1
|
Guo T, Luo L, Wang L, Zhang F, Liu Y, Leng J. Smart Polymer Microspheres: Preparation, Microstructures, Stimuli-Responsive Properties, and Applications. ACS NANO 2025. [PMID: 40331430 DOI: 10.1021/acsnano.5c00998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Smart polymer microspheres (SPMs) are a class of stimulus-responsive materials that undergo physical, chemical, or property changes in response to external stimuli, such as temperature, pH, light, and magnetic fields. In recent years, their diverse responsiveness and tunable structures have enabled broad applications in biomedicine, environmental protection, information encryption, and other fields. This study provides a detailed review of recent preparation methods of SPMs, focusing on physical methods such as emulsification-solvent evaporation, microfluidics, and electrostatic spraying as well as chemical approaches such as emulsion and precipitation polymerization. Meanwhile, different types of stimulus-responsive behaviors, such as temperature-, pH-, light-, and magnetic-responsiveness, are thoroughly examined. This study also explores the applications of SPMs in drug delivery, tissue engineering, and environmental monitoring, while discussing future technological challenges and development directions in this field.
Collapse
Affiliation(s)
- Tao Guo
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| | - Lan Luo
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| | - Linlin Wang
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| | - Fenghua Zhang
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| | - Yanju Liu
- Department of Astronautic Science and Mechanics, Harbin Institute of Technology (HIT), No. 92 West Dazhi Street, Harbin 150001, People's Republic of China
| | - Jinsong Leng
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| |
Collapse
|
2
|
He D, Zhu B. Lignosulfonate Improves Soil Fertility by Promoting Exchangeable Al 3+ Immobilization and Facilitating Its Interaction with Soil Enzymes through Active Functional Group Surfaces. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10859-10869. [PMID: 40265505 DOI: 10.1021/acs.jafc.5c00953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Soil acidification threatens soil health and sustainable agriculture, and conventional mitigation strategies have various limitations, underscoring the need for the creation of more effective and sustainable alternatives. In this study, we evaluated the effects of calcium lignosulfonate (CL) on the physicochemical properties of acidic soils (Rs, K2j, and J2s) through pot experiments. Additionally, molecular modeling calculations were employed to investigate the interaction mechanisms between CL and soil exchangeable acidity and active enzyme. The results showed that CL was superior to lime in reducing phytotoxic exchangeable Al3+, enhancing soil acidification buffering capacity, and improving soil fertility and plant biomass accumulation. These benefits were attributed to the strong competitive adsorption of exchangeable Al3+ by the CL surface active functional groups, enhanced interactions between CL and soil enzymes, and the restructuring of microbial communities. These findings provide valuable insights for developing efficient soil amendments to mitigate the effects of acidification, ultimately enhancing soil health and agricultural productivity.
Collapse
Affiliation(s)
- Debo He
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
- Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Zhu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
- Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
3
|
Wu Z, Shang C, Zeng Q, Liu H, He F, Feng Y, Luo H, Li J. Photo - electrically responsive dual - network alginate-based composite hydrogels for the controlled release of plant essential nutrients. Int J Biol Macromol 2025; 305:141161. [PMID: 39965682 DOI: 10.1016/j.ijbiomac.2025.141161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 02/20/2025]
Abstract
Hydrogel materials hold great potential in agriculture. In this study, a photo-electric controlled-release double-network hydrogel carrier was fabricated based on polyacrylamide (PAM) and sodium alginate (SA) with the montmorillonite (MMT). This double-network (DN) structure of Fe3+/SA-PAM-MMT (SPMFe3+) gel can efficiently improve stability of the carrier through radical polymerization and ion cross-linking reactions. The physicochemical properties of the composite hydrogels were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermal gravimetric analysis, differential scanning calorimeter, rheometer, electronic universal testing machine and scanning electron microscopy. The SPMFe3+ gel carriers exhibit excellent mechanical properties and photo-electric responsiveness, attributed to their double-network structure and incorporation of MMT. The pore size of the SPM - Fe3+ gel expands under an electric field due to the Coulomb force of carboxyl group on the SA chain. Additionally, the structure of SPMFe3+ was broken under UV-irradiation due to the photochemical reaction of Fe3+-SA. The release of urea is regulated by this photoelectrochemical stimulus - responsive mechanism. Therefore, this work provides a promising approach to prepare dual-responsive controlled-release carriers and demonstrates that SPM-Fe3+-5 % double-network hydrogel has potential applications in controlled-release fertilizers.
Collapse
Affiliation(s)
- Zongde Wu
- School of Life and Health Sciences, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Chaonan Shang
- School of Chemistry and Chemical Engineering, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Qu Zeng
- School of Chemistry and Chemical Engineering, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Haifang Liu
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570228, P. R. China
| | - Furui He
- School of Materials Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Yuhong Feng
- School of Materials Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
| | - Haibin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| | - Jiacheng Li
- School of Chemistry and Chemical Engineering, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
| |
Collapse
|
4
|
Mazaheri O, Lin Z, Xu W, Mohankumar M, Wang T, Zavabeti A, McQuillan RV, Chen J, Richardson JJ, Mumford KA, Caruso F. Assembly of Silicate-Phenolic Network Coatings with Tunable Properties for Controlled Release of Small Molecules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2413349. [PMID: 39535829 DOI: 10.1002/adma.202413349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Engineered coatings are pivotal for tailoring the surface properties and release profiles of materials for applications across diverse areas. However, developing robust coatings that can both encapsulate and controllably release cargo is challenging. Herein, a dynamic covalent coordination assembly strategy is used to engineer robust silicate-based coatings, termed silicate-phenolic networks (SPNs), using sodium metasilicate and phenolic ligands (tannic acid, gallic acid, pyrogallol). The coatings are pH-responsive (owing to the dynamic covalent bonding), and their hydrophobicity can be tuned upon their post-functionalization with hydrophobic gallates (propyl, octyl, lauryl gallates). The potential of the SPN coatings for the controlled release of small molecules, such as urea (a widely used fertilizer), is demonstrated-controlled release of urea in soil is achieved in response to different pHs (up to 7 days) and different hydrophobicity (up to 14 days). Furthermore, leveraging the presence of silicon (within the coating) and post-functionalization of the SPN coatings with metal ions (Fe3+, Cu2+, Zn2+) generates a multipurpose delivery system for the sustained release of micronutrient fertilizers, and silicon and metal ions, over 28 and 14 days, respectively. These SPN coatings have potential applications beyond agriculture, including nutrient delivery, separations, food packaging, and medical device fabrication.
Collapse
Affiliation(s)
- Omid Mazaheri
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
- ARC Research Hub for Smart Fertilisers, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Zhixing Lin
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
- ARC Research Hub for Smart Fertilisers, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Wanjun Xu
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Mirudula Mohankumar
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Tianzheng Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Chemical Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | - Rebecca V McQuillan
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
- ARC Research Hub for Smart Fertilisers, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jingqu Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joseph J Richardson
- Department of Chemical Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | - Kathryn A Mumford
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
- ARC Research Hub for Smart Fertilisers, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
- ARC Research Hub for Smart Fertilisers, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
5
|
Mamun AA, Neumann G, Moradtalab N, Ahmed A, Nawaz F, Tenbohlen T, Feng J, Zhang Y, Xie X, Zhifang L, Ludewig U, Bradáčová K, Weinmann M. Combination of Silicate-Based Soil Conditioners with Plant Growth-Promoting Microorganisms to Improve Drought Stress Resilience in Potato. Microorganisms 2024; 12:2128. [PMID: 39597518 PMCID: PMC11596784 DOI: 10.3390/microorganisms12112128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024] Open
Abstract
Due to shallow root systems, potato is a particularly drought-sensitive crop. To counteract these limitations, the application of plant growth-promoting microorganisms (PGPMs) is discussed as a strategy to improve nutrient acquisition and biotic and abiotic stress resilience. However, initial root colonization by PGPMs, in particular, can be affected by stress factors that negatively impact root growth and activity or the survival of PGPMs in the rhizosphere. In this study, perspectives for the use of commercial silicate-based soil conditioners (SCs) supposed to improve soil water retention were investigated. The SC products were based on combinations with lignocellulose polysaccharides (Sanoplant® = SP) or polyacrylate (Geohumus® = GH). It was hypothesized that SC applications would support beneficial plant-inoculant interactions (arbuscular mycorrhiza, AM: Rhizophagus irregularis MUCL41833, and Pseudomonas brassicacearum 3Re2-7) on a silty loam soil-sand mixture under water-deficit conditions (6-12 weeks at 15-20% substrate water-holding capacity, WHC). Although no significant SC effects on WHC and total plant biomass were detectable, the SC-inoculant combinations increased the proportion of leaf biomass not affected by drought stress symptoms (chlorosis, necrosis) by 66% (SP) and 91% (GH). Accordingly, osmotic adjustment (proline, glycine betaine accumulation) and ROS detoxification (ascorbate peroxidase, total antioxidants) were increased. This was associated with elevated levels of phytohormones involved in stress adaptations (abscisic, jasmonic, salicylic acids, IAA) and reduced ROS (H2O2) accumulation in the leaf tissue. In contrast to GH, the SP treatments additionally stimulated AM root colonization. Finally, the SP-inoculant combination significantly increased tuber biomass (82%) under well-watered conditions, and a similar trend was observed under drought stress, reaching 81% of the well-watered control. The P status was sufficient for all treatments, and no treatment differences were observed for stress-protective nutrients, such as Zn, Mn, or Si. By contrast, GH treatments had negative effects on tuber biomass, associated with excess accumulation of Mn and Fe in the leaf tissue close to toxicity levels. The findings suggest that inoculation with the PGPMs in combination with SC products (SP) can promote physiological stress adaptations and AM colonization to improve potato tuber yield, independent of effects on soil water retention. However, this does not apply to SC products in general.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany; (A.A.M.); (N.M.); (A.A.); (U.L.); (M.W.)
| | - Günter Neumann
- Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany; (A.A.M.); (N.M.); (A.A.); (U.L.); (M.W.)
| | - Narges Moradtalab
- Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany; (A.A.M.); (N.M.); (A.A.); (U.L.); (M.W.)
| | - Aneesh Ahmed
- Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany; (A.A.M.); (N.M.); (A.A.); (U.L.); (M.W.)
| | - Fahim Nawaz
- Research School of Biology, Australian National University, Canberra 2901, Australia;
| | - Timotheus Tenbohlen
- Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany; (A.A.M.); (N.M.); (A.A.); (U.L.); (M.W.)
| | - Jingyu Feng
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University (CAU), Haidian District, Yuanmingyuanxilu 2, Beijing 100193, China; (J.F.); (Y.Z.); (X.X.); (L.Z.)
| | - Yongbin Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University (CAU), Haidian District, Yuanmingyuanxilu 2, Beijing 100193, China; (J.F.); (Y.Z.); (X.X.); (L.Z.)
| | - Xiaochan Xie
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University (CAU), Haidian District, Yuanmingyuanxilu 2, Beijing 100193, China; (J.F.); (Y.Z.); (X.X.); (L.Z.)
| | - Li Zhifang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University (CAU), Haidian District, Yuanmingyuanxilu 2, Beijing 100193, China; (J.F.); (Y.Z.); (X.X.); (L.Z.)
| | - Uwe Ludewig
- Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany; (A.A.M.); (N.M.); (A.A.); (U.L.); (M.W.)
| | - Klára Bradáčová
- Department of Fertilization and Soil Matter Dynamics, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Markus Weinmann
- Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany; (A.A.M.); (N.M.); (A.A.); (U.L.); (M.W.)
| |
Collapse
|
6
|
Dhiman A, Thaper P, Bhardwaj D, Agrawal G. Biodegradable Dextrin-Based Microgels for Slow Release of Dual Fertilizers for Sustainable Agriculture. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11860-11871. [PMID: 38410836 DOI: 10.1021/acsami.3c16670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
In this research, we report dextrin-based biodegradable microgels (PDXE MGs) having phosphate-based cross-linking units for slow release of urea and a potential P source to improve fertilization. PDXE MGs (∼200 nm) are synthesized by cross-linking the lauroyl-functionalized dextrin chains with sodium tripolyphosphate. The developed PDXE MGs exhibit high loading (∼10%) and encapsulation efficiency (∼88%) for urea. It is observed that functionalization of PDXE MGs with lauroyl chains slows down the release of urea (90% in ∼24 days) as compared to nonfunctionalized microgels (PDX MGs) (99% in ∼17 days) in water. Further studies of the developed formulation display that Urea@PDXE MGs significantly boost maize seed germination and overall plant growth as compared to pure urea fertilizer. Moreover, analysis of maize leaves obtained from plants treated with Urea@PDXE MGs reveals 3.5 ± 0.3% nitrogen content and 90 ± 0.7 mg/g chlorophyll content. These values are significantly higher than 1.4 ± 0.6% nitrogen content and 48 ± 0.05 mg/g chlorophyll content obtained by using bare urea. Further, acid phosphatase activity in roots is reduced upon treatment with PDXE MGs and Urea@PDXE MGs, suggesting the availability of P upon degradation of PDXE MGs by the amylase enzyme in soil. These experimental results present the developed microgel-based biodegradable formulation with a slow release feature as a potential candidate to move toward sustainable agriculture practices.
Collapse
Affiliation(s)
- Ankita Dhiman
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| | - Piyush Thaper
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| | - Dimpy Bhardwaj
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| | - Garima Agrawal
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
7
|
Chen K, Li Y, Li Y, Tan Y, Liu Y, Pan W, Tan G. Stimuli-responsive electrospun nanofibers for drug delivery, cancer therapy, wound dressing, and tissue engineering. J Nanobiotechnology 2023; 21:237. [PMID: 37488582 PMCID: PMC10364421 DOI: 10.1186/s12951-023-01987-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
The stimuli-responsive nanofibers prepared by electrospinning have become an ideal stimuli-responsive material due to their large specific surface area and porosity, which can respond extremely quickly to external environmental incitement. As an intelligent drug delivery platform, stimuli-responsive nanofibers can efficiently load drugs and then be stimulated by specific conditions (light, temperature, magnetic field, ultrasound, pH or ROS, etc.) to achieve slow, on-demand or targeted release, showing great potential in areas such as drug delivery, tumor therapy, wound dressing, and tissue engineering. Therefore, this paper reviews the recent trends of stimuli-responsive electrospun nanofibers as intelligent drug delivery platforms in the field of biomedicine.
Collapse
Affiliation(s)
- Kai Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan provincial key laboratory of R&D on tropical herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, People's Republic of China.
| | - Yonghui Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan provincial key laboratory of R&D on tropical herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, People's Republic of China
| | - Youbin Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan provincial key laboratory of R&D on tropical herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, People's Republic of China
| | - Yinfeng Tan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan provincial key laboratory of R&D on tropical herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, People's Republic of China
| | - Yingshuo Liu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan provincial key laboratory of R&D on tropical herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, People's Republic of China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Guoxin Tan
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmacy, Hainan University, Haikou, 570228, People's Republic of China.
| |
Collapse
|
8
|
Chen X, Yang H, Zhang L, Li Z, Xue Y, Wang R, Fan X, Sun S. Green construction and release mechanism of lignin-based double-layer coated urea. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:97. [PMID: 37291654 DOI: 10.1186/s13068-023-02355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Lignin played an important role in the establishment of coated fertilizers coating material as a substitute for petrochemical raw materials. However, so far, the lignin-based coated fertilizers was limited in only the poor slow-release performance. To achieve good slow-release performance of lignin-based coated fertilizers, hydrophilic of lignin need to be resolved to establish an green and better controllable lignin-based coated fertilizers. RESULTS In the study, a novel green double layer coating with lignin-based polyurethane (LPU) as the inner coating and epoxy resin (EP) as the outer coating was effectively constructed for coated urea. Fourier transform infrared spectra confirmed that lignin and polycaprolactone diol successfully reacted with Hexamethylene diisocyanate. The loss weight and water contact angle (WCA, 75.6-63.6°) of the LPUs decreased with the increased lignin content. The average particle hardness of the lignin-based double-layer coated urea (LDCU) first increased from 58.1 N (lignin of 30%) to 67.0 N (lignin of 60%), but then decreased to 62.3 N (lignin of 70%). The release longevity of the coated urea was closely related to the preparation parameters of the coating material. The optimal cumulative nutrient release rate (79.4%) of LDCU was obtained (lignin of 50%, -CNO/-OH molar ratios of 1.15, EP of 35%, and coating ratio of 5%). The aggregates of hydrone on the LDCU caused the dissolution and swelling of nutrients, and then the diffusion of nutrients through the concentration gradient. CONCLUSIONS A though the nutrient release of the LDCUs was affected by many factors, the successful development of the LDCUs will help improve the rapid development of the coated fertilizer industry.
Collapse
Affiliation(s)
- Xiaojuan Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Huchen Yang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Lidan Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zhongli Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Yunna Xue
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Rongfeng Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xiaolin Fan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Shaolong Sun
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
9
|
Ma L, Chai C, Wu W, Qi P, Liu X, Hao J. Hydrogels as the plant culture substrates: A review. Carbohydr Polym 2023; 305:120544. [PMID: 36737215 DOI: 10.1016/j.carbpol.2023.120544] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/20/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
A class of hydrophilic polymers known as "hydrogels" have extensive water content and three-dimensional crosslinked networks. Since the old period, they have been utilized as plant culture substrates to get around the drawbacks of hydroponics and soil. Numerous hydrogels, particularly polysaccharides with exceptional stability, high clarity, and low cost can be employed as plant substrates. Although numerous novel and functionalized hydrogels might assist in overcoming the drawbacks of conventional media and giving them more functions, the existing hydrogel-based plant growth substrates rarely benefit from the developments of gels in the previous few decades. Prospects include the development of new conduction techniques, the creation of potential new hydrogels, and the functionalization of the hydrogel as plant culture substrates.
Collapse
Affiliation(s)
- Lin Ma
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Chunxiao Chai
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Wenna Wu
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Ping Qi
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Xingcen Liu
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, PR China.
| |
Collapse
|
10
|
Li J, Parakhonskiy BV, Skirtach AG. A decade of developing applications exploiting the properties of polyelectrolyte multilayer capsules. Chem Commun (Camb) 2023; 59:807-835. [PMID: 36472384 DOI: 10.1039/d2cc04806j] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Transferring the layer-by-layer (LbL) coating approach from planar surfaces to spherical templates and subsequently dissolving these templates leads to the fabrication of polyelectrolyte multilayer capsules. The versatility of the coatings of capsules and their flexibility upon bringing in virtually any material into the coatings has quickly drawn substantial attention. Here, we provide an overview of the main developments in this field, highlighting the trends in the last decade. In the beginning, various methods of encapsulation and release are discussed followed by a broad range of applications, which were developed and explored. We also outline the current trends, where the range of applications is continuing to grow, including addition of whole new and different application areas.
Collapse
Affiliation(s)
- Jie Li
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Bogdan V Parakhonskiy
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Andre G Skirtach
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
11
|
Hongyan T, Xuebin W, Jincheng W, Guosheng W. Preparation and properties of potassium alginate soil conditioner microspheres coated with poly(N-isopropyl acrylamide) microgel membrane. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
12
|
Li S, Zhang Y, Xiang K, Chen J, Wang J. Designing a novel type of multifunctional soil conditioner based on 4-arm star-shaped polymer modified mesoporous MCM-41. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Fan C, Liu Y, Dang M, Liang Y, Feng P, Wei F, Fu L, Xu C, Lin B. Polysaccharides synergistic boosting drug loading for reduction pesticide dosage and improve its efficiency. Carbohydr Polym 2022; 297:120041. [DOI: 10.1016/j.carbpol.2022.120041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 11/02/2022]
|
14
|
Li S, Yang F, Xiang K, Chen J, Zhang Y, Wang J, Sun J, Li Y. A Multifunctional Microspheric Soil Conditioner Based on Chitosan-Grafted Poly(acrylamide- co-acrylic acid)/Biochar. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5717-5729. [PMID: 35442693 DOI: 10.1021/acs.langmuir.2c00317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A multifunctional microspheric soil conditioner based on chitosan-grafted poly(acrylamide-co-acrylic acid)/biochar [CS-g-P(AM-co-AA)/BC] was prepared. First, the P(AM-co-AA) was synthesized and successfully grafted onto CS, and the three-dimensional network structure of microspheres was formed with N,N-methylenebis(acrylamide) as the cross-linking agent according to the inverse suspension polymerization method. Meanwhile, BC and urea were encapsulated into the body of microspheres during the polymerization. The structure of the microspheres was analyzed by Fourier transform infrared spectroscopy, polarized optical microscopy, and scanning electron microscopy, and the mechanism of adsorption of Cu2+ on the microspheres was investigated by X-ray photoelectron spectroscopy. Furthermore, the experimental results demonstrated the excellent water absorption and retention capabilities of microspheres, and the release rate of urea was dramatically reduced. Importantly, the introduction of BC significantly enhanced the adsorption performance of the microspheres with respect to heavy metal ions. Consequently, the multifunctional soil conditioner held promise for use in soil improvement and agricultural production.
Collapse
Affiliation(s)
- Shuhong Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Fan Yang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Kailing Xiang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Jiacheng Chen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Ye Zhang
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J.-A. de Baïf, F-75013 Paris, France
| | - Jincheng Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Jibo Sun
- Wopu New Material Technology (Shanghai) Company, Ltd., Shanghai 201600, P. R. China
| | - Yuan Li
- Jiangsu Lvhong Landscaping Engineering Company, Ltd., Jiangsu 226100, P. R. China
| |
Collapse
|
15
|
Preparation and performance study of recyclable microsphere soil conditioner based on magnetic metal organic framework structure. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Zheng D, Wang K, Bai B, Hu N, Wang H. Swelling and glyphosate-controlled release behavior of multi-responsive alginate-g-P(NIPAm-co-NDEAm)-based hydrogel. Carbohydr Polym 2022; 282:119113. [PMID: 35123748 DOI: 10.1016/j.carbpol.2022.119113] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 12/30/2022]
Abstract
Intelligent controlled release systems (ICRS) displayed great achievement in agriculture by enhancing the utilization efficiency of agrochemicals. In this work, an intelligent graft copolymer (Alg-g-P(NIPAm-co-NDEAm)) with alginate (Alg) backbone and thermo-responsive poly(N-isopropyl acrylamide-co-N,N-diethylacrylamide) (P(NIPAm-co-NDEAm)) side chain was constructed as the matrix of ICRS through redox copolymerization, and its thermo-induced responsive property was studied. Then, the copolymer was mixed with a promising photothermal material semi-coke (SC) to form hydrogel beads (Ca-Alg-g-P(NIPAm-co-NDEAm)/SC) by ion crosslinking. The water absorbency of beads under different stimuli (pH, temperature, and light) presented outstanding responsive performance and the swelling mechanism was analyzed through coupling theory. Furthermore, the release of glyphosate (Gly) from Ca-Alg-g-P(NIPAm-co-NDEAm)/SC under environmental stimuli displayed regulatable behaviors. This multi-responsive hydrogel bead shows bright prospect in the sustainable advancement of crop production.
Collapse
Affiliation(s)
- Dan Zheng
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, PR China; School of Water and Environment, Chang'an University, Xi'an 710054, PR China
| | - Kai Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Bo Bai
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, PR China; School of Water and Environment, Chang'an University, Xi'an 710054, PR China; Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, PR China.
| | - Na Hu
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, PR China
| | - Honglun Wang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, PR China
| |
Collapse
|
17
|
Rizwan M, Rubina Gilani S, Iqbal Durani A, Naseem S. Materials diversity of hydrogel: Synthesis, polymerization process and soil conditioning properties in agricultural field. J Adv Res 2021; 33:15-40. [PMID: 34603776 PMCID: PMC8464009 DOI: 10.1016/j.jare.2021.03.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The cumulative influence of global warming, climate abrupt changes, growing population, topsoil erosion is becoming a threatening alarm for facing food challenges and upcoming global water issues. It ultimately affects the production of food in a water-stressed environment and slows down the production with more consumption of fertilizers by plants. The superabsorbent hydrogels (SAHs) have extensive applications in the agricultural field and proved very beneficial for plant growth and soil health. These polymeric materials are remarkably distinct from hygroscopic materials owing to their multidimensional network structure. It retains a lot of water in its 3D network and releases it slowly along with nutrients to plant in stressed environment. AIM OF REVIEW A soil conditioner boosts up the topology, compactness, and mechanical properties (swelling, water retention, and slow nutrient release) of soil. The superabsorbent hydrogel plays an astonishing role in preventing the loss of nutrients during the heavy flow of rainwater from the upper surface of soil because these SAHs absorb water and get swollen to keep water for longer time. The SAHs facilitate the growth of plants with limited use of water and fertilizers. Beyond, it improves the soil health and makes it fertile in horticulture and drought areas. KEY SCIENTIFIC CONCEPT OF REVIEW The SAHs can be synthesized through grafting and cross-linking polymerization to introduce value-added features and extended network structure. The structure of superabsorbent hydrogel entirely based on cross-linking that prompts its use in the agricultural field as a soil conditioner. The properties of a SAHs vary due to its nature of constituents, polymerization process (grafting or cross-linking), and other parameters. The use of SAHs in agricultural field comparatively enhances the swelling rate up to 60-80%, maximum water retaining, and slowly nutrient release to plants for a longer time.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Chemistry, University of Engineering Technology Lahore, Pakistan
| | - Syeda Rubina Gilani
- Department of Chemistry, University of Engineering Technology Lahore, Pakistan
| | | | - Sobia Naseem
- Department of Chemistry, University of Engineering Technology Lahore, Pakistan
| |
Collapse
|
18
|
Zheng R, Feng X, Zou W, Wang R, Yang D, Wei W, Li S, Chen H. Converting loess into zeolite for heavy metal polluted soil remediation based on "soil for soil-remediation" strategy. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125199. [PMID: 33556854 DOI: 10.1016/j.jhazmat.2021.125199] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Both soil erosion and soil contamination pose critical environmental threats to the Chinese Loess Plateau (CLP). Green, efficient and feasible remediation technologies are highly demanded to meet these challenges. Herein we propose a unique "soil for soil-remediation" strategy to remediate the heavy metal polluted soil in CLP by converting loess into zeolite for the first time. With a simple template-free route, the natural loess can be converted into cancrinite (CAN) type of zeolite. A highly crystalline CAN was obtained via hydrothermal treatment at 240 oC for 48 h, with a precursor alkalinity of Na/(Si+Al)> 2.0. The as-synthesized CAN zeolite exhibits excellent remediation performance for Pb(II) and Cu(II) polluted soil. Plant assay experiment demonstrates that CAN can significantly restrain the uptake and accumulation of Pb(II) and Cu(II) ions in vegetables, with a high removal efficiency up to 90.7% and 81.4%, respectively. This work demonstrates a "soil for soil-remediation" strategy to utilize the natural loess for soil remediation in CLP, which paves the way for developing green and sustainable remediation eco-materials with local loess as raw materials.
Collapse
Affiliation(s)
- Renji Zheng
- School of Environmental Science and Engineering, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China; National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Shenzhen 518055, China
| | - Xuezhen Feng
- School of Environmental Science and Engineering, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Shenzhen 518055, China
| | - Wensong Zou
- School of Environmental Science and Engineering, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Shenzhen 518055, China
| | - Ranhao Wang
- School of Environmental Science and Engineering, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Shenzhen 518055, China
| | - Dazhong Yang
- School of Environmental Science and Engineering, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Shenzhen 518055, China
| | - Wenfei Wei
- School of Environmental Science and Engineering, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Shenzhen 518055, China
| | - Shangying Li
- School of Environmental Science and Engineering, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Shenzhen 518055, China
| | - Hong Chen
- School of Environmental Science and Engineering, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Shenzhen 518055, China.
| |
Collapse
|
19
|
Study on preparation and application of a multifunctional microspheric soil conditioner based on Arabic gum, gelatin, chitosan and β-cyclodextrin. Int J Biol Macromol 2021; 183:1851-1860. [PMID: 34087291 DOI: 10.1016/j.ijbiomac.2021.05.205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/18/2021] [Accepted: 05/29/2021] [Indexed: 11/22/2022]
Abstract
All kinds of soil conditioners have been used to improve soil quality. The application of many traditional soil conditioners was limited by single performance. In this study, a novel multifunctional microspheric soil conditioner was prepared based on Arabic gum, gelatin, chitosan and β-cyclodextrin. Arabic gum and gelatin (AG-GL) microspheric carriers, which could load ferrous sulfate (FS), were synthesized via complex coagulation method. The AG-GL(FS) microspheres were covered by chitosan quaternary ammonium salt (CQAS) through single coagulation method. And β-cyclodextrin (β-CD) was used as the outermost shell to improve chemical stability of the soil conditioner by saturated solution method. Finally, the novel multifunctional microspheric soil conditioner AG-GL/CQAS/β-CD-FS was obtained and characterized by Fourier transform infrared spectroscopy, thermogravimetric analyzer, polarizing microscope, scanning electron microscope and particle size analyzer. The novel soil conditioner shows good nutrient slowly-releasing, water retention, heavy metal ions adsorption and antibacterial performances with the particle size of 14-17 μm and high thermal decomposition temperature, which has the potential application in improving soil quality.
Collapse
|