1
|
Gao S, Huang X, Zhang X, Yuan Z, Chen H, Li Z, El-Mesery HS, Shi J, Zou X. Empowering protein single-molecule sequencing: nanopore technology toward sensing gene sequences. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:3902-3924. [PMID: 40331275 DOI: 10.1039/d5ay00572h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
The investigation of proteins at the single-molecule level is urgent to reveal the relationship between their structure and function. Unlike traditional techniques for attaining the overall average effect of group systems, nanopore sensing mode can provide information on the characteristics of proteins at the single-molecule level. Assisting with the intensity, frequency, and period of current changes, nanopore sequencing technology is rapidly advancing due to its merits, including fast readout, high accuracy, low cost, and portability. In particular, the single-molecule nanopore sequencing mode enables in-depth studies of DNA-protein interactions, protein conformation, DNA sequencing, and microbial assay, including genome sequencing of new species. This review summarizes the sensing mechanisms of nanopore sequencing technology in DNA damage, DNA methylation, RNA sequencing, and protein post-translational modifications and unfolding, covering both biological and solid-state nanopores. Due to these significant advantages, nanopore sequencing provides new insights into complex biological processes and enables more precise real-time monitoring of molecular changes. Its applications extend to clinical diagnostics, environmental monitoring, food safety, and forensic analysis. Moreover, the review outlines the present challenges faced by nanopore sequencing patterns, such as the choice of raw reagents and the design of special construction, offering a deep understanding of nanoporous single-molecule sensing toward protein sequence information and structure prediction.
Collapse
Affiliation(s)
- Shujie Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
- Faculty of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Xiaowei Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Xinai Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Zhecong Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Haili Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Zhihua Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Hany S El-Mesery
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| |
Collapse
|
2
|
de Siqueira EC, de Andrade Alves A, de Barros MPS, da Silva Vale R, da Costa E Silva PE, Contiero J, Dutra ED, Houllou LM. Integrated production of polyhydroxyalkanoates and rhamnolipids: Insights in cultivation conditions and metabolic engineering. J Biotechnol 2025; 405:17-25. [PMID: 40339653 DOI: 10.1016/j.jbiotec.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/02/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Polyhydroxyalkanoates and biosurfactants have the potential to play a significant role in emerging bioeconomic chains. With growing environmental worries about the excessive consumption of fossil fuel derivatives, significant focus has been paid to a renewable-based economy known as the circular bioeconomy. Polyhydroxyalkanoates (PHAs) are a type of biodegradable, hydrophobic, non-toxic, thermoplastic polymer created by microbial processes that have good physicochemical properties. Rhamnolipids (RhL) are amphipathic, biodegradable, and biocompatible compounds with outstanding emulsification capabilities. Unfortunately, commercial manufacturing of PHA and RhL remains limited due to their high production costs as compared to standard polymers and surfactants. The combined manufacture of PHA and RhL can lower production costs and is an ideal option for creating two widely applicable commodities on the market. This work provides a general overview of PHA and RhL co-production, focusing on the use of renewable materials and important aspects that are directly related to cultivation conditions, as well as genetic and metabolic engineering strategies to optimize PHA and RhL production.
Collapse
Affiliation(s)
- Edmilson Clarindo de Siqueira
- Center for Strategic Technologies in the Northeast (CETENE), Av. Prof. Luiz Freire, 01 Cidade Universitária, Recife, PE 50740545, Brazil
| | - Aline de Andrade Alves
- Center for Strategic Technologies in the Northeast (CETENE), Av. Prof. Luiz Freire, 01 Cidade Universitária, Recife, PE 50740545, Brazil.
| | - Maria Paloma Silva de Barros
- Center for Strategic Technologies in the Northeast (CETENE), Av. Prof. Luiz Freire, 01 Cidade Universitária, Recife, PE 50740545, Brazil
| | - Rayane da Silva Vale
- São Paulo State University, Av. 24 A, 1515-Bela Vista, Rio Claro, SP 13506-900, Brazil
| | - Páblo Eugênio da Costa E Silva
- Federal Rural University of Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, S/N, Dois Irmãos, Recife, PE 52171900, Brazil
| | - Jonas Contiero
- São Paulo State University, Av. 24 A, 1515-Bela Vista, Rio Claro, SP 13506-900, Brazil
| | - Emmanuel Damilano Dutra
- Federal Rural University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, CidadeUniversitária, Recife, PE 50670901, Brazil
| | - Laureen Michelle Houllou
- Center for Strategic Technologies in the Northeast (CETENE), Av. Prof. Luiz Freire, 01 Cidade Universitária, Recife, PE 50740545, Brazil
| |
Collapse
|
3
|
Niu B, Sun Y, Niu Y, Qiao S. Ultrasound Treatment Combined with Rhamnolipids for Eliminating the Biofilm of Bacillus cereus. Microorganisms 2024; 12:2478. [PMID: 39770681 PMCID: PMC11728430 DOI: 10.3390/microorganisms12122478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 01/16/2025] Open
Abstract
Biofilm formation by Bacillus cereus is a major cause of secondary food contamination, leading to significant economic losses. While rhamnolipids (RLs) have shown effectiveness against Bacillus cereus, their ability to remove biofilms is limited when used alone. Ultrasound (US) is a non-thermal sterilization technique that has been found to enhance the delivery of antimicrobial agents, but it is not highly effective on its own. In this study, we explored the synergistic effects of combining RLs with US for biofilm removal. The minimum biofilm inhibitory concentration (MBIC) of RLs was determined to be 32.0 mg/L. Using a concentration of 256.0 mg/L, RLs alone achieved a biofilm removal rate of 63.18%. However, when 32.0 mg/L RLs were combined with 20 min of US treatment, the removal rate increased to 62.54%. The highest biofilm removal rate of 78.67% was observed with 256.0 mg/L RLs and 60 min of US exposure. Scanning electron microscopy analysis showed that this combined treatment significantly disrupted the biofilm structure, causing bacterial deformation and the removal of extracellular polymeric substances. This synergistic approach not only inhibited bacterial metabolic activity, aggregation, and adhesion but also reduced early biofilm formation and decreased levels of extracellular polysaccharides and proteins. Furthermore, US treatment improved biofilm permeability, allowing better penetration of RLs and interaction with bacterial DNA, ultimately inhibiting DNA synthesis and secretion. The combination of RLs and US demonstrated superior biofilm removal efficacy, reduced the necessary concentration of RLs, and offers a promising strategy for controlling biofilm formation in the food industry.
Collapse
Affiliation(s)
- Ben Niu
- National Engineering Research Center for Wheat & Corn Further Processing, Zhengzhou 450001, China; (B.N.); (Y.S.); (S.Q.)
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Yiming Sun
- National Engineering Research Center for Wheat & Corn Further Processing, Zhengzhou 450001, China; (B.N.); (Y.S.); (S.Q.)
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Yongwu Niu
- National Engineering Research Center for Wheat & Corn Further Processing, Zhengzhou 450001, China; (B.N.); (Y.S.); (S.Q.)
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Shan Qiao
- National Engineering Research Center for Wheat & Corn Further Processing, Zhengzhou 450001, China; (B.N.); (Y.S.); (S.Q.)
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
4
|
Fernandes NAT, Rose AL, Simões LA, Dias DR. Chemical and biological evaluation of biosurfactant fractions from Wickerhamomyces anomalus CCMA 0358. Appl Microbiol Biotechnol 2023; 107:7621-7633. [PMID: 37819395 DOI: 10.1007/s00253-023-12811-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Biosurfactants (BS) are becoming a solution for today's world since they are considered a reasonable and eco-friendly option for use in products that require surfactants. This study aimed to evaluate the antibacterial activity of purified fractions containing biosurfactants produced by the yeast Wickerhamomyces anomalus CCMA 0358 using waste cooking oil (WCO) as substrate. Mixed fractions were separated and characterized by TLC, MPLC, GC-MS, LC-OMS, LC-SQMS, FTIR, 1H, 13C, DEPT 135, COSY, HSQC, and HMBC. The results confirmed the presence of palmitic acid and oleic acid fatty acids, derived from the core biosurfactant structure; however, the core could not be identified. The crude biosurfactant and its purified fractions were evaluated against pathogenic bacteria, and the purified fractions of the biosurfactant are more efficient at inhibitory and bactericidal activities than the crude biosurfactant. To the best of our knowledge, this is the first study that evaluated the antimicrobial activity of purified fractions of biosurfactants produced by the species Wickerhamomyces anomalus. Therefore, the purification of biosurfactants can emerge as an interesting alternative to increase the bioactivity of the compounds and ensure greater efficiency and biotechnological employability. KEY POINTS: • Successful production of a biosurfactant using a renewed carbon source. • Evaluation of the antimicrobial activity of purified fractions of BS. • Separated fractions of the BS are more efficient against bacteria than the crude BS.
Collapse
Affiliation(s)
- Natalia Andrade Teixeira Fernandes
- Chemistry Department, University of California, Davis, 1 Shields Ave, Davis, CA, 95616, USA
- Biology Department, UFLA - Federal University of Lavras Campus Universitário, Caixa Postal 3037, Lavras, Minas Gerais, 37200-900, Brazil
| | - Ami Lin Rose
- Chemistry Department, University of California, Davis, 1 Shields Ave, Davis, CA, 95616, USA
| | - Luara Aparecida Simões
- Biology Department, UFLA - Federal University of Lavras Campus Universitário, Caixa Postal 3037, Lavras, Minas Gerais, 37200-900, Brazil
- Centre of Molecular and Environmental Biology, University of Minho, R. da Universidade, 4710-057, Braga, Portugal
| | - Disney Ribeiro Dias
- Food Science Department, UFLA - Federal University of Lavras Campus Universitário, Caixa Postal 3037, Lavras, Minas Gerais, 37200-900, Brazil.
| |
Collapse
|
5
|
Chang Q, Chen H, Li Y, Li H, Yang Z, Zeng J, Zhang P, Ge J, Gao M. The Synergistic Activity of Rhamnolipid Combined with Linezolid against Linezolid-Resistant Enterococcus faecium. Molecules 2023; 28:7630. [PMID: 38005351 PMCID: PMC10674639 DOI: 10.3390/molecules28227630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Enterococci resistance is increasing sharply, which poses a serious threat to public health. Rhamnolipids are a kind of amphiphilic compound used for its bioactivities, while the combination of nontraditional drugs to restore linezolid activity is an attractive strategy to treat infections caused by these pathogens. This study aimed to investigate the activity of linezolid in combination with the rhamnolipids against Enterococcus faecium. Here, we determined that the rhamnolipids could enhance the efficacy of linezolid against enterococci infections by a checkerboard MIC assay, a time-kill assay, a combined disk test, an anti-biofilm assay, molecular simulation dynamics, and mouse infection models. We identified that the combination of rhamnolipids and linezolid restored the linezolid sensitivity. Anti-biofilm experiments show that our new scheme can effectively inhibit biofilm generation. The mouse infection model demonstrated that the combination therapy significantly reduced the bacterial load in the feces, colons, and kidneys following subcutaneous administration. This study showed that rhamnolipids could play a synergistic role with linezolid against Enterococcus. Our combined agents could be appealing candidates for developing new combinatorial agents to restore antibiotic efficacy in the treatment of linezolid-resistant Enterococcus infections.
Collapse
Affiliation(s)
- Qingru Chang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Huinan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hai Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zaixing Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiankai Zeng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ping Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin 150030, China
| | - Mingchun Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin 150030, China
| |
Collapse
|
6
|
Kumar R, Barbhuiya RI, Bohra V, Wong JWC, Singh A, Kaur G. Sustainable rhamnolipids production in the next decade - Advancing with Burkholderia thailandensis as a potent biocatalytic strain. Microbiol Res 2023; 272:127386. [PMID: 37094547 DOI: 10.1016/j.micres.2023.127386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 04/26/2023]
Abstract
Rhamnolipids are one of the most promising eco-friendly green glycolipids for bio-replacements of commercially available fossil fuel-based surfactants. However, the current industrial biotechnology practices cannot meet the required standards due to the low production yields, expensive biomass feedstocks, complicated processing, and opportunistic pathogenic nature of the conventional rhamnolipid producer strains. To overcome these problems, it has become important to realize non-pathogenic producer substitutes and high-yielding strategies supporting biomass-based production. We hereby review the inherent characteristics of Burkholderia thailandensis E264 which favor its competence towards such sustainable rhamnolipid biosynthesis. The underlying biosynthetic networks of this species have unveiled unique substrate specificity, carbon flux control and rhamnolipid congener profile. Acknowledging such desirable traits, the present review provides critical insights towards metabolism, regulation, upscaling, and applications of B. thailandensis rhamnolipids. Identification of their unique and naturally inducible physiology has proved to be beneficial for achieving previously unmet redox balance and metabolic flux requirements in rhamnolipids production. These developments in part are targeted by the strategic optimization of B. thailandensis valorizing low-cost substrates ranging from agro-industrial byproducts to next generation (waste) fractions. Accordingly, safer bioconversions can propel the industrial rhamnolipids in advanced biorefinery domains to promote circular economy, reduce carbon footprint and increased applicability as both social and environment friendly bioproducts.
Collapse
Affiliation(s)
- Rajat Kumar
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | | | - Varsha Bohra
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Jonathan W C Wong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Institute of Bioresources and Agriculture and Sino-Forest Applied Research Centre for Pearl River Delta Environment, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Ashutosh Singh
- School of Engineering, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Guneet Kaur
- School of Engineering, University of Guelph, Guelph, ON N1G2W1, Canada.
| |
Collapse
|
7
|
Cui T, Tang Y, Zhao M, Hu Y, Jin M, Long X. Preparing Biosurfactant Glucolipids from Crude Sophorolipids via Chemical Modifications and Their Potential Application in the Food Industry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2964-2974. [PMID: 36723399 DOI: 10.1021/acs.jafc.2c06066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This investigation developed a novel strategy for efficiently preparing glucolipids (GLs) by chemically modifying crude sophorolipids. Running this strategy, crude sophorolipids were effectively transformed into GLs through deglycosylation and de-esterification, with a yield of 54.1%. The acquired GLs were then purified via stepwise extractions, and 66.2% of GLs with 95% purity was recovered. GLs are more hydrophobic and present a stronger surface activity than acidic sophorolipids (ASLs). More importantly, these GLs displayed a superior antimicrobial activity to that of ASLs against the tested Gram-positive food pathogens, with a minimum inhibitory concentration of 32-64 mg/L, except against E. coli . This activity of GLs is pH-dependent and especially more powerful under acidic conditions. The mechanism involved is possibly associated with the more efficient adsorption of GLs, as demonstrated by the hydrophobicity of the cell membrane. These GLs could be used as antimicrobial agents for food preservation and health in the food industry.
Collapse
Affiliation(s)
- Tianyou Cui
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, PR China
| | - Yujing Tang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, PR China
| | - Mengqian Zhao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, PR China
| | - Yang Hu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, PR China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, PR China
| | - Xuwei Long
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, PR China
| |
Collapse
|
8
|
Iqbal MW, Riaz T, Mahmood S, Bilal M, Manzoor MF, Qamar SA, Qi X. Fucoidan-based nanomaterial and its multifunctional role for pharmaceutical and biomedical applications. Crit Rev Food Sci Nutr 2022; 64:354-380. [PMID: 35930305 DOI: 10.1080/10408398.2022.2106182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fucoidans are promising sulfated polysaccharides isolated from marine sources that have piqued the interest of scientists in recent years due to their widespread use as a bioactive substance. Bioactive coatings and films, unsurprisingly, have seized these substances to create novel, culinary, therapeutic, and diagnostic bioactive nanomaterials. The applications of fucoidan and its composite nanomaterials have a wide variety of food as well as pharmacological properties, including anti-oxidative, anti-inflammatory, anti-cancer, anti-thrombic, anti-coagulant, immunoregulatory, and anti-viral properties. Blends of fucoidan with other biopolymers such as chitosan, alginate, curdlan, starch, etc., have shown promising coating and film-forming capabilities. A blending of biopolymers is a recommended approach to improve their anticipated properties. This review focuses on the fundamental knowledge and current development of fucoidan, fucoidan-based composite material for bioactive coatings and films, and their biological properties. In this article, fucoidan-based edible bioactive coatings and films expressed excellent mechanical strength that can prolong the shelf-life of food products and maintain their biodegradability. Additionally, these coatings and films showed numerous applications in the biomedical field and contribute to the economy. We hope this review can deliver the theoretical basis for the development of fucoidan-based bioactive material and films.
Collapse
Affiliation(s)
| | - Tahreem Riaz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shahid Mahmood
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | | | - Sarmad Ahmad Qamar
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei, Taiwan
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Chen Y, Liu C, Kumaravel K, Nan L, Tian Y. Two New Sulfate-Modified Dibenzopyrones With Anti-foodborne Bacteria Activity From Sponge-Derived Fungus Alternaria sp. SCSIOS02F49. Front Microbiol 2022; 13:879674. [PMID: 35620099 PMCID: PMC9128073 DOI: 10.3389/fmicb.2022.879674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
At present, foodborne diseases (FBDs) caused by bacteria are gradually increasing every year, and the development of new antibiotics is an urgent necessity for human beings. To find novel antibacterial compounds, three sponge-derived fungal strains (SCSIOS02F40, F46, and F49) were investigated. As a result, Alternaria sp. SCSIOS02F49 was selected for investigation on its secondary metabolites because its ethyl acetate (EtOAc) extract of potato dextrose broth (PDB) culture showed rich metabolites and strong antibacterial activity. Two new dibenzopyrones with rare sulfate group (1–2), together with 10 known compounds (3–12), were isolated from the Alternaria sp. SCSIOS02F49. Their structures were confirmed by nuclear magnetic resonance (NMR), mass spectrometry (MS) data, and comparison with data from the relevant literature. Almost all compounds showed moderate inhibitory activity against eight foodborne bacteria (FBB) with minimum inhibitory concentration (MIC) values in the range of 15.6–250 μg/ml, and minimum bactericidal concentration (MBC) values in the range of 31.3–250 μg/ml. The antibacterial mechanism of compound 1 was preliminarily investigated using growth curves, scanning electron microscopy (SEM), and flow cytometry (FCM), which revealed that compound 1 altered the external structure of Staphylococcus aureus and caused the rupture or deformation of the cell membranes. This research provides lead compounds for the development of new antibiotics or microbial preservatives.
Collapse
Affiliation(s)
- Yaping Chen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Chuanna Liu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | | | - Lihong Nan
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yongqi Tian
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| |
Collapse
|
10
|
Abd El-Malek F, Rofeal M, Zabed HM, Nizami AS, Rehan M, Qi X. Microorganism-mediated algal biomass processing for clean products manufacturing: Current status, challenges and future outlook. FUEL 2022; 311:122612. [DOI: 10.1016/j.fuel.2021.122612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
11
|
Zhu P, Zhang S, Kumar R, Zhang Z, Zhang Z, Wang Y, Jiang X, Lin K, Kaur G, Yung KKL. Rhamnolipids from non-pathogenic Acinetobacter calcoaceticus: Bioreactor-scale production, characterization and wound healing potency. N Biotechnol 2021; 67:23-31. [PMID: 34890838 DOI: 10.1016/j.nbt.2021.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 01/01/2023]
Abstract
Rhamnolipids are predominantly produced from the opportunistic pathogen Pseudomonas aeruginosa, which restricts their scaled-up production and biomedical applications. Moreover, the wound healing property of rhamnolipids is mainly focused on either mono- or di-rhamnolipid congeners, which are obtained after extensive and costly purification procedures. Here, crude rhamnolipids from non-pathogenic Acinetobacter calcoaceticus BU-03 have been prepared and characterized and their wound healing potency evaluated in vitro and in vivo. Rhamnolipid extract was produced in a bioreactor by batch fermentation at a concentration of 12.7 ± 1.4 g/L. Characterization of the extract by Fourier Transform Infrared spectroscopy and mass spectrometry revealed characteristic rhamnolipid peaks. Rha-C10-C10 and Rha-Rha-C10-C10 appeared as the predominant congeners along with minor quantities of six more congeners. The rhamnolipid extract obtained from A. calcoaceticus had no toxicity against mouse fibroblast L929 cells and accelerated their migration. Transforming growth factor beta 1 (TGF-β1) has been shown to promote fibroblast migration by activating Smad3. It was found that the rhamnolipid extract enhanced Smad3 phosphorylation in L929 cells. In vivo studies showed that it promoted wound healing in mice with excisional wounds. The protein levels of TGF-β1 and alpha smooth muscle actin (α-SMA), a highly contractile protein, were significantly increased by 2.56- and 1.51-fold, respectively, in extract-treated compared with vehicle control-treated wounds, indicating that the activation of TGF-β1 signaling is possibly involved in the wound healing effect. These results suggest that a rhamnolipid extract obtained from A. calcoaceticus has potential as a wound healing material for topical application in cutaneous wound treatment.
Collapse
Affiliation(s)
- Peili Zhu
- Department of Biology, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong, China; Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Kowloon Tong, Hong Kong, China
| | - Shiqing Zhang
- Department of Biology, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong, China; Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Kowloon Tong, Hong Kong, China
| | - Rajat Kumar
- Department of Biology, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong, China
| | - Zhu Zhang
- Department of Biology, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong, China; Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Kowloon Tong, Hong Kong, China
| | - Zhang Zhang
- Department of Biology, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong, China; Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Kowloon Tong, Hong Kong, China
| | - Ying Wang
- Department of Biology, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong, China; Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Kowloon Tong, Hong Kong, China
| | - Xiaoli Jiang
- Department of Biology, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong, China; Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Kowloon Tong, Hong Kong, China
| | - Kaili Lin
- Department of Biology, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong, China; Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Kowloon Tong, Hong Kong, China
| | - Guneet Kaur
- Department of Biology, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong, China; Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, Ontario, MP3 1J3, Canada.
| | - Ken Kin Lam Yung
- Department of Biology, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong, China; Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
12
|
Sun H, Ansari MF, Fang B, Zhou CH. Natural Berberine-Hybridized Benzimidazoles as Novel Unique Bactericides against Staphylococcus aureus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7831-7840. [PMID: 34228443 DOI: 10.1021/acs.jafc.1c02545] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Natural berberine-hybridized benzimidazoles as potential antibacterial agents were constructed to treat Staphylococcus aureus infection in the livestock industry. Bioassay showed that some new berberine-benzimidazole hybrids exhibited potent antibacterial efficacies, especially, the 2,4-dichlorobenzyl derivative 7d not only showed strong activity against S. aureus ATCC 29213 with the MIC value of 0.006 mM but also effectively eradicated bacterial biofilm and exhibited low toxicity toward mammalian cells. The drug combination experiments showed that compound 7d together with norfloxacin could enhance the antibacterial efficacy. Moreover, the 2,4-dichlorobenzyl derivative 7d did not show obvious propensity to develop bacterial resistance. Preliminary mechanism studies revealed that the active molecule 7d could damage the membrane integrity, stimulate ROS generation, and bind with DNA as well as S. aureus sortase A, thus exerting powerful antibacterial ability. In light of these facts, berberine-benzimidazole hybrid 7d showed a large potentiality as a new bactericide for treating S. aureus in the livestock industry.
Collapse
Affiliation(s)
- Hang Sun
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Bo Fang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
13
|
Active polyhydroxybutyrate (PHB)/sugarcane bagasse fiber-based anti-microbial green composite: material characterization and degradation studies. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01972-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
14
|
L-arabinose isomerase from Lactobacillus parabuchneri and its whole cell biocatalytic application in D-tagatose biosynthesis from D-galactose. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|