1
|
Lin Y, Zhang Z, Ren S, Wang L, Xiong B, Zheng B, Zhang Y, Pan L. Effects of steam explosion pretreatment on the digestive properties and gut microbiota of Laminaria japonica polysaccharide. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8879-8886. [PMID: 38953304 DOI: 10.1002/jsfa.13714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Laminaria japonica polysaccharide, which is an important bioactive substance of Laminaria japonica with anti-inflammatory and antioxidant effects. In this study, the molecular weight, functional groups and surface morphology were investigated to evaluate the digestive properties of Laminaria japonica polysaccharide before and after steam explosion. RESULTS The results indicated that the Laminaria japonica polysaccharide entered the large intestine to be utilized by the gut microbiota after passing through the oral, gastric and small intestinal. Meanwhile, Laminaria japonica polysaccharide of steam explosion promoted the growth of beneficial bacteria Phascolarctobacterium and Intestinimonas, and increased the content of acetic, propionic and butyric acids, which was 2.29-folds, 2.60-folds and 1.63-folds higher than the control group after 48 h of fermentation. CONCLUSION This study reveals that the effect of steam explosion pretreatment on the digestion in vitro and gut microbiota of Laminaria japonica polysaccharide will provide a basic theoretical basis for the potential application of Laminaria japonica polysaccharide as a prebiotic in the food industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yaqing Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
| | - Zihao Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sijie Ren
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
| | - Bin Xiong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
| | - Lei Pan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
| |
Collapse
|
2
|
Yin C, Xie H, Geng G, Li Z, Ma J, Wu X, Qiu QS, Qiao F. Identification of Key Enzymes and Genes Modulating L-Ascorbic Acid Metabolism During Fruit Development of Lycium chinense by Integrating Metabolome, Transcriptome, and Physiological Analysis. Int J Mol Sci 2024; 25:11394. [PMID: 39518947 PMCID: PMC11547089 DOI: 10.3390/ijms252111394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Lycium chinense is acknowledged for its substantial nutritional benefits, particularly attributed to the high levels of ascorbic acid (AsA) found in its fruits. The "Mengqi No.1" variety of L. chinense, which is cultivated in Qinghai, is known for its high yield and exceptional quality. We utilized the "Mengqi No.1" variety as experimental materials and combined metabolomic, transcriptomic, and physiological analyses to investigate the metabolites, genes, and enzymes related to AsA metabolism in L. chinense fruits. The results revealed nine differential metabolites associated with AsA metabolism in L. chinense fruits across three stages, including 1D-Myo-Inositol-1,4-Bisphosphate, D-Fructose, L-(+)-Arabinose, I-Inositol, L-Arabinitol, D-Galactose-1-P, lactose, α-D-Glucose, and D-Glucose-6-P. Notably, the contents of D-Glucose-6-P, D-Galactose-1-P, and D-Fructose were increased as the fruit developed. Additionally, fresh weight, longitudinal length, and radial width were increased, while the contents of AsA and DHA were decreased. GalDH and DHAR are critical enzymes for the accumulation of AsA and DHA, exhibiting positive correlation coefficient. Furthermore, PMM1, PMM5, GME2, and GME3 were identified as key regulatory genes in the L-Galactose pathway of AsA synthesis, influencing D-Galactose-1-P, D-Glucose-6-P, α-D-Glucose, and D-Fructose. DHAR1 and DHAR2 are considered key positive regulator genes of AsA and DHA in the AsA-GSH cycle. However, the majority of genes (nine) act as negative regulators of AsA and DHA. These findings provide a foundation for the understanding of the regulatory mechanism of AsA metabolism in L. chinense fruits and offer insights into the utilization of AsA from L. chinense.
Collapse
Affiliation(s)
- Chongxin Yin
- Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, School of Life Sciences, Qinghai Normal University, Xining 810008, China; (C.Y.); (H.X.); (Z.L.); (J.M.); (X.W.)
| | - Huichun Xie
- Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, School of Life Sciences, Qinghai Normal University, Xining 810008, China; (C.Y.); (H.X.); (Z.L.); (J.M.); (X.W.)
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
- Qinghai South of Qilian Mountain Forest Ecosystem Observation and Research Station, Huzhu 810500, China;
| | - Guigong Geng
- Qinghai South of Qilian Mountain Forest Ecosystem Observation and Research Station, Huzhu 810500, China;
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China
| | - Zuxia Li
- Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, School of Life Sciences, Qinghai Normal University, Xining 810008, China; (C.Y.); (H.X.); (Z.L.); (J.M.); (X.W.)
| | - Jianxia Ma
- Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, School of Life Sciences, Qinghai Normal University, Xining 810008, China; (C.Y.); (H.X.); (Z.L.); (J.M.); (X.W.)
| | - Xiaozhuo Wu
- Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, School of Life Sciences, Qinghai Normal University, Xining 810008, China; (C.Y.); (H.X.); (Z.L.); (J.M.); (X.W.)
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Feng Qiao
- Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, School of Life Sciences, Qinghai Normal University, Xining 810008, China; (C.Y.); (H.X.); (Z.L.); (J.M.); (X.W.)
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
- Qinghai South of Qilian Mountain Forest Ecosystem Observation and Research Station, Huzhu 810500, China;
| |
Collapse
|
3
|
Liu D, Yuan M, Wang Y, Zhang L, Yao W, Feng M. Integrated metabolome and transcriptome analysis of differences in quality of ripe Lycium barbarum L. fruits harvested at different periods. BMC PLANT BIOLOGY 2024; 24:82. [PMID: 38302892 PMCID: PMC10835843 DOI: 10.1186/s12870-024-04751-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Wolfberry is well-known for its high nutritional value and medicinal benefits. Due to the continuous ripening nature of Goji berries and the fact that they can be commercially harvested within a few weeks, their phytochemical composition may change during the harvesting process at different periods. RESULT The involved molecular mechanisms of difference in fruit quality of ripe Lycium barbarum L. harvested at four different periods were investigated by transcriptomic and metabolomics analyses for the first time. According to the results we obtained, it was found that the appearance quality of L. barbarum fruits picked at the beginning of the harvesting season was superior, while the accumulation of sugar substances in L. barbarum fruits picked at the end of the harvesting season was better. At the same time the vitamin C and carotenoids content of wolfberry fruits picked during the summer harvesting season were richer. Ascorbic acid, succinic acid, glutamic acid, and phenolic acids have significant changes in transcription and metabolism levels. Through the network metabolic map, we found that ascorbic acid, glutamic acid, glutamine and related enzyme genes were differentially accumulated and expressed in wolfberry fruits at different harvesting periods. Nevertheless, these metabolites played important roles in the ascorbate-glutathione recycling system. Ascorbic acid, phenolic substances and the ascorbate-glutathione recycling system have antioxidant effects, which makes the L. barbarum fruits harvested in the summer more in line with market demand and health care concepts. CONCLUSION This study laid the foundation for understanding the molecular regulatory mechanisms of quality differences of ripe wolfberry fruits harvested at different periods, and provides a theoretical basis for enhancing the quality of L. barbarum fruits.
Collapse
Affiliation(s)
- Deshuai Liu
- College of Enology and Horticulture, Ningxia University, Yinchuan, 750021, Ningxia, China
- Ningxia Key Laboratory of Modern Molecular Breeding of Dominant and Characteristic Crops, Yinchuan, 750021, Ningxia, China
| | - Miao Yuan
- College of Enology and Horticulture, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Ye Wang
- College of Enology and Horticulture, Ningxia University, Yinchuan, 750021, Ningxia, China
- Ningxia Key Laboratory of Modern Molecular Breeding of Dominant and Characteristic Crops, Yinchuan, 750021, Ningxia, China
| | - Li Zhang
- College of Enology and Horticulture, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Wenkong Yao
- College of Enology and Horticulture, Ningxia University, Yinchuan, 750021, Ningxia, China.
- Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan, 750021, Ningxia, China.
- Ningxia Key Laboratory of Modern Molecular Breeding of Dominant and Characteristic Crops, Yinchuan, 750021, Ningxia, China.
| | - Mei Feng
- College of Enology and Horticulture, Ningxia University, Yinchuan, 750021, Ningxia, China.
- Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan, 750021, Ningxia, China.
- Ningxia Key Laboratory of Modern Molecular Breeding of Dominant and Characteristic Crops, Yinchuan, 750021, Ningxia, China.
| |
Collapse
|
4
|
Ma J, Wang B, Pu C, Chang K, Cheng Y, Sun R, Qi Q, Xu R, Chen J, Zhang C. Protective effects of sulforaphane on inflammation, oxidative stress and intestinal dysbacteriosis induced by triphenyltin in Cyprinus carpio haematopterus. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109135. [PMID: 37797869 DOI: 10.1016/j.fsi.2023.109135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
The purpose of this experiment was to study the mitigation effect of sulforaphane (SFN) on fish toxicological damage caused by triphenyltin (TPT) pollution. A total of 320 healthy fish (56.9 ± 0.4g) were randomly placed into four groups, each with four duplicates. The control group was fed the basal diet, the TPT group was exposed to 10 ng/L TPT on the basis of the control group, the SFN group was fed a diet supplemented with 10 mg/kg SFN, the SFN + TPT group was exposed to 10 ng/L TPT on the basis of the SFN group. Each tank had 20 fish and the breeding lasted for 8 weeks. The present study found that the antioxidant enzyme activity in the TPT group was significantly lower than that of the control group (P < 0.05). In addition, compared with the control group, the mRNA expression of pro-inflammatory factors (IL-6, TNF-α) were significantly induced, and the anti-inflammatory factor genes (IL-10, TGF) were significantly inhibited (P < 0.05) in TPT group. SFN relieved the changes of inflammatory factors caused by TPT, ameliorated oxidative stress, improved antioxidant enzyme (include SOD, CAT, GSH, GPx) activities (P < 0.05). 16s RNA analysis indicated that exposure to TPT caused changes in intestinal microflora. The results of the study showed that after exposure to TPT, some beneficial genera of bacteria in the gut of Rhizobiaceae, Bdellovibrio and Candidatus Alysiosphaera were decreased. The bacteria associated with intestinal inflammation including Propionibacterium, Rubrobacter, Anaerorhabdus_furcosa_group, Rikenellaceae and Eubacterium_brachy were upregulated. However, the SFN treatment group significantly down-regulated the above five inflammation-related bacteria. The above results indicated that TPT caused oxidative stress and inflammation in fish intestines, changed the intestinal microflora, and dietary SFN could improve antioxidant status, regulate inflammation and intestinal health. Therefore, SFN is a promising diet additive for improving fish damage caused by TPT contamination.
Collapse
Affiliation(s)
- Jianshuang Ma
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Bingke Wang
- Henan Academy of Fishery Sciences, Zhengzhou, 450044, People's Republic of China
| | - Changchang Pu
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Kuo Chang
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yinfeng Cheng
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ruyi Sun
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Qian Qi
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ruiyi Xu
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Junliang Chen
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Chunnuan Zhang
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China.
| |
Collapse
|
5
|
Lin D, Medeiros DM. The microbiome as a major function of the gastrointestinal tract and its implication in micronutrient metabolism and chronic diseases. Nutr Res 2023; 112:30-45. [PMID: 36965327 DOI: 10.1016/j.nutres.2023.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
The composition and function of microbes harbored in the human gastrointestinal lumen have been underestimated for centuries because of the underdevelopment of nucleotide sequencing techniques and the lack of humanized gnotobiotic models. Now, we appreciate that the gut microbiome is an integral part of the human body and exerts considerable roles in host health and diseases. Dietary factors can induce changes in the microbial community composition, metabolism, and function, thereby altering the host immune response, and consequently, may influence disease risks. An imbalance of gut microbiome homeostasis (i.e., dysbiosis) has been linked to several chronic diseases, such as inflammatory bowel diseases, obesity, and diabetes. Remarkable progress has recently been made in better understanding the extent to which the influence of the diet-microbiota interaction on host health outcomes in both animal models and human participants. However, the exact causality of the gut microbiome on the development of diseases is still controversial. In this review, we will briefly describe the general structure and function of the intestine and the process of nutrient absorption in humans. This is followed by a summarization of the recent updates on interactions between gut microbiota and individual micronutrients, including carotenoids, vitamin A, vitamin D, vitamin C, folate, iron, and zinc. In the opinion of the authors, these nutrients were identified as representative of vitamins and minerals with sufficient research on their roles in the microbiome. The host responses to the gut microbiome will also be discussed. Future direction in microbiome research, for example, precision microbiome, will be proposed.
Collapse
Affiliation(s)
- Dingbo Lin
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078.
| | - Denis M Medeiros
- Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City, Kansas City, MO 64108
| |
Collapse
|
6
|
Wang H, Li Y, Dai Y, Ma L, Di D, Liu J. Screening, structural characterization and anti-adipogenesis effect of a water-soluble polysaccharide from Lycium barbarum L. by an activity-oriented approach. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
7
|
Liang X, Liu M, Guo S, Zhang F, Cui W, Zeng F, Xu M, Qian D, Duan J. Structural elucidation of a novel arabinogalactan LFP-80-W1 from Lycii fructus with potential immunostimulatory activity. Front Nutr 2023; 9:1067836. [PMID: 36687689 PMCID: PMC9846619 DOI: 10.3389/fnut.2022.1067836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Polysaccharides are the most important effective components of Lycii fructus, which has a variety of biological activities and broad application prospects in the fields of medicine and food. In this study, we reported a novel arabinogalactan LFP-80-W1 with potential immunostimulatory activity. LFP-80-W1 was a continuous symmetrical single-peak with an average molecular weight of 4.58 × 104 Da and was mainly composed of arabinose and galactose. Oligosaccharide sequencing analyses and NMR data showed that the LFP-80-W1 domain consists of a repeated 1,6-linked β-Galp main chain with branches arabinoglycan and arabinogalactan at position C-3. Importantly, we found that LFP-80-W1 could activate the MAPK pathway and promote the release of NO, IL-6, and TNF-α cytokines in vitro. Therefore, our findings suggest that the homogeneous arabinogalactan from Lycii fructus, can be used as a natural immunomodulator.
Collapse
Affiliation(s)
- Xiaofei Liang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Mengqiu Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China,*Correspondence: Sheng Guo,
| | - Fang Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Wanchen Cui
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Fei Zeng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Mingming Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China,Ningxia Innovation Center of Goji R&D, Yinchuan, China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China,Jinao Duan,
| |
Collapse
|
8
|
Liaqat H, Parveen A, Kim SY. Neuroprotective Natural Products’ Regulatory Effects on Depression via Gut–Brain Axis Targeting Tryptophan. Nutrients 2022; 14:nu14163270. [PMID: 36014776 PMCID: PMC9413544 DOI: 10.3390/nu14163270] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
L-tryptophan (Trp) contributes to regulating bilateral communication of the gut–brain axis. It undergoes three major metabolic pathways, which lead to formation of kynurenine, serotonin (5-HT), and indole derivatives (under the control of the microbiota). Metabolites from the principal Trp pathway, kynurenic acid and quinolinic acid, exhibit neuroprotective activity, while picolinic acid exhibits antioxidant activity, and 5-HT modulates appetite, sleep cycle, and pain. Abnormality in Trp plays crucial roles in diseases, including depression, colitis, ulcer, and gut microbiota-related dysfunctions. To address these diseases, the use of natural products could be a favorable alternative because they are a rich source of compounds that can modulate the activity of Trp and combat various diseases through modulating different signaling pathways, including the gut microbiota, kynurenine pathway, and serotonin pathway. Alterations in the signaling cascade pathways via different phytochemicals may help us explore the deep relationships of the gut–brain axis to study neuroprotection. This review highlights the roles of natural products and their metabolites targeting Trp in different diseases. Additionally, the role of Trp metabolites in the regulation of neuroprotective and gastroprotective activities is discussed. This study compiles the literature on novel, potent neuroprotective agents and their action mechanisms in the gut–brain axis and proposes prospective future studies to identify more pharmaceuticals based on signaling pathways targeting Trp.
Collapse
Affiliation(s)
- Humna Liaqat
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domzale, Slovenia
| | - Amna Parveen
- College of Pharmacy, Gachon University Medical Campus, No. 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea
- Correspondence: or (A.P.); (S.Y.K.)
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University Medical Campus, No. 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea
- Correspondence: or (A.P.); (S.Y.K.)
| |
Collapse
|
9
|
Guo L, Guan Q, Duan W, Ren Y, Zhang XJ, Xu HY, Shi JS, Wang FZ, Lu R, Zhang HL, Xu ZH, Li H, Geng Y. Dietary Goji Shapes the Gut Microbiota to Prevent the Liver Injury Induced by Acute Alcohol Intake. Front Nutr 2022; 9:929776. [PMID: 35898713 PMCID: PMC9309278 DOI: 10.3389/fnut.2022.929776] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022] Open
Abstract
Diet is a major driver of the structure and function of the gut microbiota, which influences the host physiology. Alcohol abuse can induce liver disease and gut microbiota dysbiosis. Here, we aim to elucidate whether the well-known traditional health food Goji berry targets gut microbiota to prevent liver injury induced by acute alcohol intake. The results showed that Goji supplementation for 14 days alleviated acute liver injury as indicated by lowering serum aspartate aminotransferase, alanine aminotransferase, pro-inflammatory cytokines, as well as lipopolysaccharide content in the liver tissue. Goji maintained the integrity of the epithelial barrier and increased the levels of butyric acid in cecum contents. Furthermore, we established the causal relationship between gut microbiota and liver protection effects of Goji with the help of antibiotics treatment and fecal microbiota transplantation (FMT) experiments. Both Goji and FMT-Goji increased glutathione (GSH) in the liver and selectively enriched the butyric acid-producing gut bacterium Akkermansia and Ruminococcaceae by using 16S rRNA gene sequencing. Metabolomics analysis of cecum samples revealed that Goji and its trained microbiota could regulate retinoyl β-glucuronide, vanillic acid, and increase the level of glutamate and pyroglutamic acid, which are involved in GSH metabolism. Our study highlights the communication among Goji, gut microbiota, and liver homeostasis.
Collapse
Affiliation(s)
- Lin Guo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Qijie Guan
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, China
| | - Wenhui Duan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yilin Ren
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiao-Juan Zhang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, China
| | - Hong-Yu Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | | | - Ran Lu
- Ningxia Red Power Goji Co., Ltd, Zhongwei, China
| | - Hui-Ling Zhang
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, China
| | - Zheng-Hong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, China
| | - Huazhong Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- *Correspondence: Huazhong Li
| | - Yan Geng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
- Yan Geng
| |
Collapse
|
10
|
Li S, Yang S, Zhang Y, Huang K, Liang T, Chen Y, Guan Y, Shang R, Guan T, Wu J, Chen Y, Guan X. Amino acid-balanced diets improved DSS-induced colitis by alleviating inflammation and regulating gut microbiota. Eur J Nutr 2022; 61:3531-3543. [PMID: 35618921 DOI: 10.1007/s00394-022-02906-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/05/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE Inflammatory bowel disease (IBD) is a multifactorial chronic disease of the gastrointestinal tract. Dietary intervention in the treatment of IBD has gradually attracted more attention. In this study, amino acid-balanced diets (AABD) based on grains were developed and their influences on the regulation of IBD were investigated. METHODS Dextran sodium sulfate (DSS)-induced acute colitis mice model was employed to evaluate the effects of AABD. Pathological symptoms, intestinal inflammation, gut barrier proteins and gut microbiota were determined after AABD intake. RESULTS It was shown that AABD alleviated the symptoms of colitis by reducing the histological scores of mice colon, suppressing the expression of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) and upregulating the expression of tight junction proteins. Analysis of gut microbiota revealed that AABD altered the structure of gut microbiota by decreasing the abundance and richness of harmful bacteria induced by DSS (Escherichia-Shigella, Parasutterella, etc.) and increasing that of beneficial bacteria (Akkermansia, etc.). Correlation analysis indicated that the alterations of pro-inflammatory factors were related with the change of microbiota, suggesting that the inhibitory effects of AABD on inflammation might be due to its regulation gut microbiota. CONCLUSION The AABD could efficiently mitigate colitis, and this study indicated that AABD could be applied as a promising dietary regulation strategy of IBD.
Collapse
Affiliation(s)
- Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China.,National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Shuya Yang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China.,National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China.,National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China.,National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Ting Liang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China.,National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Yu Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China.,National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Yingjie Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China.,National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Ruizhi Shang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China.,National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Tong Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China.,National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Jiang Wu
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yingwei Chen
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China. .,National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China.
| |
Collapse
|
11
|
Ma RH, Zhang XX, Ni ZJ, Thakur K, Wang W, Yan YM, Cao YL, Zhang JG, Rengasamy KRR, Wei ZJ. Lycium barbarum (Goji) as functional food: a review of its nutrition, phytochemical structure, biological features, and food industry prospects. Crit Rev Food Sci Nutr 2022; 63:10621-10635. [PMID: 35593666 DOI: 10.1080/10408398.2022.2078788] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Lycium genus (Goji berry) is recognized as a good source of homology of medicine and food, with various nutrients and phytochemicals. Lately, numerous studies have focused on the chemical constituents and biological functions of the L. barbarum L., covering phytochemical and pharmacological aspects. We aim to provide exclusive data on the nutrients of L. barbarum L. fruits and phytochemicals, including their structural characterization, the evolution of extraction, and purification processes of different phytochemicals of L. barbarum L. fruit while placing greater emphasis on their wide-ranging health effects. This review also profitably offers innovative approaches for the food industry and industrial applications of L. barbarum L. and addresses some current situations and problems in the development of L. barbarum L. in deep processing products, which can provide clues for the sustainable development of L. barbarum L. industry.
Collapse
Affiliation(s)
- Run-Hui Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan, People's Republic of China
| | - Xiu-Xiu Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan, People's Republic of China
| | - Zhi-Jing Ni
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan, People's Republic of China
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan, People's Republic of China
| | - Wei Wang
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan, People's Republic of China
| | - Ya-Mei Yan
- Institute of wolfberry Engineering and Technology, Ningxia Academy of Agriculture and Forestry, Yinchuan, People's Republic of China
| | - You-Long Cao
- Institute of wolfberry Engineering and Technology, Ningxia Academy of Agriculture and Forestry, Yinchuan, People's Republic of China
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan, People's Republic of China
| | - Kannan R R Rengasamy
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan, People's Republic of China
| |
Collapse
|
12
|
Liu J, Li Y, Pu Q, Qiu H, Di D, Cao Y. A polysaccharide from Lycium barbarum L.: Structure and protective effects against oxidative stress and high-glucose-induced apoptosis in ARPE-19 cells. Int J Biol Macromol 2021; 201:111-120. [PMID: 34968548 DOI: 10.1016/j.ijbiomac.2021.12.139] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/05/2021] [Accepted: 12/20/2021] [Indexed: 12/27/2022]
Abstract
Lycium barbarum polysaccharides (LBPs) are beneficial for vision; however, relevant research has mainly focused on entire crude polysaccharides, with the basis and exact structure of the polysaccharide rarely explored. In this study, LICP009-3F-2a, a novel polysaccharide from Lycium barbarum L., was separated and then purified using anion-exchange and size-exclusion chromatography. Structural characteristics were investigated using chemical and spectroscopic methods, which revealed that LICP009-3F-2a has an Mw of 13720 Da and is an acidic heteropolysaccharide composed of rhamnose (39.1%), arabinose (7.4%), galactose (22.5%), glucose (8.3%), galacturonic acid (13.7%), and glucuronic acid (4.0%). Linkage and NMR data revealed that LICP009-3F-2a has the following backbone: →2)-α-L-Rha-(1→2,4)-α-L-Rha- (1→4)-α-D-GalAp-(1→3,6)-β-D-Galp-(1→3,6)-β-D-Galp-(1→6)-β-D-Galp-(1→, with three main branches, including: α-L-Araf-(1→5)-α-L-Araf-(1→6)-β-D-Glcp-(1→2,4)-α-L-Rha-(1→, β-D-Glcp-(1→4)-β-D-Glcp-(1→3,6)-β-D-Galp-(1→, and β-D-Galp-(1→3)-β-D-Galp-(1→3,6) -β-D-Galp-(1→. Differential scanning colorimetry and thermogravimetric analysis showed that LICP009-3F-2a is thermally stable, while X-ray diffractometry showed that LICP009-3F-2a has a semi-crystalline structure. In addition, LICP009-3F-2a protects ARPE-19 cells from H2O2-induced oxidative damage by regulating the expression of antioxidant SOD1 and CAT enzymes and down-regulating MMP2 expression. Moreover, LICP009-3F-2a promotes the proliferation of ARPE-19 cells in a concentration-dependent manner, and protects ARPE-19 cells from hyperglycemia by inhibiting apoptosis.
Collapse
Affiliation(s)
- Jianfei Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunchun Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Qiaosheng Pu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Duolong Di
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Youlong Cao
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China.
| |
Collapse
|
13
|
Qu L, Lin X, Liu C, Ke C, Zhou Z, Xu K, Cao G, Liu Y. Atractylodin Attenuates Dextran Sulfate Sodium-Induced Colitis by Alleviating Gut Microbiota Dysbiosis and Inhibiting Inflammatory Response Through the MAPK Pathway. Front Pharmacol 2021; 12:665376. [PMID: 34335244 PMCID: PMC8320761 DOI: 10.3389/fphar.2021.665376] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022] Open
Abstract
In this study, we investigated the therapeutic effects and mechanism of atractylodin (ATL) on dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. We found that atractylodin could significantly reverse the effects of DSS-induced ulcerative colitis, such as weight loss, disease activity index score; shorten the colon length, and reverse the pathological changes in the colon of mice. Atractylodin could inhibit the activation of colonic macrophages by inhibiting the MAPK pathway and alleviate intestinal inflammation in the mouse model of ulcerative colitis. Moreover, it could protect the intestinal barrier by inhibiting the decrease of the tight junction proteins, ZO-1, occludin, and MUC2. Additionally, atractylodin could decrease the abundance of harmful bacteria and increase that of beneficial bacteria in the intestinal tract of mice, effectively improving the intestinal microecology. In an LPS-induced macrophage model, atractylodin could inhibit the MAPK pathway and expression of the inflammatory factors of macrophages. Atractylodin could also inhibit the production of lactate, which is the end product of glycolysis; inhibit the activity of GAPDH, which is an important rate-limiting enzyme in glycolysis; inhibit the malonylation of GAPDH, and, thus, inhibit the translation of TNF-α. Therefore, ours is the first study to highlight the potential of atractylodin in the treatment of ulcerative colitis and reveal its possible mechanism.
Collapse
Affiliation(s)
- Linghang Qu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiong Lin
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Chunlian Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Chang Ke
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhongshi Zhou
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.,Center for Hubei TCM Processing Technology Engineering, Wuhan, China
| | - Kang Xu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.,Center for Hubei TCM Processing Technology Engineering, Wuhan, China
| | - Guosheng Cao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.,Center for Hubei TCM Processing Technology Engineering, Wuhan, China
| | - Yanju Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.,Center for Hubei TCM Processing Technology Engineering, Wuhan, China
| |
Collapse
|
14
|
Li P, Lu B, Gong J, Li L, Chen G, Zhang J, Chen Y, Tian X, Han B, Guo Y, Xie Z, Liao Q. Chickpea Extract Ameliorates Metabolic Syndrome Symptoms via Restoring Intestinal Ecology and Metabolic Profile in Type 2 Diabetic Rats. Mol Nutr Food Res 2021; 65:e2100007. [PMID: 33966342 DOI: 10.1002/mnfr.202100007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/13/2021] [Indexed: 01/05/2023]
Abstract
SCOPE Chickpeas have been recognized as a natural Uyghur medicine in Xinjiang (China) for 2500 years. Although the phenotypic effect on obesity or diabetes was authenticated, the mechanism was unclear. This work aims to study the effect of chickpea extract (CE) on metabolic syndrome induced by type 2 diabetes and to reveal its related mechanisms, focusing on intestinal flora and metabolomics. METHODS AND RESULTS Diabetic rats are induced by a high-fat diet and intraperitoneal injection of streptozotocin. CE supplementation (3 g kg-1 ) for 4 weeks improved the hyperglycemia, inflammatory state, and organ functions of diabetic rats. The metabolic profile trajectories of urine and faeces obtained by NMR have good separations among all groups, and CE significantly increases the contents of SCFAs in the cecum. Moreover, CE relieves intestinal dysbiosis by increasing the abundance of SCFAs-producing bacteria (e.g., Enterococcaceae) but reduces conditional pathogenic bacteria (e.g., Corynebacterium). PICRUSt predicts the functions of gut microbiome from the 16S rRNA gene sequences and metagenome, and finds that CE restored amino acids degradation, bile acids metabolism, and carbohydrate metabolism. CONCLUSION This study elucidates the role of CE from the perspective of metabolomics and the microbiota, which provides evidence for chickpea as a prebiotic to prevent diabetes.
Collapse
Affiliation(s)
- Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Biyu Lu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jing Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lin Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Guoping Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jiaxian Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yongda Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xing Tian
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bo Han
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yake Guo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| |
Collapse
|
15
|
Richardson AT, McGhie TK, Cordiner SB, Stephens TTH, Larsen DS, Laing WA, Perry NB. 2-O-β-d-Glucopyranosyl l-Ascorbic Acid, a Stable Form of Vitamin C, Is Widespread in Crop Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:966-973. [PMID: 33434024 DOI: 10.1021/acs.jafc.0c06330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
2-O-β-d-Glucopyranosyl l-ascorbic acid (AA-2βG) is a stable, bioavailable vitamin C (AA) derivative. We report the distribution and seasonal variation of AA-2βG in apples and its occurrence in other domesticated crops and in wild harvested Ma̅ori foods. Liquid chromatography-mass spectrometry analyses showed high AA-2βG concentrations in crab apples (Malus sylvestris) but low concentrations in domesticated apples. Leaves of crab and domesticated apple cultivars contained similar intermediate AA-2βG concentrations. Fruits and leaves of other crops were analyzed: mainly Rosaceae but also Actinidiaceae and Ericaceae. AA-2βG was detected in all leaves (0.5-6.1 mg/100 g fr. wt.) but was at lower concentrations in most fruits (0.0-0.5 mg/100 g fr. wt.) except for crab apples (79.4 mg/100 g fr. wt.). Ma̅ori foods from Solanaceae, Piperaceae, Asteraceae, and a fern of Aspleniaceae also contained AA-2βG. This extensive occurrence suggests a general role in AA metabolism for AA-2βG.
Collapse
Affiliation(s)
- Alistair T Richardson
- Department of Chemistry, University of Otago, P. O. Box 56, Dunedin 9054, New Zealand
| | - Tony K McGhie
- The New Zealand Institute for Plant and Food Research Limited, Private Bag, Palmerston North 11600, New Zealand
| | - Sarah B Cordiner
- The New Zealand Institute for Plant and Food Research Limited, Private Bag, Palmerston North 11600, New Zealand
| | - Teiarere T H Stephens
- The New Zealand Institute for Plant and Food Research Limited, Private Bag, Palmerston North 11600, New Zealand
| | - David S Larsen
- Department of Chemistry, University of Otago, P. O. Box 56, Dunedin 9054, New Zealand
| | - William A Laing
- The New Zealand Institute for Plant and Food Research Limited, Private Bag, Palmerston North 11600, New Zealand
| | - Nigel B Perry
- Department of Chemistry, University of Otago, P. O. Box 56, Dunedin 9054, New Zealand
- The New Zealand Institute for Plant and Food Research Limited, Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
16
|
Huang K, Yan Y, Chen D, Zhao Y, Dong W, Zeng X, Cao Y. Ascorbic Acid Derivative 2- O-β-d-Glucopyranosyl-l-Ascorbic Acid from the Fruit of Lycium barbarum Modulates Microbiota in the Small Intestine and Colon and Exerts an Immunomodulatory Effect on Cyclophosphamide-Treated BALB/c Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11128-11143. [PMID: 32825805 DOI: 10.1021/acs.jafc.0c04253] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
2-O-β-d-Glucopyranosyl-l-ascorbic acid (AA-2βG) is a natural and stable ascorbic acid derivative isolated from the fruits of Lycium barbarum. In our present study, cyclophosphamide (Cy) was used to make BALB/c mice immunosuppressive and AA-2βG was used to intervene immunosuppressive mice. It was found that Cy treatment resulted in a series of changes on basic immune indexes including a decrease of thymus and spleen indexes and levels of pro-inflammatory cytokines and destruction of leucocyte proportion balance, accompanied with weight loss, reduction in colon length, and changes of hepatic function markers. However, all these changes were reversed in varying degrees by AA-2βG intervention. Notably, AA-2βG could significantly change both mouse colonic and small-intestinal microbiota. The key responsive taxa found in a mouse colon were Muribaculaceae, Ruminococcaceae, Oscillibacter, Rikenella, Helicobacter, Negativibacillus, Alistipes, and Roseburia, and the key responsive taxa found in a mouse small intestine were Muribaculaceae, Anaerotruncus, and Paenibacillus. The results demonstrated that AA-2βG could modulate microbiota in the small intestine and colon and exert an immunomodulatory effect. Further studies should focus on the degradation pathways of AA-2βG and the interaction between AA-2βG and Muribaculaceae.
Collapse
Affiliation(s)
- Kaiyin Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yamei Yan
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, China
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Dan Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ya Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Youlong Cao
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, China
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| |
Collapse
|