1
|
Sato R, Fujii Y, Ara S, Yamazaki H, Aburatani S, Ogasawara W, Takaku H. Deletion of LsSNF1 enhances lipid accumulation in the oleaginous yeast Lipomyces starkeyi. J Biosci Bioeng 2024; 137:260-267. [PMID: 38341331 DOI: 10.1016/j.jbiosc.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
The oleaginous yeast, Lipomyces starkeyi can have diverse industrial applications due to its remarkable capacity to use various carbon sources for the biosynthesis intracellular triacylglycerides (TAGs). In L. starkeyi, TAG synthesis is enhanced through upregulation of genes involved in citrate-mediated acyl-CoA synthesis and Kennedy pathways through the transcriptional regulator LsSpt23p. High expression of LsSPT23 can considerably enhance TAG production. Altering the regulatory factors associated with lipid production can substantially augment lipid productivity. In this study, we identified and examined the L. starkeyi homolog sucrose nonfermenting 1 SNF1 (LsSNF1) of YlSNF1, which encodes a negative regulator of lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica. The deletion of LsSNF1 enhanced TAG productivity in L. starkeyi, suggesting that LsSnf1p is a negative regulator in TAG production. The enhancement of TAG production following deletion of LsSNF1 can primarily be attributed to the upregulation of genes in the citrate-mediated acyl-CoA synthesis and Kennedy pathways, pivotal routes in TAG biosynthesis. The overexpression of LsSPT23 enhanced lipid productivity; strain overexpressing LsSPT23 and without LsSNF1 exhibited increased TAG production capacity per cell. LsSnf1p also has a significant role in the utilization of carbon sources, including xylose or glycerol, in L. starkeyi. Our study results elucidated the role of LsSnf1p in the negative regulation of TAG synthesis in L. starkeyi, which has not previously been reported.
Collapse
Affiliation(s)
- Rikako Sato
- Department of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Yuuya Fujii
- Department of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Satoshi Ara
- Department of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Harutake Yamazaki
- Department of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Sachiyo Aburatani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Wataru Ogasawara
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Hiroaki Takaku
- Department of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan.
| |
Collapse
|
2
|
Wang W, Zhao Y, Bai N, Zhang KQ, Yang J. AMPK Is Involved in Regulating the Utilization of Carbon Sources, Conidiation, Pathogenicity, and Stress Response of the Nematode-Trapping Fungus Arthrobotrys oligospora. Microbiol Spectr 2022; 10:e0222522. [PMID: 35916406 PMCID: PMC9431048 DOI: 10.1128/spectrum.02225-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
AMP-activated protein kinase (AMPK), a heterotrimeric complex, can sense energy and nutritional status in eukaryotic cells, thereby participating in the regulation of multiple cellular processes. In this study, we characterized the function of the catalytic α-subunit (SNF1) and the two regulatory β- and γ-subunits (GAL83 and SNF4) of AMPK in a representative nematode-trapping fungus, Arthrobotrys oligospora, by gene knockout, phenotypic analysis, and RNA sequencing. The ability of the AMPK complex mutants (including ΔAosnf1, ΔAogal83, and ΔAosnf4) to utilize a nonfermentable carbon source (glycerol) was reduced, and the spore yields and trap formation were remarkably decreased. Moreover, AMPK plays an important role in regulating stress response and nematode predation efficiency. Transcriptomic profiling between the wild-type strain and ΔAosnf1 showed that differentially expressed genes were enriched for peroxisome, endocytosis, fatty acid degradation, and multilipid metabolism (sphingolipid, ether lipid, glycerolipid, and glycerophospholipid). Meanwhile, a reduced lipid droplet accumulation in ΔAosnf1, ΔAogal83, and ΔAosnf4 mutants was observed, and more vacuoles appeared in the mycelia of the ΔAosnf1 mutant. These results highlight the important regulatory role of AMPK in the utilization of carbon sources and lipid metabolism, as well as providing novel insights into the regulatory mechanisms of the mycelia development, conidiation, and trap formation of nematode-trapping (NT) fungi. IMPORTANCE NT fungi are widely distributed in various ecosystems and are important factors in the control of nematode populations in nature; their trophic mycelia can form unique infectious devices (traps) for capturing nematodes. Arthrobotrys oligospora is a representative NT fungi which can develop complex three-dimensional networks (adhesive networks) for nematode predation. Here, we demonstrated that AMPK plays an important role in the glycerol utilization, conidiation, trap formation, and nematode predation of A. oligospora, which was further confirmed by transcriptomic analysis of the wild-type and mutant strains. In particular, our analysis indicated that AMPK is required for lipid metabolism, which is primarily associated with energy regulation and is essential for trap formation. Therefore, this study extends the functional study of AMPK in NT fungi and helps to elucidate the molecular mechanism of the regulation of trap development, as well as laying the foundation for the development of efficient nematode biocontrol agents.
Collapse
Affiliation(s)
- Wenjie Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| | - Yining Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| | - Na Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| |
Collapse
|
3
|
Chang L, Tang X, Zhang H, Chen YQ, Chen H, Chen W. SNF1β-Modulated Glucose Uptake and the Balance between Polyunsaturated Fatty Acids and Carbohydrates in Mortierella alpina. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13849-13858. [PMID: 34779198 DOI: 10.1021/acs.jafc.1c05971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A sucrose nonfermenting protein kinase 1 (SNF1) complex is an important metabolic regulator in fungi that is critical to cell metabolism and stress response. In this study, the role of an SNF1 β-subunit in the oleaginous fungus Mortierella alpina (MaSip2) was investigated. The MaSip2 contained a glycogen-binding domain and a conserved SNF1-complex interaction region; its transcriptional level during lipogenesis shared high consistency with a previously reported SNF1 γ-subunit (MaSnf4). Overexpression of MaSip2 in M. alpina significantly promoted glucose uptake and resulted in 34.1% increased total biomass, leading to 44.8% increased arachidonic acid yield after 7 day fermentation. MaSip2 also regulated the balance between polyunsaturated fatty acids and carbohydrates in M. alpina. Intracellular metabolite analysis revealed increased carbohydrate-related metabolite accumulation in MaSip2 overexpression strains. On the contrary, knockdown of MaSip2 increased the total fatty acid unsaturation degree, especially under low-temperature conditions. This research improved our knowledge of SNF1 complex in M. alpina and provided a target gene for enhancing glucose utilization and modulating fatty acid composition for better application of oleaginous fungi.
Collapse
Affiliation(s)
- Lulu Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
4
|
Chang L, Lu H, Chen H, Tang X, Zhao J, Zhang H, Chen YQ, Chen W. Lipid metabolism research in oleaginous fungus Mortierella alpina: Current progress and future prospects. Biotechnol Adv 2021; 54:107794. [PMID: 34245810 DOI: 10.1016/j.biotechadv.2021.107794] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/11/2021] [Accepted: 07/04/2021] [Indexed: 12/19/2022]
Abstract
The oleaginous fungus Mortierella alpina has distinct advantages in long-chain PUFAs production, and it is the only source for dietary arachidonic acid (ARA) certificated by FDA and European Commission. This review provides an overall introduction to M. alpina, including its major research methods, key factors governing lipid biosynthesis, metabolic engineering and omics studies. Currently, the research interests in M. alpina focus on improving lipid yield and fatty acid desaturation degree by enhancing fatty acid precursors and the reducing power NADPH, and genetic manipulation on PUFAs synthetic pathways is carried to optimise fatty acid composition. Besides, multi-omics studies have been applied to elucidate the global regulatory mechanism of lipogenesis in M. alpina. However, research challenges towards achieving a lipid cell factory lie in strain breeding and cost control due to the coenocytic mycelium, long fermentation period and insufficient conversion rate from carbon to lipid. We also proposed future research goals based on a multilevel regulating strategy: obtaining ideal chassis by directional evolution and high-throughput screening; rewiring central carbon metabolism and inhibiting competitive pathways by multi-gene manipulation system to enhance carbon to lipid conversion rate; optimisation of protein function based on post-translational modification; application of dynamic fermentation strategies suitable for different fermentation phases. By reviewing the comprehensive research progress of this oleaginous fungus, we aim to further comprehend the fungal lipid metabolism and provide reference information and guidelines for the exploration of microbial oils from the perspectives of fundamental research to industrial application.
Collapse
Affiliation(s)
- Lulu Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Hengqian Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Wuxi Translational Medicine Research Center, Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu 214122, PR China; Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
5
|
Tang X, Chang L, Gu S, Zhang H, Chen YQ, Chen H, Zhao J, Chen W. Role of beta-isopropylmalate dehydrogenase in lipid biosynthesis of the oleaginous fungus Mortierella alpina. Fungal Genet Biol 2021; 152:103572. [PMID: 34015432 DOI: 10.1016/j.fgb.2021.103572] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022]
Abstract
Branched-chain amino acids (BCAAs) play an important role in lipid metabolism by serving as signal molecules as well as a potential acetyl-CoA source. Our previous study found that in the oleaginous fungus Mucor circinelloides, beta-isopropylmalate dehydrogenase (IPMDH), an important enzyme participating in the key BCAA leucine biosynthesis, was differentially expressed during lipid accumulation phase and has a positive role on lipogenesis. To further analyze its effects on lipogenesis in another oleaginous fungus Mortierella alpina, the IPMDH-encoding gene MaLeuB was homologously expressed. It was found that the total fatty acid content in the recombinant strain was increased by 20.2% compared with the control strain, which correlated with a 4-fold increase in the MaLeuB transcriptional level. Intracellular metabolites analysis revealed significant changes in amino acid biosynthesis and metabolism, tricarboxylic acid cycle and butanoate metabolism; specifically, leucine and isoleucine levels were upregulated by 6.4-fold and 2.2-fold, respectively. Our genetic engineering approach and metabolomics study demonstrated that MaLeuB is involved in fatty acid metabolism in M. alpina by affecting BCAAs metabolism, and this newly discovered role of IPMDH provides a potential bypass route to increase lipogenesis in oleaginous fungi.
Collapse
Affiliation(s)
- Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Lulu Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Shujie Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu 214122, PR China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu 214122, PR China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, PR China
| |
Collapse
|