1
|
Ding Y, Yu Y. Therapeutic potential of flavonoids in gastrointestinal cancer: Focus on signaling pathways and improvement strategies (Review). Mol Med Rep 2025; 31:109. [PMID: 40017144 PMCID: PMC11884236 DOI: 10.3892/mmr.2025.13474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/30/2025] [Indexed: 03/01/2025] Open
Abstract
Flavonoids are a group of polyphenolic compounds distributed in vegetables, fruits and other plants, which have considerable antioxidant, anti‑tumor and anti‑inflammatory activities. Several types of gastrointestinal (GI) cancer are the most common malignant tumors in the world. A large number of studies have shown that flavonoids have inhibitory effects on cancer, and they are recognized as a class of potential anti‑tumor drugs. Therefore, the present review investigated the molecular mechanisms of flavonoids in the treatment of different types of GI cancer and summarized the drug delivery systems commonly used to improve their bioavailability. First, the classification of flavonoids and the therapeutic effects of various flavonoids on human diseases were briefly introduced. Then, to clarify the mechanism of action of flavonoids on different types of GI cancer in the human body, the metabolic process of flavonoids in the human body and the associated signaling pathways causing five common types of GI cancer were discussed, as well as the corresponding therapeutic targets of flavonoids. Finally, in clinical settings, flavonoids have poor water solubility, low permeability and inferior stability, which lead to low absorption efficiency in vivo. Therefore, the three most widely used drug delivery systems were summarized. Suggestions for improving the bioavailability of flavonoids and the focus of the next stage of research were also put forward.
Collapse
Affiliation(s)
- Ye Ding
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yong Yu
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
2
|
Tingyu W, Fei S, Ying L, Siqin Z, Jiawei Z, Zhenqiang W. Microencapsulation of Chenpi extract with soy oligopeptides: enhanced retention of flavor compounds and improved bioaccessibility of polyphenolics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2931-2942. [PMID: 39667945 DOI: 10.1002/jsfa.14075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 10/26/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Chenpi extract (CPE) is rich in polyphenols, flavonoids, and volatile flavor compounds, and possesses numerous healthy biological effects. However, the low stability and bioaccessibility of CPE significantly limits its application in food development. RESULTS In this study, CPE microcapsules were prepared using soybean oligopeptide (SOP), maltodextrin (MD), soybean protein isolate (SPI), and citrus insoluble dietary fiber (CIDF) as the encapsulants. The successful encapsulation and thermal stability of the CPE microcapsules were confirmed through structural, interaction characterization, and thermal analyses. Soybean oligopeptide encapsulated 97.89% of the total flavonoids and 95.97% of the total polyphenols in CPE, which was significantly higher than the other three materials (MD, SPI, and CIDF). Soybean oligopeptide also showed good retention capacity for volatile flavor compounds in CPE, especially d-limonene (47.67%), γ-terpinene (49.65%), n-octanal (57.38%), and β-Myrcene (44.65%). The in vitro digestion results showed that the CPE loaded by SOP was more stable during simulated digestion compared with the CPE loaded by the other three materials. The bioaccessibility of total flavonoids and total polyphenols in CP-SOP was 96.64% and 88.95%, respectively. CONCLUSION Overall, these results highlight that SOP is a better carrier for CPE microcapsules, and the distinct characteristics of SOP could significantly improve the quality of Chenpi-related functional food. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wang Tingyu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shen Fei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Pan Asia (Jiangmen) Institute of Biological Engineering and Health, Jiangmen, China
| | - Liu Ying
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zhen Siqin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zhao Jiawei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Wu Zhenqiang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Guangzhou, China
| |
Collapse
|
3
|
Wang W, Jia T, Zhang Y, Zhou Y. Progress of Researches on Pharmacological Effects and Bioavailability of Tangeretin. J Oleo Sci 2025; 74:13-23. [PMID: 39756989 DOI: 10.5650/jos.ess24169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Tangeretin is one of the most abundant polymethoxyflavones in citrus peel and its pharmacological effects are extremely rich. However, due to its poor solubility, bitter taste and poor oral bioavailability, the oral administration of tangeretin is still limited, which seriously limits its application in industrial production. The establishment of encapsulation and delivery systems to improve bioavailability is an effective method. This paper reviewed the research progress of the structure and properties, pharmacological effects and main methods to improve bioavailability of tangeretin, including emulsion delivery, lipid encapsulation, microencapsulation and other delivery and utilization research and application. The article aims to provide theoretical basis for the high-value application of tangeretin in functional food and pharmaceutical industry.
Collapse
Affiliation(s)
| | - Tianqi Jia
- Beijing Technology and Business University
| | | | - Yawen Zhou
- Beijing Technology and Business University
| |
Collapse
|
4
|
Cao Z, Zhao C, Mo S, Gao BH, Liu M. The impact of tangeretin combined with whey protein on exercise-induced bronchoconstriction in professional athletes: a placebo-controlled trial. J Int Soc Sports Nutr 2024; 21:2414870. [PMID: 39422600 PMCID: PMC11492410 DOI: 10.1080/15502783.2024.2414870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Exercise-induced bronchoconstriction (EIB) is highly prevalent in athletes. The objective of this study was to assess the therapeutic efficacy of daily tangeretin combined with whey protein supplementation over a period of 4 weeks in professional athletes with EIB. METHODS Using a placebo-controlled, double-blind, paired, randomized trial design, a cohort of 30 professional athletes with EIB, consisting of 14 females and 16 males, was divided into two groups: the tangeretin combined with whey protein intervention group (TIG), and the placebo control group (PCG). Both the TIG and PCG underwent exercise challenge tests (ECT) and VO2max tests before (ECT1, V1) and after (ECT2, V2) the intervention. Blood (eosinophils, neutrophils, and basophils) and serum (interleukin-5, IL-5; interleukin-8, IL-8; Clara cell secretory protein-16, CC16; immunoglobulin E, IgE) levels were measured early in the morning of ECT1 and ECT2, respectively. Lung function was assessed immediately before and post-ECT immediately. RESULTS Tangeretin combined with whey protein use for 4 weeks attenuated the decrease in forced expiratory volume in 1 s (FEV1) post trials (∆FEV1(ECT1-ECT2): mean (SD) TIG -7.51(6.9)% vs. PCG -2.33(11.49)%, p = 0.013). Tangeretin also substantially attenuated IL-5 concentration (∆IL-5(T1-T5): Tangeretin -19.4% vs Placebo + 8.37%, p = 0.022); IL-8 concentration (∆IL-8(T1-T5): Tangeretin -17.28% vs Placebo + 6.1%, p = 0.012); CC16 concentration (∆CC16(T1-T5): Tangeretin -11.77% vs Placebo + 24.19%); and IgE concentration in the serum (∆IgE(T1-T5): Tangeretin -24.1% vs Placebo -3.9%), and significantly decreased neutrophil count (∆N(T1-T5): Tangeretin -11.34% vs Placebo + 0.3%) and eosinophil count in blood (∆N(T1-T5): Tangeretin -38.5% vs Placebo + 4.35%). Compared with V1, VO2max (p = 0.042) and TLim (p = 0.05) of V2 were significantly increased in the TIG, and there was no significant change in the PCG. Meanwhile, six athletes in the TIG and 0 athletes in the PCG became EIB-negative at ECT2; the overall negative conversion rate of EIB was 40.00% in TCG. Additionally, the number of cough symptoms decreased from 9 to 3 and dyspnea from 4 to 2 in the TIG. CONCLUSION After high-intensity exercise, athletes with EIB achieved significant improvements in lung function and blood inflammatory factors by combining tangeretin and whey protein supplementation. EIB athletes also showed longer exercise endurance and VO2max at 4 weeks after TI. In addition, some patient symptoms disappeared after combination supplementation. The effect of this treatment on professional athletes with EIB was beneficial.
Collapse
Affiliation(s)
- Zhi Cao
- Shanghai University of Sport, School of Athletic Performance, Shanghai, China
| | - Can Zhao
- Shanghai University of Sport, School of Athletic Performance, Shanghai, China
| | - Shiwei Mo
- Shenzhen University, School of Physical Education, Shenzhen, China
| | - Bing-Hong Gao
- Shanghai University of Sport, School of Athletic Performance, Shanghai, China
| | - Meng Liu
- Chongqing University, Chongqing, China
- Chongqing Institute of Sport Science, Chongqing administration of sport, Chongqing, China
| |
Collapse
|
5
|
Ozkan G, Ceyhan T, Çatalkaya G, Rajan L, Ullah H, Daglia M, Capanoglu E. Encapsulated phenolic compounds: clinical efficacy of a novel delivery method. PHYTOCHEMISTRY REVIEWS 2024; 23:781-819. [DOI: 10.1007/s11101-023-09909-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/05/2023] [Indexed: 01/15/2025]
Abstract
AbstractEncapsulation is a drug or food ingredient loaded-delivery system that entraps active components, protecting them from decomposition/degradation throughout the processing and storage stages and facilitates their delivery to the target tissue/organ, improving their bioactivities. The application of this technology is expanding gradually from pharmaceuticals to the food industry, since dietary bioactive ingredients, including polyphenols, are susceptible to environmental and/or gastrointestinal conditions. Polyphenols are the largest group of plants' secondary metabolites, with a wide range of biological effects. Literature data have indicated their potential in the prevention of several disorders and pathologies, ranging from simpler allergic conditions to more complex metabolic syndrome and cardiovascular and neurodegenerative diseases. Despite the promising health effects in preclinical studies, the clinical use of dietary polyphenols is still very limited due to their low bioaccessibility and/or bioavailability. Encapsulation can be successfully employed in the development of polyphenol-based functional foods, which may improve their bioaccessibility and/or bioavailability. Moreover, encapsulation can also aid in the targeted delivery of polyphenols and may prevent any possible adverse events. For the encapsulation of bioactive ingredients, several techniques are applied such as emulsion phase separation, emulsification/internal gelation, film formation, spray drying, spray-bed-drying, fluid-bed coating, spray-chilling, spray-cooling, and melt injection. The present review aims to throw light on the existing literature highlighting the possibility and clinical benefits of encapsulated polyphenols in health and disease. However, the clinical data is still very scarce and randomized clinical trials are needed before any conclusion is drawn.
Graphical abstract
Collapse
|
6
|
Hao L, Li J, Mao J, Zhou Q, Deng Q, Chai Z, Zheng L, Shi J. The soybean lecithin-cyclodextrin-vitamin E complex nanoparticles stabilized Pickering emulsions for the delivery of β-carotene: Physicochemical properties and in vitro digestion. Int J Biol Macromol 2024; 265:130742. [PMID: 38492704 DOI: 10.1016/j.ijbiomac.2024.130742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/06/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
In this work, soybean lecithin (LC) was used to modify β-cyclodextrin (β-CD) with hydrophobic fat chains to become amphiphilic (LC-CD), and vitamin E (VE) was encapsulated in former modified β-CD complexes (LC-CD-VE), the new Pickering emulsions stabilized by LC-CD-VE and LC-CD complexes for the delivery of β-carotene (BC) were created. The surface tension, contact angle, zeta potential, and particle size were used to assess the changes in complexes nanoparticles at various pH values. Furthermore, LC-CD-VE has more promise as Pickering emulsion stabilizer than LC-CD because of the smaller particle size (271.11 nm), proper contact angle (58.02°), and lower surface tension (42.49 mN/m). The interactions between β-cyclodextrin, soybean lecithin, and vitamin E were confirmed using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and thermogravimetric analysis (TGA). The durability of Pickering emulsions was examined at various volume fractions of the oil phase and concentrations of nanoparticles. Compared to the emulsion stabilized by LC-CD, the one stabilized by LC-CD-VE showed superior storage stability. Moreover, for the delivery of BC, Pickering emulsions stabilized by LC-CD and LC-CD-VE can outperform bulk oil and Tween 80 stabilized emulsions in terms of UV light stability, storage stability, and bioaccessibility. This work could offer fresh perspectives on stabilizer alternatives for Pickering emulsion delivery systems.
Collapse
Affiliation(s)
- Lei Hao
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Junjiao Li
- Key Laboratory of Fermentation Engineering, Ministry of Education, School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Jin Mao
- Key Laboratory of Biology and Genetic Improvement of Oil Crop, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qi Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crop, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qianchun Deng
- Key Laboratory of Biology and Genetic Improvement of Oil Crop, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Zhaofei Chai
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Lei Zheng
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jie Shi
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
7
|
Li B, Luan H, Qin J, Zong A, Liu L, Xu Z, Du F, Xu T. Effect of soluble dietary fiber on soy protein isolate emulsion gel properties, stability and delivery of vitamin D 3. Int J Biol Macromol 2024; 262:129806. [PMID: 38325693 DOI: 10.1016/j.ijbiomac.2024.129806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/25/2023] [Accepted: 01/25/2024] [Indexed: 02/09/2024]
Abstract
Emulsion gels with denser network microstructure and stronger mechanical properties have attracted increasing attentions for delivering lipophilic compounds. In this study, the effect of three distinct soluble dietary fiber (inulin (IN), resistant dextrin (RD) and stachyose (ST)) on the rheological, mechanical and microstructural properties of soy protein isolate (SPI) emulsion gel were firstly investigated. Compared with RD and IN, ST significantly accelerated water holding capacity and thermal stability, which exhibited more compact microstructure and more uniform emulsified oil droplets. Subsequently, the stability and bioavailability of vitamin D3 (VD3) in different delivery systems (medium chain triglycerides (MCT) embedding, SPI-ST emulsion embedding, SPI emulsion gel embedding and SPI-ST emulsion gel embedding) were continue evaluated. In vitro simulated digestion experiment demonstrated that the bioaccessibility of encapsulated VD3 in SPI-ST emulsion gel (69.95 %) was much higher than that of free embedding (48.99 %). In vivo pharmacokinetic experiment revealed that the bioavailability of VD3 was significantly enhanced in SPI-ST gel (p < 0.05), with the AUC0-24h value of 25-OH VD3 (the main circulating form of VD3) were 1.34-fold, 1.23-fold higher than that of free embedding, MCT embedding, respectively. These findings provide a possible approach for the development of high protein/fiber functional foods containing enhanced hydrophobic bioactives.
Collapse
Affiliation(s)
- Baorui Li
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Shandong Engineering Research Center of Food for Special Medical Purpose, Jinan, PR China
| | - Hui Luan
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Shandong Engineering Research Center of Food for Special Medical Purpose, Jinan, PR China; College of Food Science and Engineering, Shandong Agricultural University/Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, Tai'an, PR China
| | - Jingya Qin
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Shandong Engineering Research Center of Food for Special Medical Purpose, Jinan, PR China; College of Food Science and Engineering, Shandong Agricultural University/Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, Tai'an, PR China
| | - Aizhen Zong
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Shandong Engineering Research Center of Food for Special Medical Purpose, Jinan, PR China
| | - Lina Liu
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Shandong Engineering Research Center of Food for Special Medical Purpose, Jinan, PR China
| | - Zhixiang Xu
- College of Food Science and Engineering, Shandong Agricultural University/Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, Tai'an, PR China
| | - Fangling Du
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Shandong Engineering Research Center of Food for Special Medical Purpose, Jinan, PR China.
| | - Tongcheng Xu
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Shandong Engineering Research Center of Food for Special Medical Purpose, Jinan, PR China; College of Food Science and Engineering, Shandong Agricultural University/Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, Tai'an, PR China.
| |
Collapse
|
8
|
García-Faustino LL, Morris SM, Elston SJ, Montelongo Y. Detection of Biomarkers through Functionalized Polymers. SMALL METHODS 2024; 8:e2301025. [PMID: 37814377 DOI: 10.1002/smtd.202301025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Indexed: 10/11/2023]
Abstract
Over the past decade, there has been a rising interest in utilizing functionalized porous polymers for sensor applications. By incorporating functional groups into nanostructured materials like hydrogels, nanosheets, and nanopores, exciting new opportunities have emerged for biomarker detection. The ability of functionalized polymers to undergo physical changes and deformations makes them perfect for modulating optical signals. This chemical mechanism enables the creation of biocompatible sensors for in situ biomarker measurement. Here a comprehensive overview of the current publication trends is provided in functionalized polymers, encompassing functional groups that can induce measurable physical deformations. It explores various materials categorized based on their detection targets, which include proteins, carbohydrates, ions, and deoxyribonucleic acid. As such, this work serves as a valuable reference for the development of functionalized polymer-based sensors.
Collapse
Affiliation(s)
- Litzy L García-Faustino
- School of Engineering and Sciences, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL, 64849, Mexico
| | - Stephen M Morris
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Steve J Elston
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Yunuen Montelongo
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| |
Collapse
|
9
|
Yuan D, Guo Y, Pu F, Yang C, Xiao X, Du H, He J, Lu S. Opportunities and challenges in enhancing the bioavailability and bioactivity of dietary flavonoids: A novel delivery system perspective. Food Chem 2024; 430:137115. [PMID: 37566979 DOI: 10.1016/j.foodchem.2023.137115] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Flavonoids have multiple favorable bioactivities including antioxidant, anti-inflammatory, and antitumor. Currently, flavonoid-containing dietary supplements are widely tested in clinical trials for the prevention and/or treatment of multiple diseases. However, the clinical application of flavonoids is largely compromised by their low bioavailability and bioactivity, probably due to their poor aqueous solubility, intensive metabolism, and low systemic absorption. Therefore, formulating flavonoids into novel delivery systems is a promising approach for overcoming these drawbacks. In this review, we highlight the opportunities and challenges in the clinical use of dietary flavonoids from the perspective of novel delivery systems. First, the classification, sources, and bioactivity of dietary flavonoids are described. Second, the progress of clinical research on flavonoid-based dietary supplements is systematically summarized. Finally, novel delivery systems developed to improve the bioavailability and bioactivity of flavonoids are discussed in detail to broaden the clinical application of dietary flavonoids.
Collapse
Affiliation(s)
- Dan Yuan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Yujie Guo
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Feiyan Pu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Can Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Xuecheng Xiao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| | - Jianhua He
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| | - Shan Lu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| |
Collapse
|
10
|
Zhang J, Wang H, Ai C, Lu R, Chen L, Xiao J, Teng H. Food matrix-flavonoid interactions and their effect on bioavailability. Crit Rev Food Sci Nutr 2023; 64:11124-11145. [PMID: 37427580 DOI: 10.1080/10408398.2023.2232880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Flavonoid compounds exhibit a wide range of health benefits as plant-derived dietary components. Typically, co-consumed with the food matrix,they must be released from the matrix and converted into an absorbable form (bioaccessibility) before reaching the small intestine, where they are eventually absorbed and transferred into the bloodstream (bioavailability) to exert their biological activity. However, a large number of studies have revealed the biological functions of individual flavonoid compounds in different experimental models, ignoring the more complex but common relationships established in the diet. Besides, it has been appreciated that the gut microbiome plays a crucial role in the metabolism of flavonoids and food substrates, thereby having a significant impact on their interactions, but much progress still needs to be made in this area. Therefore, this review intends to comprehensively investigate the interactions between flavonoids and food matrices, including lipids, proteins, carbohydrates and minerals, and their effects on the nutritional properties of food matrices and the bioaccessibility and bioavailability of flavonoid compounds. Furthermore, the health effects of the interaction of flavonoid compounds with the gut microbiome have also been discussed.HIGHLIGHTSFlavonoids are able to bind to nutrients in the food matrix through covalent or non-covalent bonds.Flavonoids affect the digestion and absorption of lipids, proteins, carbohydrates and minerals in the food matrix (bioaccessibility).Lipids, proteins and carbohydrates may favorably affect the bioavailability of flavonoids.Improved intestinal flora may improve flavonoid bioavailability.
Collapse
Affiliation(s)
- Jingjing Zhang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Nutrition and Bromatology Group, Universidade de Vigo Ourense, Spain
| | - Hui Wang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| | - Chao Ai
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| | - Rui Lu
- Department of Analytical and Food Chemistry, Faculty of Sciences, Nutrition and Bromatology Group, Universidade de Vigo Ourense, Spain
| | - Lei Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| | - Jianbo Xiao
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Nutrition and Bromatology Group, Universidade de Vigo Ourense, Spain
| | - Hui Teng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| |
Collapse
|
11
|
Teixé-Roig J, Oms-Oliu G, Odriozola-Serrano I, Martín-Belloso O. Emulsion-Based Delivery Systems to Enhance the Functionality of Bioactive Compounds: Towards the Use of Ingredients from Natural, Sustainable Sources. Foods 2023; 12:foods12071502. [PMID: 37048323 PMCID: PMC10094036 DOI: 10.3390/foods12071502] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
In recent years, the trend in the population towards consuming more natural and sustainable foods has increased significantly. This claim has led to the search for new sources of bioactive compounds and extraction methods that have less impact on the environment. Moreover, the formulation of systems to protect these compounds is also focusing on the use of ingredients of natural origin. This article reviews novel, natural alternative sources of bioactive compounds with a positive impact on sustainability. In addition, it also contains information on the most recent studies based on the use of natural (especially from plants) emulsifiers in the design of emulsion-based delivery systems to protect bioactive compounds. The properties of these natural-based emulsion-delivery systems, as well as their functionality, including in vitro and in vivo studies, are also discussed. This review provides relevant information on the latest advances in the development of emulsion delivery systems based on ingredients from sustainable natural sources.
Collapse
Affiliation(s)
- Júlia Teixé-Roig
- Department of Food Technology, University of Lleida—Agrotecnio Center, 25198 Lleida, Spain
| | - Gemma Oms-Oliu
- Department of Food Technology, University of Lleida—Agrotecnio Center, 25198 Lleida, Spain
| | | | - Olga Martín-Belloso
- Department of Food Technology, University of Lleida—Agrotecnio Center, 25198 Lleida, Spain
| |
Collapse
|
12
|
Quintal Martínez JP, Segura Campos MR. Flavonoids as a therapeutical option for the treatment of thrombotic complications associated with COVID-19. Phytother Res 2023; 37:1092-1114. [PMID: 36480428 PMCID: PMC9878134 DOI: 10.1002/ptr.7700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/18/2022] [Accepted: 11/19/2022] [Indexed: 12/13/2022]
Abstract
The SARS-CoV-2 outbreak has been one of the largest public health crises globally, while thrombotic complications have emerged as an important factor contributing to mortality. Therefore, compounds that regulate the processes involved in thrombosis could represent a dietary strategy to prevent thrombotic complications involved in COVID-19. In August 2022, various databases were consulted using the keywords "flavonoids", "antiplatelet", "anticoagulant", "fibrinolytic", and "nitric oxide". Studies conducted between 2019 and 2022 were chosen. Flavonoids, at concentrations mainly between 2 and 300 μM, are capable of regulating platelet aggregation, blood coagulation, fibrinolysis, and nitric oxide production due to their action on multiple receptors and enzymes. Most of the studies have been carried out through in vitro and in silico models, and limited studies have reported the in vivo and clinical effect of flavonoids. Currently, quercetin has been the only flavonoid evaluated clinically in patients with COVID-19 for its effect on D-dimer levels. Therefore, clinical studies in COVID-19 patients analyzing the effect on platelet, coagulant, fibrinolytic, and nitric oxide parameters are required. In addition, further high-quality studies that consider cytotoxic safety and bioavailability are required to firmly propose flavonoids as a treatment for the thrombotic complications implicated in COVID-19.
Collapse
|
13
|
Zhang Y, Sun G, Li D, Xu J, McClements DJ, Li Y. Advances in emulsion-based delivery systems for nutraceuticals: Utilization of interfacial engineering approaches to control bioavailability. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 104:139-178. [DOI: 10.1016/bs.afnr.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
Liu L, Ode Boni BO, Ullah MW, Qi F, Li X, Shi Z, Yang G. Cellulose: A promising and versatile Pickering emulsifier for healthy foods. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2142940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Li Liu
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Biaou Oscar Ode Boni
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Fuyu Qi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohong Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Jie Y, Chen F. Progress in the Application of Food-Grade Emulsions. Foods 2022; 11:2883. [PMID: 36141011 PMCID: PMC9498284 DOI: 10.3390/foods11182883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The detailed investigation of food-grade emulsions, which possess considerable structural and functional advantages, remains ongoing to enhance our understanding of these dispersion systems and to expand their application scope. This work reviews the applications of food-grade emulsions on the dispersed phase, interface structure, and macroscopic scales; further, it discusses the corresponding factors of influence, the selection and design of food dispersion systems, and the expansion of their application scope. Specifically, applications on the dispersed-phase scale mainly include delivery by soft matter carriers and auxiliary extraction/separation, while applications on the scale of the interface structure involve biphasic systems for enzymatic catalysis and systems that can influence substance digestion/absorption, washing, and disinfection. Future research on these scales should therefore focus on surface-active substances, real interface structure compositions, and the design of interface layers with antioxidant properties. By contrast, applications on the macroscopic scale mainly include the design of soft materials for structured food, in addition to various material applications and other emerging uses. In this case, future research should focus on the interactions between emulsion systems and food ingredients, the effects of food process engineering, safety, nutrition, and metabolism. Considering the ongoing research in this field, we believe that this review will be useful for researchers aiming to explore the applications of food-grade emulsions.
Collapse
Affiliation(s)
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
16
|
Yu Y, Liu Q, Wang C, Zhang D, Jiang B, Shan Y, Fu F, Ding S. Zein/pullulan complex colloidal particle-stabilized Pickering emulsions for oral delivery of polymethoxylated flavones: protection effect and in vitro digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3952-3963. [PMID: 34958458 DOI: 10.1002/jsfa.11742] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/05/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Polymethoxylated flavones (PMFs) show multiple biological functions, while their high hydrophobicity leads to a low bioaccessibility and limits their wide applications. The design of a reasonable food-grade drug delivery system is an effective strategy to improve the low bioaccessibility of PMFs. In this study, sinensetin, tangeretin and nobiletin were encapsulated in Pickering emulsions stabilized by zein/pullulan complex colloidal particles (ZPPs), and the protection effect and in vitro digestion were characterized. RESULTS Rheological analysis revealed that ZPP-Pickering emulsion loading with PMFs maintained a strong gel-like network structure. Moreover, the ability to scavenge free radicals of PMFs was improved by the emulsion delivery system. The antioxidant activity of PMFs encapsulated in Pickering emulsion was positively correlated with the oil volume fraction (φ). ZPP-Pickering emulsion loading with PMFs can effectively delay lipid oxidation, and the φ (70%) of Pickering emulsion showed the most pronounced effects, in which the lipid hydroperoxide content and malondialdehyde content decreased by 64.3% and 38.3% after 15 days of storage, compared with the bulk oil group, respectively. The bioaccessibility of the three PMFs has been increased by ZPP-Pickering emulsion simultaneously and it presented the highest values as its φ was 50%, in which the bioaccessibility of sinensetin, tangeretin and nobiletin increased by 2.5, 3.2 and 3.9 times, compared with the bulk oil group, respectively. CONCLUSION Pickering emulsion stabilized by ZPPs is an excellent nutrient delivery system for delivering three PMFs simultaneously and imparting functional properties to bioactive delivery systems. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Yu
- Longping Branch Graduate School, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
- Hunan Province International Joint Lab on Fruits and Vegetables Processing, Quality and Safety, Changsha, China
| | - Qian Liu
- Longping Branch Graduate School, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
- Hunan Province International Joint Lab on Fruits and Vegetables Processing, Quality and Safety, Changsha, China
| | - Chen Wang
- Longping Branch Graduate School, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
- Hunan Province International Joint Lab on Fruits and Vegetables Processing, Quality and Safety, Changsha, China
| | - Dali Zhang
- Longping Branch Graduate School, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
- Hunan Province International Joint Lab on Fruits and Vegetables Processing, Quality and Safety, Changsha, China
| | - Bing Jiang
- Longping Branch Graduate School, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
- Hunan Province International Joint Lab on Fruits and Vegetables Processing, Quality and Safety, Changsha, China
| | - Yang Shan
- Longping Branch Graduate School, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
- Hunan Province International Joint Lab on Fruits and Vegetables Processing, Quality and Safety, Changsha, China
| | - Fuhua Fu
- Longping Branch Graduate School, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
- Hunan Province International Joint Lab on Fruits and Vegetables Processing, Quality and Safety, Changsha, China
| | - Shenghua Ding
- Longping Branch Graduate School, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
- Hunan Province International Joint Lab on Fruits and Vegetables Processing, Quality and Safety, Changsha, China
| |
Collapse
|
17
|
Liu M, Zhang Z, Qin C, Lv B, Mo S, Lan T, Gao B. Effects of 4-Week Tangeretin Supplementation on Cortisol Stress Response Induced by High-Intensity Resistance Exercise: A Randomized Controlled Trial. Front Physiol 2022; 13:886254. [PMID: 35665223 PMCID: PMC9160924 DOI: 10.3389/fphys.2022.886254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/02/2022] [Indexed: 11/30/2022] Open
Abstract
Objective: This study aimed to investigate the effects of 4-week tangeretin supplementation on the cortisol stress response induced by high-intensity resistance exercise. Methods: A randomized controlled trial of twenty-four soccer players was conducted during the winter training season. The experimental group (EG) took the oral supplement with tangeretin (200 mg/day) and the control group (CG) took placebo for 4 weeks. Before and after the 4-week intervention, all players performed a high intensity bout of resistance exercise to stimulate their cortisol stress responses. Serum cortisol, adreno-corticotropic hormone (ACTH) and superoxide dismutase (SOD) were obtained by collecting blood samples before (PRE), immediately after (P0), and 10 (P10), 20 (P20) and 30 minutes (P30) after the exercise. Results: The serum cortisol level (PRE, p = 0.017; P10, p = 0.010; P20, p = 0.014; P30, p = 0.007) and ACTH (P10, p = 0.037; P30, p = 0.049) of experimental group significantly decreased after the 4-week intervention. Compared with control group, EG displayed a significantly lower level of the serum cortisol (PRE, p = 0.036; P10, p = 0.031) and ACTH (P30, p = 0.044). Additionally, EG presented significantly higher superoxide dismutase activity level compared with CG at P30 (p = 0.044). The white blood cell of EG decreased significantly (PRE, p = 0.037; P30, p = 0.046) and was significantly lower than CG at P20 (p = 0.01) and P30 (p = 0.003). Conclusion: Four-week tangeretin supplementation can reduce serum cortisol and ACTH, which may ameliorate the cortisol stress response in soccer players during high-intensity resistance exercise training. It can also enhance antioxidant capacity, accelerate the elimination of inflammation throughout the body, and shorten recovery time after high-intensity exercise.
Collapse
Affiliation(s)
- Meng Liu
- College of Physical Education and Training, Shanghai University of Sport, Shanghai, China
- Chongqing Institute of Sport Science, Chongqing, China
| | - Zheng Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Chunli Qin
- Chongqing Institute of Sport Science, Chongqing, China
| | - Bingqiang Lv
- Chongqing Institute of Sport Science, Chongqing, China
| | - Shiwei Mo
- School of Physical Education, Shenzhen University, Shenzhen, China
- *Correspondence: Shiwei Mo, ; Tao Lan, ; Binghong Gao,
| | - Tao Lan
- Sports and Art Department, Hebei Sport University, Shijiazhuang, China
- *Correspondence: Shiwei Mo, ; Tao Lan, ; Binghong Gao,
| | - Binghong Gao
- College of Physical Education and Training, Shanghai University of Sport, Shanghai, China
- *Correspondence: Shiwei Mo, ; Tao Lan, ; Binghong Gao,
| |
Collapse
|
18
|
Yu Z, Wu Y, Ma Y, Cheng Y, Song G, Zhang F. Systematic analysis of the mechanism of aged citrus peel (Chenpi) in oral squamous cell carcinoma treatment via network pharmacology, molecular docking and experimental validation. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
19
|
Tan B, Qi Z, Yang G, Zhong H. Poly (Thioether-Polyesters) Micelles Encapsulation Induces ROS-Triggered Targeted Release of Tangeretin. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221080335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tangeretin (Tan) possesses great anti-oxidation and anti-inflammation bioactivities; however, it is accompanied by poor water solubility, which leads to inefficient cellular internalization. To address this issue, a reactive oxygen species (ROS)-triggered poly (thioether-polyesters) micelle (PDHP, PEG-DTT) was designed and prepared via self-assembly, which consisted of poly (thioether-polyesters) as the hydrophilic shell, and the drug Tan as the hydrophobic inner core. The micelles (Tan@ PDHP), with a 63.15% loading efficiency of Tan, showed negligible cytotoxicity, high stability in phosphate-buffered saline buffer (pH = 7.4), and continuous release of Tan with the stimulation of H2O2. In addition, this Tan loading micelle was more efficient in responding to the formation of ROS in the lipopolysaccharide-stimulated RAW264.7 cells compared to that of the free Tan. In short, the strategy of encapsulating the low solubility Tan in ROS-triggered poly (thioether-polyesters) micelles provides an effective assay of enhancing Tan's antioxidative activity.
Collapse
Affiliation(s)
- Bozhan Tan
- National Engineering Laboratory for Rice and By-products Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Changkang Industrial Co., LTD., Yueyang, Hunan, China
| | - Zhiwen Qi
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu, China
| | - Guliang Yang
- National Engineering Laboratory for Rice and By-products Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Haiyan Zhong
- National Engineering Laboratory for Rice and By-products Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
20
|
Abuhassira-Cohen Y, Livney YD. Enhancing bioavailability of encapsulated hydrophobic nutraceuticals: Insights from in-vitro, in-vivo and clinical studies. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Hu Y, Lu H, Liu F, Liu Y. Hydroxypropyl methylcellulose‐modified whey protein concentrate microcapsules for the encapsulation of tangeretin. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yan Hu
- Food and Pharmaceutical Engineering Institute Guiyang University Guizhou 550005 China
| | - Hang Lu
- Food and Pharmaceutical Engineering Institute Guiyang University Guizhou 550005 China
| | - Fei Liu
- College of Food Science and Technology Huazhong Agricultural University Wuhan 430070 China
| | - Yongling Liu
- Food and Pharmaceutical Engineering Institute Guiyang University Guizhou 550005 China
| |
Collapse
|
22
|
Sun G, Liu F, Zhao R, Hu Y, Li B, Liu S, Li Y, Shah BR. Enhanced stability and bioaccessibility of nobiletin in whey protein/cinnamaldehyde-stabilized microcapsules and application in yogurt. FOOD STRUCTURE 2021. [DOI: 10.1016/j.foostr.2021.100217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Chen PY, Chao TY, Hsu HJ, Wang CY, Lin CY, Gao WY, Wu MJ, Yen JH. The Lipid-Modulating Effect of Tangeretin on the Inhibition of Angiopoietin-like 3 (ANGPTL3) Gene Expression through Regulation of LXRα Activation in Hepatic Cells. Int J Mol Sci 2021; 22:ijms22189853. [PMID: 34576019 PMCID: PMC8471037 DOI: 10.3390/ijms22189853] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
The excessive accumulation of TG-rich lipoproteins (TGRLs) in plasma is associated with dyslipidemia and atherosclerotic cardiovascular diseases (ASCVDs). Tangeretin is a bioactive pentamethoxyflavone mainly found in citrus peels, and it has been reported to protect against hyperlipidemia, diabetes, and obesity. The aim of this study was to investigate the lipid-modulating effects and the underlying mechanisms of tangeretin action in hepatic cells. Transcriptome and bioinformatics analyses with the Gene Ontology (GO) database showed that tangeretin significantly regulated a set of 13 differentially expressed genes (DEGs) associated with the regulation of lipoprotein lipase (LPL) activity. Among these DEGs, angiopoietin-like 3 (ANGPTL3), an essential inhibitor of LPL catalytic activity that regulates TGRL metabolism in plasma, was markedly downregulated by tangeretin. We demonstrated that tangeretin significantly inhibited the mRNA expression of ANGPTL3 in HepG2 and Huh-7 cells. Tangeretin treatment of hepatic cells also reduced the levels of both intracellular and secreted ANGPTL3 proteins. Moreover, we found that inhibition of ANGPTL3 production by tangeretin augmented LPL activity. We further demonstrated that the transcriptional activity of the ANGPTL3 promoter was significantly attenuated by tangeretin, and we identified a DNA element located between the −250 and −121 positions that responded to tangeretin. Furthermore, we found that tangeretin did not alter the levels of the nuclear liver X receptor α (LXRα) protein, an essential transcription factor that binds to the tangeretin-responsive element, but it can counteract LXRα-mediated ANGPTL3 transcription. On the basis of molecular docking analysis, tangeretin was predicted to bind to the ligand-binding domain of LXRα, which would result in suppression of LXRα activation. Our findings support the hypothesis that tangeretin exerts a lipid-lowering effect by modulating the LXRα-ANGPTL3-LPL pathway, and thus, it can be used as a potential phytochemical for the prevention or treatment of dyslipidemia.
Collapse
Affiliation(s)
- Pei-Yi Chen
- Center of Medical Genetics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan;
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (T.-Y.C.); (C.-Y.L.)
| | - Tzu-Ya Chao
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (T.-Y.C.); (C.-Y.L.)
| | - Hao-Jen Hsu
- Department of Life Science, Tzu Chi University, Hualien 97004, Taiwan;
| | - Chih-Yang Wang
- Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Yen Lin
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (T.-Y.C.); (C.-Y.L.)
| | - Wan-Yun Gao
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan;
| | - Ming-Jiuan Wu
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan;
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (T.-Y.C.); (C.-Y.L.)
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan;
- Correspondence: or ; Tel.: +88-63-856-5301 (ext. 2683)
| |
Collapse
|
24
|
Zhao R, Fu W, Chen Y, Li B, Liu S, Li Y. Structural modification of whey protein isolate by cinnamaldehyde and stabilization effect on β-carotene-loaded emulsions and emulsion gels. Food Chem 2021; 366:130602. [PMID: 34314934 DOI: 10.1016/j.foodchem.2021.130602] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 11/27/2022]
Abstract
The effect of cinnamaldehyde (CA) on the structure and properties of whey protein isolate (WPI) was investigated. The resultant WPI/CA complex was used as stabilizer to form emulsions and emulsion gels, which were used for the delivery and protection of β-carotene. The particle size and hydrophobicity of WPI solution increased and then decreased with the addition of CA. Circular dichroism showed that CA mainly changed the secondary structure of WPI, with increasing β-fold content from 47.2% to 72.9%. The fluorescence spectra showed that both tryptophan and tyrosine in WPI were involved in the interaction with CA. WPI/CA complex as the stabilizer could form the stable emulsions and emulsion gels, which showed better protection effect on β-carotene, and helped enhance its bioaccessibility. The knowledge provides insights into the development of new multifunctional food ingredients and the enhancement of protein modification in food system.
Collapse
Affiliation(s)
- Runan Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weiting Fu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yijie Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, China; Functional Food Engineering & Technology Research Center of Hubei Province, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, China; Functional Food Engineering & Technology Research Center of Hubei Province, China
| | - Shilin Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, China; Functional Food Engineering & Technology Research Center of Hubei Province, China; School of Materials and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, China; Functional Food Engineering & Technology Research Center of Hubei Province, China.
| |
Collapse
|
25
|
Chen B, Luo J, Han Y, Du H, Liu J, He W, Zhu J, Xiao J, Wang J, Cao Y, Xiao H, Song M. Dietary Tangeretin Alleviated Dextran Sulfate Sodium-Induced Colitis in Mice via Inhibiting Inflammatory Response, Restoring Intestinal Barrier Function, and Modulating Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7663-7674. [PMID: 34182753 DOI: 10.1021/acs.jafc.1c03046] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, the preventive effect of tangeretin (TAN), a natural flavonoid derivative from citrus fruits, on the dextran sulfate sodium (DSS)-induced colitis in mice was evaluated. Our results showed that dietary TAN (0.04% and 0.08% w/w in the diet) significantly reduced the severity of colitis caused by DSS treatment in mice, evidenced by the increased colon length, the reduced disease activity index, and the attenuated colonic tissue damages. Moreover, dietary TAN inhibited the inflammatory response via down-regulating the overexpression of colonic inflammatory cytokines. Immunohistochemical analysis revealed that the intestinal barrier function was restored by TAN through enhancing claudin-1 and ZO-1 expressions. Additionally, dietary TAN modulated gut microbiota in colitic mice via enhancing gut microbiota diversity, ascending the level of beneficial bacteria, e.g., Lachnospiraceae and Lactobacillaceae, and descending the level of harmful bacteria, e.g., Enterobacteriaceae and Alistipes. Besides, dietary TAN promoted short-chain fatty acids production in DSS-treated mice. Altogether, these findings provided scientific evidence for the rational utilization of TAN as a preventive agent against colonic inflammation and related diseases.
Collapse
Affiliation(s)
- Bin Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, P.R. China
| | - Jiakang Luo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, P.R. China
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, P. R. China
| | - Wei He
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, P.R. China
| | - Jinhui Zhu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, P.R. China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, P.R. China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, P. R. China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, P.R. China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, P.R. China
| |
Collapse
|