1
|
Wang J, Li J, Yu W, Wang G, Cifuentes A, Ibañez E, Lu W. Microalgal proteins: Extraction, interfacial properties, bioactivities, and future perspectives - A review. Food Chem 2025; 486:144680. [PMID: 40373600 DOI: 10.1016/j.foodchem.2025.144680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/25/2025] [Accepted: 05/07/2025] [Indexed: 05/17/2025]
Abstract
The increasing global demand for protein, coupled with concerns over the environmental sustainability of animal-derived sources, has prompted the search for alternative protein sources. Microalgae have emerged as a promising solution due to their high productivity, protein content, and ability to grow in non-arable environments or photobioreactors. Their proteins, hydrolysates and peptides exhibit diverse bioactivities, including anti-obesity, anti-cancer, antioxidant, and anti-hypertensive effects, as well as functional properties such as emulsification, foaming and gelling. However, their practical utilization is hindered by challenges such as high production costs and environmental sensitivity, particularly in relation to pH, temperature, and light, which can affect their structural stability and functional performance. This review summarizes traditional and innovative extraction techniques, discusses the structure-function relationships of these microalgal components, and highlights their potential applications. Furthermore, it identifies key production and commercialization challenges, proposing strategies to enhance extraction efficiency and environmental stability during processing and storage, thereby facilitating broader industrial implementation.
Collapse
Affiliation(s)
- Junwen Wang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450003, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin 150001, China
| | - Jiangfei Li
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450003, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin 150001, China
| | - Wenchen Yu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ge Wang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Elena Ibañez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Weihong Lu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450003, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
2
|
Kong W, Lin X, Ye J, Lu Y. Continuous Liquid-Liquid Extraction of High-Purity Lutein from Chlorella vulgaris via Centrifugal Partition Chromatography: Utilizing Limonene as Renewable Solvent for Microalgae Biomass Valorization. Foods 2025; 14:1637. [PMID: 40361719 PMCID: PMC12071933 DOI: 10.3390/foods14091637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/30/2025] [Accepted: 05/04/2025] [Indexed: 05/15/2025] Open
Abstract
In this study, an efficient and eco-friendly method was developed for continuous liquid-liquid extraction of lutein from microalgae Chlorella vulgaris. By employing a limonene-based biphasic liquid system, high-purity lutein was successfully obtained from the crude extract in a single run via centrifugal partition chromatography (CPC). Evaluation and optimization results demonstrated that limonene could effectively serve as a replacement for n-hexane as the solvent system for lutein extraction, exhibiting natural renewability and minimal environmental impact. Furthermore, the elution-extrusion operation mode was employed to fully exploit the liquid nature of the stationary phase in the extraction process, allowing for continuous sampling and separation without interruption. This proposed protocol offers a sustainable and environmentally friendly alternative for extracting valuable ingredients from microalgae biomass, demonstrating its potential as a scalable solution for producing lutein-enriched ingredients applicable to functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Weiheng Kong
- Science and Technology Research Center of China Customs, Beijing 100026, China
| | - Xianjiang Lin
- National R&D Branch Center for Marine Fish Processing, Zhejiang Provincial Key Laboratory of Food Microbiology and Nutritional Health, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310018, China; (X.L.); (J.Y.)
| | - Jing Ye
- National R&D Branch Center for Marine Fish Processing, Zhejiang Provincial Key Laboratory of Food Microbiology and Nutritional Health, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310018, China; (X.L.); (J.Y.)
| | - Yanbin Lu
- National R&D Branch Center for Marine Fish Processing, Zhejiang Provincial Key Laboratory of Food Microbiology and Nutritional Health, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310018, China; (X.L.); (J.Y.)
| |
Collapse
|
3
|
De Bhowmick G, Plouviez M, Reis MG, Guieysse B, Everett DW, Agnew MP, Maclean P, Thum C. Evaluation of Extraction Techniques for Recovery of Microalgal Lipids under Different Growth Conditions. ACS OMEGA 2024; 9:27976-27986. [PMID: 38973871 PMCID: PMC11223222 DOI: 10.1021/acsomega.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
Microalgal lipids contain a wide array of liposoluble bioactive compounds, but lipid extraction remains a critical limitation for their commercial use. An accelerated solvent extraction (ASE) was used to extract lipids from Chlamydomonas reinhardtii, Arthrospira platensis (Spirulina), and Chlorella vulgaris grown under either standard or nitrogen depletion conditions. Under standard growth conditions, ASE using methanol:chloroform (2:1), methyl tert-butyl ether (MTBE):methanol:water, and ethanol at 100 °C resulted in the highest recovery of total lipids (352 ± 30, 410 ± 32, and 127 ± 15 mg/g biomass from C. reinhardtii, C. vulgaris, and A. platensis, respectively). Similarly, the highest total lipid and triacylglycerols (TAGs) recovery from biomass cultivated under nitrogen depletion conditions was found at 100 °C using methanol:chloroform, for C. reinhardtii (total, 550 ± 21; TAG, 205 ± 2 mg/g biomass) and for C. vulgaris (total, 612 ± 29 mg/g; TAG, 253 ± 7 mg/g biomass). ASE with MTBE:methanol:water at 100 °C yielded similar TAG recovery for C. reinhardtii (159 ± 6 mg/g) and C. vulgaris (200 ± 4 mg/g). Thus, MTBE:methanol:water is suggested as an alternative substitute to replace hazardous solvent mixtures for TAGs extraction with a much lower environmental impact. The extracted microalgal TAGs were rich in palmitic (C16:0), stearic (C18:0), oleic (C18:1,9), linoleic (C18:2n6), and α-linolenic (C18:3n3) acids. Under nitrogen depletion conditions, increased palmitic acid (C16:0) recovery up to 2-fold was recorded from the biomasses of C. reinhardtii and C. vulgaris. This study demonstrates a clear linkage between the extraction conditions applied and total lipid and TAG recovery.
Collapse
Affiliation(s)
- Goldy De Bhowmick
- AgResearch
Ltd., Te Ohu Rangahau Kai, Palmerston North, 4474 New Zealand
| | - Maxence Plouviez
- School
of Engineering and Advanced Technology, Massey University, Private
Bag 11 222, Palmerston North, 4442 New Zealand
| | - Mariza Gomes Reis
- AgResearch
Ltd., Te Ohu Rangahau Kai, Palmerston North, 4474 New Zealand
| | - Benoit Guieysse
- School
of Engineering and Advanced Technology, Massey University, Private
Bag 11 222, Palmerston North, 4442 New Zealand
| | - David W. Everett
- AgResearch
Ltd., Te Ohu Rangahau Kai, Palmerston North, 4474 New Zealand
- Riddet
Institute, Private Bag
11 222, Palmerston North 4442, New Zealand
| | - Michael P. Agnew
- AgResearch
Ltd., Te Ohu Rangahau Kai, Palmerston North, 4474 New Zealand
| | - Paul Maclean
- AgResearch
Ltd., Grasslands Campus, Palmerston North 4442, New Zealand
| | - Caroline Thum
- AgResearch
Ltd., Te Ohu Rangahau Kai, Palmerston North, 4474 New Zealand
| |
Collapse
|
4
|
Abiusi F, Tumulero B, Neutsch L, Mathys A. Productivity, amino acid profile, and protein bioaccessibility in heterotrophic batch cultivation of Galdieria sulphuraria. BIORESOURCE TECHNOLOGY 2024; 399:130628. [PMID: 38521173 DOI: 10.1016/j.biortech.2024.130628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
The polyextremophilic Galdieria sulphuraria is emerging as a promising microalgal species for food applications. This work explores the potential of heterotrophically cultivated G. sulphuraria as a protein producer for human consumption. To this end, the performances of four G. sulphuraria strains grown under the same conditions were compared. Amino acid profiles varied among strains and growth phases, but all samples met FAO dietary requirements for adults. The specific growth rates were between 1.01 and 1.48 day-1. After glucose depletion, all strains showed an increase of 38-49 % in nitrogen content within 48 h, reaching 7.8-12.0 % w/w. An opposite trend was observed in protein bioaccessibility, which decreased on average from 69 % during the exponential phase to a minimum of 32 % 48 h after stationary phase, with significant differences among the strains. Therefore, selecting the appropriate strain and harvesting time is crucial for successful single-cell protein production.
Collapse
Affiliation(s)
- F Abiusi
- ETH Zurich, Laboratory of Sustainable Food Processing, Zurich, Switzerland.
| | - B Tumulero
- ETH Zurich, Laboratory of Sustainable Food Processing, Zurich, Switzerland; ZHAW, Campus Grüental, Wädenswil, Switzerland
| | - L Neutsch
- ZHAW, Campus Grüental, Wädenswil, Switzerland
| | - A Mathys
- ETH Zurich, Laboratory of Sustainable Food Processing, Zurich, Switzerland
| |
Collapse
|
5
|
Sun G, Jia R, Zhang Y, Zhang Z, Wang Y, Ma R, Wang Y, Jiang Z, Liu M, Jiang Y. Mechanisms of the novel pesticide sodium dodecyl benzene sulfonate in the mitigation of protozoan ciliated pathogens during microalgal cultivation. MARINE POLLUTION BULLETIN 2024; 201:116204. [PMID: 38430678 DOI: 10.1016/j.marpolbul.2024.116204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Protozoan ciliates represent a common biological contaminant during microalgae cultivation, which will lead to a decline in microalgae productivity. This study investigated the effectiveness of sodium dodecyl benzene sulfonate (SDBS) in controlling ciliate populations within microalgae cultures. SDBS concentrations of 160 mg/L and 100 mg/L were found to effectively manage the representative species of ciliates contamination by Euplotes vannus and Uronema marinum during the cultivation of Synechococcus and Chlorella, and the growth vitality of microalgae has been restored. Additionally, SDBS at these concentrations reduced oxidative stress resistance and induced membrane damage to remove biological pollutants by modulating enzyme activity, affecting lipid, energy, amino acid metabolism pathways, and processes such as translation and protein folding. This research provides insights into the mechanisms through which SDBS effectively combats protozoan ciliates during the microalgal cultivation. This contributes to reduce biological pollution, ensure the overall productivity and healthy and sustainable management of microalgae ecosystems.
Collapse
Affiliation(s)
- Gaojingwen Sun
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Ruiqi Jia
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yan Zhang
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Zhaoji Zhang
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yunlong Wang
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Rui Ma
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yaxin Wang
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Zhiyang Jiang
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Mingjian Liu
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yong Jiang
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Key Laboratory of Evolution & Marine Biodiversity of Ministry of Education, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
6
|
Gu S, Lan CQ. Mechanism of heavy metal ion biosorption by microalgal cells: A mathematic approach. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132875. [PMID: 37918069 DOI: 10.1016/j.jhazmat.2023.132875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
Microalgal biomasses have been established as promising biosorbents for biosorption to remove heavy metal ions (HMIs) from wastewaters and contaminated natural waterbodies. Understanding the mechanism is important for the development of cost-effective processes for large scale applications. In this paper, a simple mathematical model was proposed for the predication of biosorption capacity of HMI by microalgal cells based on single cell mass, cell size, and HMI radius. One fundamental assumption based on which this model was developed, i.e., the biosorption of HMI by microalgal cells is predominantly monolayer bio-adsorption, was established based on kinetic, isothermal, FTIR, and Pb(II) distribution data generated in this study and in literature. The model was validated using a combination of experimental and literature data as well, demonstrating its capability to provide reasonable estimations although with discrepancies. The biosorption capacities of HMIs (mmol/g) by Chlorella vulgaris were experimentally determined to be in the following order: Pb(II)(0.360)> Zn(II)(0.325)> Cu(II)(0.254)> Ni(II)(0.249)> Cd(II)(0.235)> Co(II)(0.182). We systematically investigated the deviations of the predicted biosorption capacities in term of the effects of a few important parameters that were unaccounted for in the model, including the nanostructures on cell surface, HMI electronegativity, and biosorption buffer pH. Results suggest that the nanostructures on cell wall, likely the hairlike fibers, might be the primary locations where the binding sites for HMI were housed. Furthermore, isothermal data, which is suported by the predictions of this model, indicate the each effective binding site on C. vulgaris cell surface could bind to more than one Co(II) in biosorption while each of the other five HMIs tested in this study required more than one binding sites.
Collapse
Affiliation(s)
- Siwei Gu
- Department of Chemical and Biological Engineering, University of Ottawa, Canada
| | - Christopher Q Lan
- Department of Chemical and Biological Engineering, University of Ottawa, Canada.
| |
Collapse
|
7
|
Zamree ND, Puasa NA, Lim ZS, Wong CY, Shaharuddin NA, Zakaria NN, Merican F, Convey P, Ahmad S, Shaari H, Azmi AA, Ahmad SA, Zulkharnain A. The Utilisation of Antarctic Microalgae Isolated from Paradise Bay (Antarctic Peninsula) in the Bioremediation of Diesel. PLANTS (BASEL, SWITZERLAND) 2023; 12:2536. [PMID: 37447097 DOI: 10.3390/plants12132536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
Research has confirmed that the utilisation of Antarctic microorganisms, such as bacteria, yeasts and fungi, in the bioremediation of diesel may provide practical alternative approaches. However, to date there has been very little attention towards Antarctic microalgae as potential hydrocarbon degraders. Therefore, this study focused on the utilisation of an Antarctic microalga in the bioremediation of diesel. The studied microalgal strain was originally obtained from a freshwater ecosystem in Paradise Bay, western Antarctic Peninsula. When analysed in systems with and without aeration, this microalgal strain achieved a higher growth rate under aeration. To maintain the growth of this microalga optimally, a conventional one-factor-at a-time (OFAT) analysis was also conducted. Based on the optimized parameters, algal growth and diesel degradation performance was highest at pH 7.5 with 0.5 mg/L NaCl concentration and 0.5 g/L of NaNO3 as a nitrogen source. This currently unidentified microalga flourished in the presence of diesel, with maximum algal cell numbers on day 7 of incubation in the presence of 1% v/v diesel. Chlorophyll a, b and carotenoid contents of the culture were greatest on day 9 of incubation. The diesel degradation achieved was 64.5% of the original concentration after 9 days. Gas chromatography analysis showed the complete mineralisation of C7-C13 hydrocarbon chains. Fourier transform infrared spectroscopy analysis confirmed that strain WCY_AQ5_3 fully degraded the hydrocarbon with bioabsorption of the products. Morphological and molecular analyses suggested that this spherical, single-celled green microalga was a member of the genus Micractinium. The data obtained confirm that this microalga is a suitable candidate for further research into the degradation of diesel in Antarctica.
Collapse
Affiliation(s)
- Nur Diyanah Zamree
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nurul Aini Puasa
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Zheng Syuen Lim
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Chiew-Yen Wong
- School of Health Sciences, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nur Nadhirah Zakaria
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Faradina Merican
- School of Biological Sciences, Universiti Sains Malaysia, Minden 11800, Pulau Pinang, Malaysia
| | - Peter Convey
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK
- Department of Zoology, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Las Palmeras 3425, Ñuñoa 7750000, Santiago, Chile
| | - Syahida Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Hasrizal Shaari
- School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Alyza Azzura Azmi
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Laboratory of Bioresource Management, Institute of Tropical Forestry and Forest Products (INTROP), University Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Material Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Azham Zulkharnain
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minumaku, Saitama 337-8570, Japan
| |
Collapse
|
8
|
Protoplast Preparation for Algal Single-Cell Omics Sequencing. Microorganisms 2023; 11:microorganisms11020538. [PMID: 36838504 PMCID: PMC9962006 DOI: 10.3390/microorganisms11020538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
Single-cell sequencing (SCS) is an evolutionary technique for conducting life science research, providing the highest genome-sale throughput and single-cell resolution and unprecedented capabilities in addressing mechanistic and operational questions. Unfortunately, the current SCS pipeline cannot be directly applied to algal research as algal cells have cell walls, which makes RNA extraction hard for the current SCS platforms. Fortunately, effective methods are available for producing algal protoplasts (cells without cell walls), which can be directly fed into current SCS pipelines. In this review, we first summarize the cell wall structure and chemical composition of algal cell walls, particularly in Chlorophyta, then summarize the advances made in preparing algal protoplasts using physical, chemical, and biological methods, followed by specific cases of algal protoplast production in some commonly used eukaryotic algae. This review provides a timely primer to those interested in applying SCS in eukaryotic algal research.
Collapse
|
9
|
Transformation of Enzymatic Hydrolysates of Chlorella–Fungus Mixed Biomass into Poly(hydroxyalkanoates). Catalysts 2023. [DOI: 10.3390/catal13010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The production of poly(hydroxylalkanoates) (PHA) is limited by the high cost of the feedstock since various biomass wastes look attractive as possible sources for polymer production. The originality of this present study is in the biotransformation of mixed Chlorella-based substrates into PHAs. The synthetic potential of Cupriavidus necator B8619 cells was studied during the bioconversion of algae biomass in mixtures with spent immobilized mycelium of different fungi (genus Rhizopus and Aspergillus) into PHAs. The biomass of both microalgae Chlorella and fungus cells was accumulated due to the use of the microorganisms in the processes of food wastewater treatment. The biosorption of Chlorella cells by fungal mycelium was carried out to obtain mixed biomass samples (the best ratio of “microalgae:fungi” was 2:1) to convert them by C. necator B8619 into the PHA. The influence of conditions used for the pretreatment of microalgae and mixed types of biomass on their conversion to PHA was estimated. It was found that the maximum yield of reducing sugars (39.4 ± 1.8 g/L) can be obtained from the mechanical destruction of cells by using further enzymatic hydrolysis. The effective use of the enzymatic complex was revealed for the hydrolytic disintegration of treated biomass. The rate of the conversion of mixed substrates into the biopolymer (440 ± 13 mg/L/h) appeared significantly higher compared to similar known examples of complex substrates used for C. necator cells.
Collapse
|
10
|
Metabolomic analysis reveals the responses of docosahexaenoic-acid-producing Schizochytrium under hyposalinity conditions. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
New insights into the effects of growth phase and enzymatic treatment on the cell-wall properties of Chlorella vulgaris microalgae. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Spain O, Funk C. Detailed Characterization of the Cell Wall Structure and Composition of Nordic Green Microalgae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9711-9721. [PMID: 35894177 PMCID: PMC9372998 DOI: 10.1021/acs.jafc.2c02783] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Green microalgae are attractive to food, pharmaceutical, and biofuel industries due to the promising and diverse properties of their intracellular components. In current biotechnological applications, however, clear bottlenecks are the cell disruption and cell harvesting steps. Challenges in both of these processes are directly linked to the properties of the microalgal cell wall. The aim of this study was to explore the cell wall compositions and morphologies of four Nordic microalgal strains (Chlorella vulgaris (13-1), Scenedesmus sp. (B2-2), Haematococcus pluvialis, and Coelastrella sp. (3-4)) and their changes in relation to logarithmic and stationary growth phases. Transmission electron microscopy imaging enabled us to visualize the cell walls and to observe structural elements such as spines, microfibrillar hairs, or layers. Using cryogenic X-ray photoelectron spectroscopy, we quantified lipid, protein, and polysaccharide content of the outer surface of the microalgal cell wall in cultures. Fourier transform infrared spectroscopy highlighted changes between growth phases within the polysaccharide and protein fractions of the cell wall. Very prominent differences were observed in sugar and protein composition of the Scenedesmus sp. (B2-2) cell wall compared to the cell walls of the other three Nordic strains using trimethylsilyl derivatization.
Collapse
|
13
|
Pleissner D, Smetana S. Can Pulsed Electric Fields Treated Algal Cells Be Used as Stationary Phase in Chromatography? FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.860647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Microalgae are utilized for various purposes through cell content extraction and application. Cell walls are not utilized and not studied in an extensive manner. At the same time, composition of multilayer and fibrillar structures with various chemical compositions depends on microalgae species, they present an interesting object for chromatography. However, it requires the application of novel processing technologies (such as pulsed electric fields [PEFs]), which are able to selectively permeabilize the cell walls with pores of various sizes and shapes. The current review indicates the application of potential of microalgae cell walls for separation by size exclusion, ion-exchange, and hydrophobic interaction chromatography. However, such a hypothesis should be further experimentally proven.
Collapse
|
14
|
Canelli G, Tevere S, Jaquenod L, Dionisi F, Rohfritsch Z, Bolten CJ, Neutsch L, Mathys A. A novel strategy to simultaneously enhance bioaccessible lipids and antioxidants in hetero/mixotrophic Chlorella vulgaris as functional ingredient. BIORESOURCE TECHNOLOGY 2022; 347:126744. [PMID: 35074464 DOI: 10.1016/j.biortech.2022.126744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Microalgae are a promising source of polyunsaturated fatty acids as well as bioactive antioxidant compounds such as carotenoids, phenolics and tocopherols. However, the accumulation of these biomolecules is often promoted by conflicting growth conditions. In this study, a phased bioprocessing strategy was developed to simultaneously enhance the lipid and antioxidant amounts by tailoring nitrogen content in the cultivation medium and applying light stress. This approach increased the overall contents of total fatty acids, carotenoids, phenolics, and α-tocopherol in Chlorella vulgaris by 2.2-, 2.2-, 1.5-, and 2.1-fold, respectively. Additionally, the bioaccessibility of the lipids and bioactives from the obtained biomasses improved after pulsed electric field (5 μs, 20 kV cm-1, 31.8 kJ kg-1sus) treatment (up to +12%) and high-pressure homogenization (100 MPa, 5-6 passes) (+41-76%). This work represents a step towards the generation of more efficient algae biorefineries, thus expanding the alternative resources available for essential nutrients.
Collapse
Affiliation(s)
- Greta Canelli
- ETH Zürich, Laboratory of Sustainable Food Processing, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Sabrina Tevere
- Institute of Chemistry and Biotechnology, ZHAW, Campus Grüental, 8820, Wädenswil, Switzerland
| | - Luc Jaquenod
- ETH Zürich, Laboratory of Sustainable Food Processing, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Fabiola Dionisi
- Nestlé Research, Route du Jorat 57, 1000 Lausanne, Switzerland
| | - Zhen Rohfritsch
- Nestlé Research, Route du Jorat 57, 1000 Lausanne, Switzerland
| | | | - Lukas Neutsch
- Institute of Chemistry and Biotechnology, ZHAW, Campus Grüental, 8820, Wädenswil, Switzerland
| | - Alexander Mathys
- ETH Zürich, Laboratory of Sustainable Food Processing, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| |
Collapse
|
15
|
Ahmed J, Kumar V. Effect of high-pressure treatment on oscillatory rheology, particle size distribution and microstructure of microalgae Chlorella vulgaris and Arthospira platensis. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Halim R, Papachristou I, Chen GQ, Deng H, Frey W, Posten C, Silve A. The effect of cell disruption on the extraction of oil and protein from concentrated microalgae slurries. BIORESOURCE TECHNOLOGY 2022; 346:126597. [PMID: 34990860 DOI: 10.1016/j.biortech.2021.126597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Novel cell-disruption combinations (autolytic incubation and hypotonic osmotic shock combined with HPH or pH12) were used to investigate the fundamental mass transfer of lipids and proteins from Nannochloropsis slurries (140 mg biomass/g slurry). Since neutral lipids exist as cytosolic globules, their mass transfer was directly dependent on disintegration of cell walls. Complete recovery was obtained with complete physical disruption. HPH combinations exerted more physical disruption and led to higher yields than pH12. In contrast, proteins exist as both cytosolic water-soluble fractions and cell-wall/membrane structural fractions and have a complex extraction behaviour. Mass transfer of cytosolic proteins was dependent on cell-wall disintegration, while that of structural proteins was governed by cell-wall disintegration and severance of protein linkage from the wall/membrane. HPH combinations exerted only physical disruption and were limited to releasing soluble proteins. pH12 combinations hydrolysed chemical linkages in addition to exerting physical disruption, releasing both soluble and structural proteins.
Collapse
Affiliation(s)
- Ronald Halim
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany; Institute of Process Engineering in Life Sciences, Bioprocess Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany; School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland; UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Ioannis Papachristou
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
| | - George Q Chen
- Department of Chemical Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Huining Deng
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Wolfgang Frey
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
| | - Clemens Posten
- Institute of Process Engineering in Life Sciences, Bioprocess Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Aude Silve
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
| |
Collapse
|
17
|
Insights into cell wall disintegration of Chlorella vulgaris. PLoS One 2022; 17:e0262500. [PMID: 35030225 PMCID: PMC8759652 DOI: 10.1371/journal.pone.0262500] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/26/2021] [Indexed: 01/22/2023] Open
Abstract
With their ability of CO2 fixation using sunlight as an energy source, algae and especially microalgae are moving into the focus for the production of proteins and other valuable compounds. However, the valorization of algal biomass depends on the effective disruption of the recalcitrant microalgal cell wall. Especially cell walls of Chlorella species proved to be very robust. The wall structures that are responsible for this robustness have been studied less so far. Here, we evaluate different common methods to break up the algal cell wall effectively and measure the success by protein and carbohydrate release. Subsequently, we investigate algal cell wall features playing a role in the wall's recalcitrance towards disruption. Using different mechanical and chemical technologies, alkali catalyzed hydrolysis of the Chlorella vulgaris cells proved to be especially effective in solubilizing up to 56 wt% protein and 14 wt% carbohydrates of the total biomass. The stepwise degradation of C. vulgaris cell walls using a series of chemicals with increasingly strong conditions revealed that each fraction released different ratios of proteins and carbohydrates. A detailed analysis of the monosaccharide composition of the cell wall extracted in each step identified possible factors for the robustness of the cell wall. In particular, the presence of chitin or chitin-like polymers was indicated by glucosamine found in strong alkali extracts. The presence of highly ordered starch or cellulose was indicated by glucose detected in strong acidic extracts. Our results might help to tailor more specific efforts to disrupt Chlorella cell walls and help to valorize microalgae biomass.
Collapse
|
18
|
Canelli G, Kuster I, Jaquenod L, Buchmann L, Murciano Martínez P, Rohfritsch Z, Dionisi F, Bolten CJ, Nanni P, Mathys A. Pulsed electric field treatment enhances lipid bioaccessibility while preserving oxidative stability in Chlorella vulgaris. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102897] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
Zitzmann FL, Ward E, Meng X, Matharu AS. Microwave-Assisted Defibrillation of Microalgae. Molecules 2021; 26:4972. [PMID: 34443557 PMCID: PMC8399946 DOI: 10.3390/molecules26164972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/03/2022] Open
Abstract
The first production of defibrillated celluloses from microalgal biomass using acid-free, TEMPO-free and bleach-free hydrothermal microwave processing is reported. Two routes were explored: i. direct microwave process of native microalgae ("standard"), and ii. scCO2 pre-treatment followed by microwave processing. ScCO2 was investigated as it is commonly used to extract lipids and generates considerable quantities of spent algal biomass. Defibrillation was evidenced in both cases to afford cellulosic strands, which progressively decreased in their width and length as the microwave processing temperature increased from 160 °C to 220 °C. Lower temperatures revealed aspect ratios similar to microfibrillated cellulose whilst at the highest temperature (220 °C), a mixture of microfibrillated cellulose and nanocrystals were evidenced. XRD studies showed similar patterns to cellulose I but also some unresolved peaks. The crystallinity index (CrI), determined by XRD, increased with increasing microwave processing temperature. The water holding capacity (WHC) of all materials was approximately 4.5 g H2O/g sample. The materials were able to form partially stable hydrogels, but only with those processed above 200 °C and at a concentration of 3 wt% in water. This unique work provides a new set of materials with potential applications in the packaging, food, pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Frederik L Zitzmann
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Ewan Ward
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Xiangju Meng
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Avtar S Matharu
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, UK
| |
Collapse
|
20
|
Canelli G, Murciano Martínez P, Maude Hauser B, Kuster I, Rohfritsch Z, Dionisi F, Bolten CJ, Neutsch L, Mathys A. Tailored enzymatic treatment of Chlorella vulgaris cell wall leads to effective disruption while preserving oxidative stability. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111157] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|