
Pospiech J, Hoelzle E, Schoepf A, Melzer T, Granvogl M, Frank J. Acrylamide increases and furanoic compounds decrease in plant-based meat alternatives during pan-frying. Food Chem 2024; 439:138063. [PMID: 38035494 DOI: 10.1016/j.foodchem.2023.138063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Plant-based meat alternatives are gaining popularity as protein sources. However, pan-frying may lead to the formation of potentially harmful food contaminants. We investigated the formation of acrylamide and furanoic compounds in four different plant-based meat alternatives and two meat burger patties during pan-frying at 160 and 200 °C. The highest acrylamide contents (72. ± 7.7 and 69.2 ± 9.5 µg/kg, respectively) were found in soy flour- and sunflower-protein based patties fried at 200 °C. Unprepared pea and soy protein-based burger patties contained the highest furfural amounts (2832.8 ± 576.2 and 2683.0 ± 868.5 µg/kg, respectively). Furfuryl alcohol content was highest in soy flour-based patties and increased temperature-dependently up to 1120.9 ± 383.4 µg/kg. Based on the tolerable intake calculated by the EFSA Scientific Panel on Contaminants in the Food Chain, these amounts do not pose a health risk. Nevertheless, since plant-based novel food are being increasingly consumed, further investigations into the formation of food contaminants in novel processed foods are warranted.
Collapse
Affiliation(s)
- Jonas Pospiech
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany.
| | - Eva Hoelzle
- Department of Food Chemistry and Analytical Chemistry, Institute of Food Chemistry, University of Hohenheim, Stuttgart, Germany
| | - Alena Schoepf
- Department of Food Chemistry and Analytical Chemistry, Institute of Food Chemistry, University of Hohenheim, Stuttgart, Germany
| | - Tanja Melzer
- Analytical Chemistry Unit, Core Facility Hohenheim, University of Hohenheim, Stuttgart, Germany
| | - Michael Granvogl
- Department of Food Chemistry and Analytical Chemistry, Institute of Food Chemistry, University of Hohenheim, Stuttgart, Germany
| | - Jan Frank
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
7
|
Zhang Y, Zhang Y. A comprehensive review of furan in foods: From dietary exposures and in vivo metabolism to mitigation measures. Compr Rev Food Sci Food Saf 2023; 22:809-841. [PMID: 36541202 DOI: 10.1111/1541-4337.13092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
Furan is a thermal food processing contaminant that is ubiquitous in various food products such as coffee, canned and jarred foods, and cereals. A comprehensive summary of research progress on furan is presented in this review, including discussion of (i) formation pathways, (ii) occurrence and dietary exposures, (iii) analytical techniques, (iv) toxicities, (v) metabolism and metabolites, (vi) risk assessment, (vii) potential biomarkers, and (viii) mitigation measures. Dietary exposure to furan varies among different countries and age groups. Furan acts through various toxicological pathways mediated by its primary metabolite, cis-2-butene-1,4-dial (BDA). BDA can readily react with glutathione, amino acids, biogenic amines, or nucleotides to form corresponding metabolites, some of which have been proposed as potential biomarkers of exposure to furan. Present risk assessment of furan mainly employed the margin of exposure approach. Given the widespread occurrence of furan in foods and its harmful health effects, mitigating furan levels in foods or exploring potential dietary supplements to protect against furan toxicity is necessary for the benefit of food safety and public health.
Collapse
Affiliation(s)
- Yiju Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Schouteten JJ, Lemarcq V, Van de Walle D, Sioriki E, Dewettinck K. Microwave Roasting as an Alternative to Convection Roasting: Sensory Analysis and Physical Characterization of Dark Chocolate. Foods 2023; 12:foods12040887. [PMID: 36832962 PMCID: PMC9957408 DOI: 10.3390/foods12040887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Roasting cocoa beans by means of microwave radiations seems to be a potential alternative to convection roasting, but little is known about the impact of this method on the perceived flavor profile of the chocolate. Therefore, this research focused on revealing the flavor perception of chocolate produced with microwave roasted cocoa beans assessed by both a trained panel and chocolate consumers. Samples of 70% dark chocolate produced from cocoa beans microwave roasted at 600 W for 35 min were compared with samples of 70% dark chocolate produced from cocoa beans convectively roasted at 130 °C for 30 min. Non-significant differences (p > 0.05) in the measured physical properties, such as color, hardness, melting, and flow behavior, showed that chocolate produced from microwave roasted cocoa beans can exhibit the same physical qualities as convection roasted chocolate. Moreover, combined discriminative triangle tests, with 27 judgements in total, performed by a trained panel, showed that each type of chocolate exhibited distinctive characteristics (d'-value = 1.62). Regarding the perceived flavor, "cocoa aroma" was cited as significantly higher for the chocolate produced from microwave roasted cocoa beans (n = 112) compared to chocolate produced from convection roasted cocoa beans (n = 100) by consumers. Both preference and willingness to buy were higher, though insignificant at a 5% level, for the microwave roasted chocolate. A final potential benefit (studied in this research) of microwave roasting cocoa beans is the reduced energy consumption, which was estimated at 75%. Taking all these results together, the microwave roasting of cocoa is shown to be a promising alternative to convection roasting.
Collapse
Affiliation(s)
- Joachim J. Schouteten
- Department of Agricultural Economics, Ghent University, Coupure Links 653, 9000 Gent, Belgium
- Correspondence: ; Tel.: +32-92645945
| | - Valérie Lemarcq
- Department of Food Technology, Safety and Health, Food Structure & Function Research Group (FSF), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Davy Van de Walle
- Department of Food Technology, Safety and Health, Food Structure & Function Research Group (FSF), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Eleni Sioriki
- Department of Food Technology, Safety and Health, Food Structure & Function Research Group (FSF), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Koen Dewettinck
- Department of Food Technology, Safety and Health, Food Structure & Function Research Group (FSF), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| |
Collapse
|
9
|
Zhang Y, Zhao H, Sun S, Lu L, Xue X, Su S, Gong P, Zheng W, Wang M, Wang J, Zhu J, Liu Y, Zhang F. Efficient optimization and development of two methods for the determination of acrylamide in deep-frying oil by liquid chromatography-tandem mass spectrometry: Application of multifactor analysis assessment strategy. J Sep Sci 2023; 46:e2200631. [PMID: 36427354 DOI: 10.1002/jssc.202200631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
A new multifactor analysis assessment strategy was developed for evaluating, optimizing, and comparing analytical techniques for acrylamide in frying oils. Based on five indices (absolute recovery, absolute matrix effect, the intensity of the full ion scan, and the precursor ion scan to m/z 184 and m/z 241), the proposed strategy was performed with radar analysis, relative contribution analysis, and the entropy-weighted technique for order performance by similarity to ideal solution analysis. Two novel methods based on quick, easy, cheap, effective, rugged, and safe extraction methodology and gel permeation chromatography-liquid-liquid extraction followed by liquid chromatography-tandem mass spectrometry have been developed for the analysis of acrylamide in frying oils. Two methods were suitable for rapid and sensitive analysis of acrylamide in oils in different laboratories, with a limit of quantitation at 2 μg/kg, and the average recovery ranging from 92.5% to 107.8%, with relative standard deviations below 10%. When considering automation efficiency and matrix effects, gel permeation chromatography is the most efficient method, whereas the other method has an advantage when analyzing large samples. The developed methods were used in a pilot study to analyze frying oils with acrylamide content below 9.82 μg/kg, showing that the repeated frying process did not produce significant content of acrylamide in oils.
Collapse
Affiliation(s)
- Yanxia Zhang
- Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, P. R. China
| | - Huinan Zhao
- Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, P. R. China
| | - Shanshan Sun
- Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, P. R. China
| | - Lanxiang Lu
- Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, P. R. China
| | - Xia Xue
- Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, P. R. China
| | - Shufang Su
- Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, P. R. China
| | - Pixue Gong
- Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, P. R. China
| | - Wenjing Zheng
- Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, P. R. China
| | - Mingdong Wang
- Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, P. R. China
| | - Jun Wang
- Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, P. R. China
| | - Jianhua Zhu
- Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, P. R. China
| | - Yanming Liu
- Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, P. R. China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| |
Collapse
|
10
|
Gil M, Gallego V, Jaramillo Y, Gil M, Uribe D. Advances on Acrylamide in cocoa and its derivates: a challenge to control from postharvest to the industrialization. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Kim S, Lee H, Lee KG. Analysis of Furan in Red Pepper Powder Treated by Three Methods-Boiling, Roasting, and Frying. Front Nutr 2022; 9:888779. [PMID: 35651511 PMCID: PMC9149621 DOI: 10.3389/fnut.2022.888779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/20/2022] [Indexed: 11/25/2022] Open
Abstract
In this study, furan analysis was conducted on dried red pepper powder treated by three cooking methods (boiling, roasting, and frying). A total of 144 samples were prepared and their furan levels were analysed using automated solid-phase micro-extraction gas chromatography-mass spectrometry. The furan concentration in boiled soup ranged from 1.26 to 4.65 ng/g, and from 7.37 to 27.68 ng/g for boiled red pepper samples. For the roasting method, a furan concentration between 6.66 and 761.37 ng/g was detected. For the frying method, the furan level of edible oils ranged from 3.93 to 125.88 ng/g, and a concentration ranging from 4.88 to 234.52 ng/g was detected for the fried red pepper samples. The cooking method using edible oil obtained a higher furan concentration than the water-based method. Samples using corn germ oil (linoleic acid-rich oil) obtained the highest furan concentration among the four edible oils. In all cooking methods, the higher the heating temperature and time, the higher the furan concentration detected. A kinetic study was conducted using the roasting model system and the apparent activation energy was 60.5 kJ/mol. The results of this study could be useful as a database for furan concentration in dried red pepper powder according to various cooking methods.
Collapse
Affiliation(s)
| | | | - Kwang-Geun Lee
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Seoul, South Korea
| |
Collapse
|
12
|
Negoiță M, Mihai AL, Horneț GA. Influence of Water, NaCl and Citric Acid Soaking Pre-Treatments on Acrylamide Content in French Fries Prepared in Domestic Conditions. Foods 2022; 11:1204. [PMID: 35563927 PMCID: PMC9101495 DOI: 10.3390/foods11091204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/05/2023] Open
Abstract
The aim of this study was to investigate the influence of some pre-treatment applications toward acrylamide mitigation in potatoes fried in domestic conditions modeled after those found in Romania, by using a pan and a fryer. Before being fried in a pan, potato strips were treated in one of the following ways: soaked in cold water for 15, 60, and 120 min (a); soaked in hot water at different combinations of temperatures and durations (60, 70, 80 °C for 5, 10, 15 min) (b); soaked in a NaCl solution (c), and; in a citric acid solution (d) both solutions of 0.05% and 1% concentration for 30 min. For potatoes fried in a fryer, the (a) pre-treatment and soaking in water at 80 °C for 5, 10, and 15 min were applied. Untreated samples were used as a control. French fries were analyzed in terms of moisture and acrylamide content, color, and texture parameters. The pre-treatments applied reduced the acrylamide content in French fries by 4-97% when fried in the pan and by 25-47% when fried in the fryer. Acrylamide content of French fries was negatively correlated with L* parameter and moisture content and positively correlated with a* parameter. The pre-treatments applied can be used successfully by consumers to reduce acrylamide content.
Collapse
Affiliation(s)
| | - Adriana Laura Mihai
- National Research & Development Institute for Food Bioresources-IBA Bucharest, 6 Dinu Vintilă Street, District 2, 021102 Bucharest, Romania; (M.N.); (G.A.H.)
| | | |
Collapse
|
13
|
Agudelo C, Acevedo S, Carrillo-Hormaza L, Galeano E, Osorio E. Chemometric Classification of Colombian Cacao Crops: Effects of Different Genotypes and Origins in Different Years of Harvest on Levels of Flavonoid and Methylxanthine Metabolites in Raw Cacao Beans. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072068. [PMID: 35408468 PMCID: PMC9000445 DOI: 10.3390/molecules27072068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 12/03/2022]
Abstract
The aim of this study was to evaluate the levels of chemical markers in raw cacao beans in two clones (introduced and regional) in Colombia over several years. Multivariate statistical methods were used to analyze the flavanol monomers (epicatechin and catechin), flavanol oligomers (procyanidins) and methylxanthine alkaloids (caffeine and theobromine) of cocoa samples. The results identified genotype as the main factor contributing to cacao chemistry, although significant differences were not observed between universal and regional clones in PCA. The univariate analysis allowed us to establish that EET-96 had the highest contents of both flavanol monomers (13.12 ± 2.30 mg/g) and procyanidins (7.56 ± 4.59 mg/g). In addition, the geographic origin, the harvest conditions of each region and the year of harvest may contribute to major discrepancies between results. Turbo cocoa samples are notable for their higher flavanol monomer content, Chigorodó cocoa samples for the presence of both types of polyphenol (monomer and procyanidin contents) and the Northeast cocoa samples for the higher methylxanthine content. We hope that knowledge of the heterogeneity of the metabolites of interest in each clone will contribute to the generation of added value in the cocoa production chain and its sustainability.
Collapse
Affiliation(s)
- Catalina Agudelo
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 0500100, Colombia; (C.A.); (S.A.); (L.C.-H.); (E.G.)
| | - Susana Acevedo
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 0500100, Colombia; (C.A.); (S.A.); (L.C.-H.); (E.G.)
| | - Luis Carrillo-Hormaza
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 0500100, Colombia; (C.A.); (S.A.); (L.C.-H.); (E.G.)
- Bioingred, Spin-Off Universidad de Antioquia, Itagüí 055412, Colombia
| | - Elkin Galeano
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 0500100, Colombia; (C.A.); (S.A.); (L.C.-H.); (E.G.)
| | - Edison Osorio
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 0500100, Colombia; (C.A.); (S.A.); (L.C.-H.); (E.G.)
- Correspondence: ; Tel./Fax: +57-4-219-6590
| |
Collapse
|
14
|
Zou Y, Gaida M, Franchina FA, Stefanuto PH, Focant JF. Distinguishing between Decaffeinated and Regular Coffee by HS-SPME-GC×GC-TOFMS, Chemometrics, and Machine Learning. Molecules 2022; 27:molecules27061806. [PMID: 35335174 PMCID: PMC8948847 DOI: 10.3390/molecules27061806] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Coffee, one of the most popular beverages in the world, attracts consumers by its rich aroma and the stimulating effect of caffeine. Increasing consumers prefer decaffeinated coffee to regular coffee due to health concerns. There are some main decaffeination methods commonly used by commercial coffee producers for decades. However, a certain amount of the aroma precursors can be removed together with caffeine, which could cause a thin taste of decaffeinated coffee. To understand the difference between regular and decaffeinated coffee from the volatile composition point of view, headspace solid-phase microextraction two-dimensional gas chromatography time-of-flight mass spectrometry (HS-SPME-GC×GC-TOFMS) was employed to examine the headspace volatiles of eight pairs of regular and decaffeinated coffees in this study. Using the key aroma-related volatiles, decaffeinated coffee was significantly separated from regular coffee by principal component analysis (PCA). Using feature-selection tools (univariate analysis: t-test and multivariate analysis: partial least squares-discriminant analysis (PLS-DA)), a group of pyrazines was observed to be significantly different between regular coffee and decaffeinated coffee. Pyrazines were more enriched in the regular coffee, which was due to the reduction of sucrose during the decaffeination process. The reduction of pyrazines led to a lack of nutty, roasted, chocolate, earthy, and musty aroma in the decaffeinated coffee. For the non-targeted analysis, the random forest (RF) classification algorithm was used to select the most important features that could enable a distinct classification between the two coffee types. In total, 20 discriminatory features were identified. The results suggested that pyrazine-derived compounds were a strong marker for the regular coffee group whereas furan-derived compounds were a strong marker for the decaffeinated coffee samples.
Collapse
Affiliation(s)
- Yun Zou
- Organic and Biological Analytical Chemistry Group, MolSys Research Unit, University of Liège, 4000 Liège, Belgium; (M.G.); (P.-H.S.); (J.-F.F.)
- Correspondence: or
| | - Meriem Gaida
- Organic and Biological Analytical Chemistry Group, MolSys Research Unit, University of Liège, 4000 Liège, Belgium; (M.G.); (P.-H.S.); (J.-F.F.)
| | - Flavio A. Franchina
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Pierre-Hugues Stefanuto
- Organic and Biological Analytical Chemistry Group, MolSys Research Unit, University of Liège, 4000 Liège, Belgium; (M.G.); (P.-H.S.); (J.-F.F.)
| | - Jean-François Focant
- Organic and Biological Analytical Chemistry Group, MolSys Research Unit, University of Liège, 4000 Liège, Belgium; (M.G.); (P.-H.S.); (J.-F.F.)
| |
Collapse
|
15
|
Paranthaman R, Moses J, Anandharamakrishnan C. Novel powder-XRD method for detection of acrylamide in processed foods. Food Res Int 2022; 152:110893. [DOI: 10.1016/j.foodres.2021.110893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 01/10/2023]
|
16
|
Quesada-Valverde M, Artavia G, Granados-Chinchilla F, Cortés-Herrera C. Acrylamide in foods: from regulation and registered levels to chromatographic analysis, nutritional relevance, exposure, mitigation approaches, and health effects. TOXIN REV 2022. [DOI: 10.1080/15569543.2021.2018611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mónica Quesada-Valverde
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica, San José, Costa Rica
| | - Graciela Artavia
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica, San José, Costa Rica
| | - Fabio Granados-Chinchilla
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica, San José, Costa Rica
| | - Carolina Cortés-Herrera
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
17
|
Yao X, Zheng X, Zhao R, Li Z, Shen H, Li T, Gu Z, Zhou Y, Xu N, Shi A, Wang Q, Lu S. Quality Formation of Adzuki Bean Baked: From Acrylamide to Volatiles under Microwave Heating and Drum Roasting. Foods 2021; 10:foods10112762. [PMID: 34829041 PMCID: PMC8621577 DOI: 10.3390/foods10112762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Baked adzuki beans are rich in tantalizing odor and nutritional components, such as protein, dietary fiber, vitamin B, and minerals. To analyze the final quality of baked beans, the acrylamide and volatile formation of adzuki beans were investigated under the conditions of microwave baking and drum roasting. The results indicate that the acrylamide formation in baked adzuki beans obeys the exponential growth function during the baking process, where a rapid increase in acrylamide content occurs at a critical temperature and low moisture content. The critical temperature that leads to a sudden increase in acrylamide content is 116.5 °C for the moisture content of 5.6% (w.b.) in microwave baking and 91.6 °C for the moisture content of 6.1% (w.b.) in drum roasting. The microwave-baked adzuki beans had a higher formation of the kinetics of acrylamide than that of drum-roasted beans due to the microwave volumetric heating mode. The acrylamide content in baked adzuki beans had a significant correlation with their color due to the Maillard reaction. A color difference of 11.1 and 3.6 may be introduced to evaluate the starting point of the increase in acrylamide content under microwave baking and drum roasting, respectively. Heating processes, including microwave baking and drum roasting, for adzuki beans generate characteristic volatile compounds such as furan, pyrazine, ketone, alcohols, aldehydes, esters, pyrroles, sulfocompound, phenols, and pyridine. Regarding flavor formation, beans baked via drum roasting showed better flavor quality than microwave-baked beans.
Collapse
Affiliation(s)
- Xinmiao Yao
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.Y.); (R.Z.); (Z.L.); (H.S.); (Y.Z.); (N.X.)
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (A.S.); (Q.W.)
| | - Xianzhe Zheng
- China School of Engineering, Northeast Agricultural University, Harbin 150030, China;
| | - Rui Zhao
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.Y.); (R.Z.); (Z.L.); (H.S.); (Y.Z.); (N.X.)
| | - Zhebin Li
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.Y.); (R.Z.); (Z.L.); (H.S.); (Y.Z.); (N.X.)
| | - Huifang Shen
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.Y.); (R.Z.); (Z.L.); (H.S.); (Y.Z.); (N.X.)
| | - Tie Li
- Crop Resources Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Zhiyong Gu
- Gansu United Testing Standards Technical Service Co., Ltd., Lanzhou 730030, China;
| | - Ye Zhou
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.Y.); (R.Z.); (Z.L.); (H.S.); (Y.Z.); (N.X.)
| | - Na Xu
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.Y.); (R.Z.); (Z.L.); (H.S.); (Y.Z.); (N.X.)
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (A.S.); (Q.W.)
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (A.S.); (Q.W.)
| | - Shuwen Lu
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.Y.); (R.Z.); (Z.L.); (H.S.); (Y.Z.); (N.X.)
- Correspondence:
| |
Collapse
|
18
|
HS-SPME Gas Chromatography Approach for Underivatized Acrylamide Determination in Biscuits. Foods 2021; 10:foods10092183. [PMID: 34574293 PMCID: PMC8470632 DOI: 10.3390/foods10092183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/29/2023] Open
Abstract
Acrylamide (AA) is a food contaminant in thermally processed products that is object of tight control. A simple and easy-to-apply methodology for routine monitoring of AA levels in food products could allow producers to be players in the control of their own products. In this work, a simple methodology for AA quantification without derivatization was developed for biscuits, for which the benchmark levels recommended by EFSA are 350 µg/kg, and 150 µg/kg for biscuits for infants and young children. Headspace-solid phase microextraction (HS-SPME) was used in 120 mL screwed-cap vials with a carboxen/polydimetylsiloxane fiber, 4 g of biscuits, and 10 mL of water during 15 min at room temperature under stirring. The addition of 30 mL of propanol under stirring during 15 min at room temperature and 15 min at 60 °C was used to promote AA transfer to the headspace. The fiber exposure was 45 min. A gas chromatography-mass spectrometry analysis allowed to obtain an external calibration curve at m/z 71, with linearity R2 > 0.99 and precision RSD < 9%. The detection and quantification limits were 27.4 µg/kg and 91.5 µg/kg, respectively. The methodology was successfully used in biscuits with lower AA amount, where mitigation strategies (asparaginase or pectate) were applied.
Collapse
|
19
|
Martín-Vertedor D, Fernández A, Mesías M, Martínez M, Martín-Tornero E. Identification of mitigation strategies to reduce acrylamide levels during the production of black olives. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Acrylamide Exposure from Common Culinary Preparations in Spain, in Household, Catering and Industrial Settings. Foods 2021; 10:foods10092008. [PMID: 34574118 PMCID: PMC8467121 DOI: 10.3390/foods10092008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022] Open
Abstract
In 2019, the European Commission recommended monitoring the presence of acrylamide in certain foods not included in Regulation 2158/2017, to consider other sources of exposure to the contaminant. In the present study, eleven groups of processed foods commonly consumed in Spain were classified, according to their food matrix, into potato-based food, cereal-based food and food based on cereal mixed with meat, fish or vegetables. Samples were collected from three different settings: household, catering services and industrial origin, to evaluate the influence of the food preparation site on acrylamide formation. The highest concentrations of acrylamide were observed in chips (French fries), especially those prepared at home. Although at lower levels, all the other foods also contained significant concentrations of acrylamide, confirming the need to control its content in foods not included in the EU regulation. Industrially processed foods made a lower contribution to acrylamide exposure, probably due to the more stringent controls exercised on culinary processes in this context. The higher levels recorded for households and catering services highlight the need for greater awareness of culinary processes and for measures to be adopted in these settings to limit the formation of acrylamide in food preparation.
Collapse
|
21
|
Rong Y, Ali S, Ouyang Q, Wang L, Wang B, Chen Q. A turn-on upconversion fluorescence sensor for acrylamide in potato chips based on fluorescence resonance energy transfer and thiol-ene Michael addition. Food Chem 2021; 351:129215. [DOI: 10.1016/j.foodchem.2021.129215] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/12/2021] [Accepted: 01/23/2021] [Indexed: 10/22/2022]
|
22
|
Artavia G, Cortés-Herrera C, Granados-Chinchilla F. Selected Instrumental Techniques Applied in Food and Feed: Quality, Safety and Adulteration Analysis. Foods 2021; 10:1081. [PMID: 34068197 PMCID: PMC8152966 DOI: 10.3390/foods10051081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/13/2021] [Accepted: 03/19/2021] [Indexed: 12/28/2022] Open
Abstract
This review presents an overall glance at selected instrumental analytical techniques and methods used in food analysis, focusing on their primary food science research applications. The methods described represent approaches that have already been developed or are currently being implemented in our laboratories. Some techniques are widespread and well known and hence we will focus only in very specific examples, whilst the relatively less common techniques applied in food science are covered in a wider fashion. We made a particular emphasis on the works published on this topic in the last five years. When appropriate, we referred the reader to specialized reports highlighting each technique's principle and focused on said technologies' applications in the food analysis field. Each example forwarded will consider the advantages and limitations of the application. Certain study cases will typify that several of the techniques mentioned are used simultaneously to resolve an issue, support novel data, or gather further information from the food sample.
Collapse
Affiliation(s)
- Graciela Artavia
- Centro Nacional de Ciencia y Tecnología de Alimentos, Sede Rodrigo Facio, Universidad de Costa Rica, San José 11501-2060, Costa Rica;
| | - Carolina Cortés-Herrera
- Centro Nacional de Ciencia y Tecnología de Alimentos, Sede Rodrigo Facio, Universidad de Costa Rica, San José 11501-2060, Costa Rica;
| | | |
Collapse
|
23
|
Pitsch J, Höglinger O, Weghuber J. Roasted Rye as a Coffee Substitute: Methods for Reducing Acrylamide. Foods 2020; 9:foods9070925. [PMID: 32674330 PMCID: PMC7404811 DOI: 10.3390/foods9070925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022] Open
Abstract
Acrylamide is assumed to be a potential carcinogen, and reference values have therefore been implemented in EU legislation. Thus, the food industry needs to reduce the acrylamide content in consumer products to the lowest possible value. In this study, roasted rye was evaluated for its suitability as a coffee substitution product with respect to its acrylamide content. The influence of process modifiers, free asparagine content, storage, and rye type on the final content of acrylamide was investigated. Changes in carbohydrate composition and brightness caused by the roasting process were described. Sample analysis was conducted via GC-MS and HPLC-CAD. Existing methods were adapted to roasted rye as the sample matrix. CaCl2 and asparaginase treatment as well as pH adjustments prior to roasting did not prove to reduce the acrylamide content. A significantly (* p < 0.027) lower free asparagine content in the raw material resulted in a lower formation of acrylamide in the final product. The acrylamide content significantly decreased (**** p < 0.0001) after 3 (1100 ± 18 µg kg−1) and 6 (490 ± 7 µg kg−1) months of long-term storage. Only samples stored for 6 months (490 ± 7 µg kg−1) met the EU acrylamide content requirements (<500 µg kg−1) for grain-based coffee substitution products.
Collapse
Affiliation(s)
- Johannes Pitsch
- FFoQSI—Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, FFoQSI GmbH, Technopark 1C, 3430 Tulln, Austria; (J.P.); (O.H.)
- Department of Food Technology and Nutrition, University of Applied Sciences Upper Austria, 4600 Wels, Austria
| | - Otmar Höglinger
- FFoQSI—Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, FFoQSI GmbH, Technopark 1C, 3430 Tulln, Austria; (J.P.); (O.H.)
- Department of Food Technology and Nutrition, University of Applied Sciences Upper Austria, 4600 Wels, Austria
| | - Julian Weghuber
- FFoQSI—Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, FFoQSI GmbH, Technopark 1C, 3430 Tulln, Austria; (J.P.); (O.H.)
- Department of Food Technology and Nutrition, University of Applied Sciences Upper Austria, 4600 Wels, Austria
- Correspondence: ; Tel.: +43-50804-44403
| |
Collapse
|
24
|
Valverde García D, Pérez Esteve É, Barat Baviera JM. Changes in cocoa properties induced by the alkalization process: A review. Compr Rev Food Sci Food Saf 2020; 19:2200-2221. [DOI: 10.1111/1541-4337.12581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/27/2020] [Accepted: 04/23/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Damián Valverde García
- Departamento de Tecnología de AlimentosUniversitat Politècnica de València Valencia Spain
| | - Édgar Pérez Esteve
- Departamento de Tecnología de AlimentosUniversitat Politècnica de València Valencia Spain
| | | |
Collapse
|