1
|
Wang P, Guo S, Sun M, Wei G, Chen C. Silica Nanoparticles as Versatile Carriers for Nanofertilizers and Nanopesticides: Design and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40491052 DOI: 10.1021/acs.jafc.5c03002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
The application of silica nanoparticles (SNPs) as nanocarriers for delivering nutrients and pesticide components holds great promise, offering the potential to reduce agrochemical usage while enhancing their efficacy. Herein, we initially present the types, synthesis approaches, and structural features of SNPs as nanoagrochemical delivery carriers. Subsequently, the loading and stimulus-responsive release strategies of guest molecules used for preparation of SNPs-based nanofertilizers and nanopesticides are summarized. The applications and advantages of SNPs-based nanoformulations in nutrient delivery, disease and pest management, and weed control are also discussed. Finally, the aspects that should be taken into consideration in future research and application of SNPs-based nanoagrochemicals are highlighted. This review aims to provide novel insights and comprehensive perspectives for researchers and practitioners striving to enhance the efficiency and environmental sustainability of agrochemical products.
Collapse
Affiliation(s)
- Pan Wang
- College of Tea Science, Henan Key Laboratory of Tea Plant Comprehensive Utilization in South Henan, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, China
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shasha Guo
- College of Tea Science, Henan Key Laboratory of Tea Plant Comprehensive Utilization in South Henan, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, China
- Dabie Mountain Laboratory, Xinyang, Henan 464000, China
- Henan Provincial Engineering Technology Research Center for High-Value Utilization of Discarded Tea Garden Resources, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, China
| | - Mufang Sun
- College of Tea Science, Henan Key Laboratory of Tea Plant Comprehensive Utilization in South Henan, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, China
- Dabie Mountain Laboratory, Xinyang, Henan 464000, China
- Henan Provincial Engineering Technology Research Center for High-Value Utilization of Discarded Tea Garden Resources, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chun Chen
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
2
|
Aguilar Perez KM, Nikolaeva V, Maiti B, Sharma V, Qutub S, Hassine MB, Ayach M, Alasmary FA, Khashab NM. Tailoring Core-Shell Metal Coordination for Smart Seed Coatings in Sustainable Agriculture. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65255-65269. [PMID: 39340809 DOI: 10.1021/acsami.4c11981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
The international agriculture and food security sector is grappling with challenges like low crop yields, soil health deficiencies, and inefficient agrochemical use. The application of smart nanotechnology in agriculture, particularly surface functionalization, holds promise but has limited implementation. Engineered nanomaterials used as seed treatments, known as nanopriming, offer a simple technology to improve crop yield and stress tolerance. In this study, a multicomponent platform called Phelm (Phenolic network with a lipid core and metal coordinated shell) is proposed for encapsulating a commercial plant growth regulator, indole-3 acetic acid (IAA). Phelm comprises a hydrophobic solid lipid core, loaded with IAA, and an outer metal coordinated phenolic shell of tannic acid (TA) and Fe3+. The platform aims to treat seeds with encapsulated IAA, which can be controllably released, as well as protect the germination process at high salt concentrations. Phelm showed a remarkable increase in growth parameters of wheat seeds up to 58.6%, despite being irrigated with high concentrations of saltwater (100 mM). These findings suggest that nanopriming of seeds can effectively increase their efficacy even under abiotic stress conditions, which can drastically improve crop yields. Moreover, we envisage that the Phelm core/shell assembly can encapsulate a wide range of agrochemicals and biostimulants to promote sustainable and smart agricultural practices.
Collapse
Affiliation(s)
- Katya M Aguilar Perez
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Valeriia Nikolaeva
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Bappa Maiti
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Vivekanand Sharma
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Somayah Qutub
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | | | - Maya Ayach
- KAUST Core Laboratories, KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | | - Niveen M Khashab
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
3
|
Zheng Z, Sun Z, Li M, Yang J, Yang Y, Liang H, Xiang H, Meng J, Zhou X, Liu L, Wu Z, Yang S. An update review on biopolymer Xanthan gum: Properties, modifications, nanoagrochemicals, and its versatile applications in sustainable agriculture. Int J Biol Macromol 2024; 281:136562. [PMID: 39423988 DOI: 10.1016/j.ijbiomac.2024.136562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
During the development of green agriculture and pesticide use, "reducing pesticides use and improving control efficiency" is imperative. To date, new pesticide formulations created by nanotechnology can be expected to overcome the difficulties that cannot be solved by the traditional pesticide processes and make pesticide formulations close to the needs of green agricultural production. As natural polysaccharides, Xanthan gum (XG) charactered by a repeated units and side chain of d-glucose, d-mannose, and d-glucuronic acid, and thereby having the unprecedented features in response to wide practice in various fields. This review introduces the properties of the natural polymer XG and its current status of application in agriculture, focusing on the pesticide adjuvant and preparation of novel pesticide and fertilizer delivery systems (such as core-shell and hydrogel), and combined with the applications in mulch film and soil engineering. Furthermore, the properties of Xantho-oligosaccharides suitable for agriculture were discussed. Finally, the potential of XG for the creation of nanopesticides and its future prospects are highlighted. Taken together, XG's excellent performance endows it with a wide range of applications in the agriculture field, and result in strong stimulating the sustainable development of agriculture and evolution of agricultural industry.
Collapse
Affiliation(s)
- Zhicheng Zheng
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhaoju Sun
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Mei Li
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jingsha Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yike Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hong Liang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hongmei Xiang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jiao Meng
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Liwei Liu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhibing Wu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
4
|
Zhou Z, Tang G, Liu Y, Huang Y, Zhang X, Yan G, Hu G, Yan W, Li J, Cao Y. Carrier-free self-assembled nanoparticles based on prochloraz and fenhexamid for reducing toxicity to aquatic organism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173821. [PMID: 38866165 DOI: 10.1016/j.scitotenv.2024.173821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Nanoformulations of pesticides are an effective way to increase utilization efficiency and alleviate the adverse impacts on the environments caused by conventional pesticide formulations. However, the complex preparation process, high cost, and potential environmental risk of nanocarriers severely restricted practical applications of carrier-based pesticide nanoformulations in agriculture. Herein, carrier-free self-assembled nanoparticles (FHA-PRO NPs) based on fenhexamid (FHA) and prochloraz (PRO) were developed by a facile co-assembly strategy to improve utilization efficiency and reduce toxicity to aquatic organism of pesticides. The results showed that noncovalent interactions between negatively charged FHA and positively charged PRO led to core-shell structured nanoparticles arranged in an orderly manner dispersing in aqueous solution with a diameter of 256 nm. The prepared FHA-PRO NPs showed a typical pH-responsive release profile and exhibited excellent physicochemical properties including low surface tension and high max retention. The photostability of FHA-PRO NPs was improved 2.4 times compared with free PRO. The FHA-PRO NPs displayed superior fungicidal activity against Sclerotinia sclerotiorum and Botrytis cinerea and longer duration against Sclerotinia sclerotiorum on potted rapeseed plants. Additionally, the FHA-PRO NPs reduced the acute toxicity of PRO to zebrafish significantly. Therefore, this work provided a promising strategy to develop nanoformulations of pesticides with stimuli-responsive controlled release characteristics for precise pesticide delivery.
Collapse
Affiliation(s)
- Zhiyuan Zhou
- College of Plant Protection, China Agricultural University, NO.2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Gang Tang
- College of Plant Protection, China Agricultural University, NO.2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Yulu Liu
- College of Plant Protection, China Agricultural University, NO.2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Yuqi Huang
- College of Plant Protection, China Agricultural University, NO.2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Xiaohong Zhang
- College of Plant Protection, China Agricultural University, NO.2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Guangyao Yan
- College of Plant Protection, China Agricultural University, NO.2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Gaohua Hu
- College of Plant Protection, China Agricultural University, NO.2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Weiyao Yan
- College of Plant Protection, China Agricultural University, NO.2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Jianqiang Li
- College of Plant Protection, China Agricultural University, NO.2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Yongsong Cao
- College of Plant Protection, China Agricultural University, NO.2 Yuanmingyuan West Road, 100193, Beijing, China.
| |
Collapse
|
5
|
Dhiman S, Debnath N, Bandyopadhyay K, Das S. Novel Approach of Nanophotonic Electron Transfer for Augmenting Photosynthesis in Arachis hypogaea: A Biophysical Rationale behind the Plasmonic Enhancement of Chemical Energy Transfer. ACS OMEGA 2024; 9:35332-35347. [PMID: 39184485 PMCID: PMC11339815 DOI: 10.1021/acsomega.4c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 08/27/2024]
Abstract
Plant photosynthetic machinery is the main source of acquisition and conversion of solar energy to chemical energy with the capacity for autonomous self-repair. However, the major limitation of the chloroplast photosystem is that it can absorb light only within the visible range of the spectrum, which is roughly 50% of the incident solar radiation. Moreover, the photosynthetic apparatus is saturated by less than 10% of available sunlight. If the capacity of solar light absorption and the transmission of resulting photons through the photosynthetic electron transport chain (ETC) can be extended, the overall efficiency of photosynthesis can be improved. The plant nanobionic approach can address this via the introduction of nanoparticles into or in the vicinity of the photosynthetic machinery/chloroplast. We have studied this exceptional nanobionic-mediated capability of two optically active nanostructures and evaluated the impact of their optical properties on plant photosynthesis. Our study revealed that metal (Ag) and core-shell metal nanostructures (AgS) can increase light absorption and improve electron transport through ETC. Both nanostructures were found to have a beneficial effect on the photoluminescence property of the isolated chloroplast. Translocation studies confirmed systemic transportation of the nanomaterial in different plant tissues. The primary growth parameters showed no detrimental effect until 21 days of treatment on Arachis hypogaea. The nano silver/silica core/shell structure (AgS) was found to be more advantageous over nano silver (AgNP) in photon entrapment, light-dependent biochemical reactions, and toxicity parameters. In the future, these nanostructures can enhance photosynthesis by increasing light absorption and resulting in higher assimilatory power generation in the form of ATP and NADPH. This approach may lead to a paradigm shift toward a sustainable method for the configuration of plant chloroplast-based hybrid energy harvesting devices.
Collapse
Affiliation(s)
- Shikha Dhiman
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| | - Nitai Debnath
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| | | | - Sumistha Das
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| |
Collapse
|
6
|
Prokisch J, Ferroudj A, Labidi S, El-Ramady H, Brevik EC. Biological Nano-Agrochemicals for Crop Production as an Emerging Way to Address Heat and Associated Stresses. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1253. [PMID: 39120358 PMCID: PMC11314061 DOI: 10.3390/nano14151253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Climate change is a global problem facing all aspects of the agricultural sector. Heat stress due to increasing atmospheric temperature is one of the most common climate change impacts on agriculture. Heat stress has direct effects on crop production, along with indirect effects through associated problems such as drought, salinity, and pathogenic stresses. Approaches reported to be effective to mitigate heat stress include nano-management. Nano-agrochemicals such as nanofertilizers and nanopesticides are emerging approaches that have shown promise against heat stress, particularly biogenic nano-sources. Nanomaterials are favorable for crop production due to their low toxicity and eco-friendly action. This review focuses on the different stresses associated with heat stress and their impacts on crop production. Nano-management of crops under heat stress, including the application of biogenic nanofertilizers and nanopesticides, are discussed. The potential and limitations of these biogenic nano-agrochemicals are reviewed. Potential nanotoxicity problems need more investigation at the local, national, and global levels, as well as additional studies into biogenic nano-agrochemicals and their effects on soil, plant, and microbial properties and processes.
Collapse
Affiliation(s)
- József Prokisch
- Nanofood Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (J.P.); (A.F.); (S.L.); (H.E.-R.)
| | - Aya Ferroudj
- Nanofood Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (J.P.); (A.F.); (S.L.); (H.E.-R.)
| | - Safa Labidi
- Nanofood Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (J.P.); (A.F.); (S.L.); (H.E.-R.)
| | - Hassan El-Ramady
- Nanofood Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (J.P.); (A.F.); (S.L.); (H.E.-R.)
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Eric C. Brevik
- College of Agricultural, Life, and Physical Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
7
|
Serwatowska K, Nederstigt TAP, Peijnenburg WJGM, Vijver MG. Chronic toxicity of core-shell SiC/TiO 2 (nano)-particles to Daphnia magna under environmentally relevant food rations in the presence of humic acid. Nanotoxicology 2024; 18:107-118. [PMID: 38420713 PMCID: PMC11073049 DOI: 10.1080/17435390.2024.2321873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
To date, research on the toxicity and potential environmental impacts of nanomaterials has predominantly focused on relatively simple and single-component materials, whilst more complex nanomaterials are currently entering commercial stages. The current study aimed to assess the long-term and size-dependent (60 and 500 nm) toxicity of a novel core-shell nanostructure consisting of a SiC core and TiO2 shell (SiC/TiO2, 5, 25, and 50 mg L-1) to the common model organism Daphnia magna. These novel core-shell nanostructures can be categorized as advanced materials. Experiments were conducted under environmentally realistic feeding rations and in the presence of a range of concentrations of humic acid (0.5, 2, 5, and 10 mg L-1 TOC). The findings show that although effect concentrations of SiC/TiO2 were several orders of magnitude lower than the current reported environmental concentrations of more abundantly used nanomaterials, humic acid can exacerbate the toxicity of SiC/TiO2 by reducing aggregation and sedimentation rates. The EC50 values (mean ± standard error) based on nominal SiC/TiO2 concentrations for the 60 nm particles were 28.0 ± 11.5 mg L-1 (TOC 0.5 mg L-1), 21.1 ± 3.7 mg L-1 (TOC 2 mg L-1), 18.3 ± 5.4 mg L-1 (TOC 5 mg L-1), and 17.8 ± 2.4 mg L-1 (TOC 10 mg L-1). For the 500 nm particles, the EC50 values were 34.9 ± 16.5 mg L-1 (TOC 0.5 mg L-1), 24.8 ± 5.6 mg L-1 (TOC 2 mg L-1), 28.0 ± 10.0 mg L-1 (TOC 5 mg L-1), and 23.2 ± 4.1 mg L-1 (TOC 10 mg L-1). We argue that fate-driven phenomena are often neglected in effect assessments, whilst environmental factors such as the presence of humic acid may significantly influence the toxicity of nanomaterials.
Collapse
Affiliation(s)
- Kornelia Serwatowska
- Institute of Environmental Sciences, University of Leiden, Leiden, The Netherlands
| | - Tom A. P. Nederstigt
- Institute of Environmental Sciences, University of Leiden, Leiden, The Netherlands
| | - Willie J. G. M. Peijnenburg
- Institute of Environmental Sciences, University of Leiden, Leiden, The Netherlands
- Center for Safety of Substances and Products, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Martina G. Vijver
- Institute of Environmental Sciences, University of Leiden, Leiden, The Netherlands
| |
Collapse
|
8
|
Mmereke KM, Venkataraman S, Moiketsi BN, Khan MR, Hassan SH, Rantong G, Masisi K, Kwape TE, Gaobotse G, Zulfiqar F, Kumar Sharma S, Malik S, Makhzoum A. Nanoparticle elicitation: A promising strategy to modulate the production of bioactive compounds in hairy roots. Food Res Int 2024; 178:113910. [PMID: 38309862 DOI: 10.1016/j.foodres.2023.113910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 02/05/2024]
Abstract
Hairy root culture is one of the promising biotechnological tools to obtain the stable and sustainable production of specialized metabolites from plants under controlled environment conditions. Various strategies have been adopted to enhance the accumulation of bioactive compounds in hairy roots yet their utilization at the commercial scale is restricted to only a few products. Recently, nanotechnology has been emerged as an active technique that has revolutionized the many sectors in an advantageous way. Elicitation using nanoparticles has been recognized as an effective strategy for enhancing the bioactive compounds of interest in plants. Nanoparticles elicit the activity of defense-related compounds through activation of the specific transcription factors involved in specialized metabolites production. This review discusses the recent progress in using nanoparticles to enhance specialized metabolite biosynthesis using hairy root culture system and the significant achievements in this area of research. Biotic and abiotic elicitors to improve the production of bioactive compounds in hairy roots, different types of nanoparticles as eliciting agents, their properties as dependent on shape, most widely used nanoparticles in plant hairy root systems are described in detail. Further challenges involved in application of nanoparticles, their toxicity in plant cells and risks associated to human health are also envisaged. No doubt, nanoparticle elicitation is a remarkable approach to obtain phytochemicals from hairy roots to be utilized in various sectors including food, medicines, cosmetics or agriculture but it is quite essential to understand the inter-relationships between the nanoparticles and the plant systems in terms of specifics such as type, dosage and time of exposure as well as other important parameters.
Collapse
Affiliation(s)
- Kamogelo M Mmereke
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana
| | - Srividhya Venkataraman
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Bertha Nametso Moiketsi
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana
| | - Muhammad Rehan Khan
- Department of Agricultural Science, University of Naples Federico II, Via Università 133, 80055 Portici, Italy; URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 3 Rue des Rouges-Terres, 51110 Pomacle, France
| | - Sayyeda Hira Hassan
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Gaolathe Rantong
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana
| | - Kabo Masisi
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana
| | - Tebogo E Kwape
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana
| | - Goabaone Gaobotse
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Sonia Malik
- Physiology, Ecology and Environment (P2E) Laboratory, University of Orleans, INRAE, USC1328, 45067 Orleans, France.
| | - Abdullah Makhzoum
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana.
| |
Collapse
|
9
|
Singh N, Khan RR, Xu W, Whitham SA, Dong L. Plant Virus Sensor for the Rapid Detection of Bean Pod Mottle Virus Using Virus-Specific Nanocavities. ACS Sens 2023; 8:3902-3913. [PMID: 37738225 DOI: 10.1021/acssensors.3c01478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
This study presents a miniaturized sensor for rapid, selective, and sensitive detection of bean pod mottle virus (BPMV) in soybean plants. The sensor employs molecularly imprinted polymer technology to generate BPMV-specific nanocavities in porous polypyrrole. Leveraging the porous structure, high surface reactivity, and electron transfer properties of polypyrrole, the sensor achieves a sensitivity of 143 μA ng-1 mL cm-2, a concentration range of 0.01-100,000 ng/mL, a detection time of less than 2 min, and a detection limit of 41 pg/mL. These capabilities outperform those of conventional methods, such as enzyme-linked immunosorbent assays and reverse transcription polymerase chain reactions. The sensor possesses the ability to distinguish BPMV-infected soybean plants from noninfected ones while rapidly quantifying virus levels. Moreover, it can reveal the spatial distribution of virus concentration across distinct leaves, a capability not previously attained by cost-effective sensors for such detailed viral data within a plant. The BPMV-specific nanocavities can also be easily restored and reactivated for multiple uses through a simple wash with acetic acid. While MIP-based sensors for plant virus detection have been relatively understudied, our findings demonstrate their potential as portable, on-site diagnostic tools that avoid complex and time-consuming sample preparation procedures. This advancement addresses a critical need in plant virology, enhancing the detection and management of plant viral diseases.
Collapse
Affiliation(s)
- Nawab Singh
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, United States
- Microelectronics Research Center, Iowa State University, Ames, Iowa 50011, United States
| | - Raufur Rahman Khan
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, United States
- Microelectronics Research Center, Iowa State University, Ames, Iowa 50011, United States
| | - Weihui Xu
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, Iowa 50011, United States
| | - Steven A Whitham
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, Iowa 50011, United States
| | - Liang Dong
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, United States
- Microelectronics Research Center, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
10
|
Mitra D, Adhikari P, Djebaili R, Thathola P, Joshi K, Pellegrini M, Adeyemi NO, Khoshru B, Kaur K, Priyadarshini A, Senapati A, Del Gallo M, Das Mohapatra PK, Nayak AK, Shanmugam V, Panneerselvam P. Biosynthesis and characterization of nanoparticles, its advantages, various aspects and risk assessment to maintain the sustainable agriculture: Emerging technology in modern era science. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:103-120. [PMID: 36706690 DOI: 10.1016/j.plaphy.2023.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/19/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
The current review aims to gain knowledge on the biosynthesis and characterization of nanoparticles (NPs), their multifactorial role, and emerging trends of NPs utilization in modern science, particularly in sustainable agriculture, for increased yield to solve the food problem in the coming era. However, it is well known that an environment-friendly resource is in excessive demand, and green chemistry is an advanced and rising resource in exploring eco-friendly processes. Plant extracts or other resources can be utilized to synthesize different types of NPS. Hence NPs can be synthesized by organic or inorganic molecules. Inorganic molecules are hydrophilic, biocompatible, and highly steady compared to organic types. NPs occur in numerous chemical conformations ranging from amphiphilic molecules to metal oxides, from artificial polymers to bulky biomolecules. NPs structures can be examined by different approaches, i.e., Raman spectroscopy, optical spectroscopy, X-ray fluorescence, and solid-state NMR. Nano-agrochemical is a unification of nanotechnology and agro-chemicals, which has brought about the manufacture of nano-fertilizers, nano-pesticides, nano-herbicides, nano-insecticides, and nano-fungicides. NPs can also be utilized as an antimicrobial solution, but the mode of action for antibacterial NPs is poorly understood. Presently known mechanisms comprise the induction of oxidative stress, the release of metal ions, and non-oxidative stress. Multiple modes of action towards microbes would be needed in a similar bacterial cell for antibacterial resistance to develop. Finally, we visualize multidisciplinary cooperative methods will be essential to fill the information gap in nano-agrochemicals and drive toward the usage of green NPs in agriculture and plant science study.
Collapse
Affiliation(s)
- Debasis Mitra
- Department of Microbiology, Raiganj University, Raiganj, 733 134, West Bengal, India; Crop Production Division, ICAR - National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Priyanka Adhikari
- Centre for excellence on GMP extraction facility (DBT, Govt. of India), National Institute of Pharmaceutical Education and Research, Guwahati, 781101, Assam, India
| | - Rihab Djebaili
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, L'Aquila, Italy
| | - Pooja Thathola
- G. B. Pant National Institute of Himalayan Environment, Almora, 263643, Uttarakhand, India
| | - Kuldeep Joshi
- G. B. Pant National Institute of Himalayan Environment, Almora, 263643, Uttarakhand, India
| | - Marika Pellegrini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, L'Aquila, Italy
| | - Nurudeen O Adeyemi
- Department of Plant Physiology and Crop Production, Federal University of Agriculture, Abeokuta, Nigeria
| | - Bahman Khoshru
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Kamaljit Kaur
- Institute of Nano Science and Technology, Habitat Centre, Phase- 10, Sector- 64, Mohali, 160062, Punjab, India
| | - Ankita Priyadarshini
- Crop Production Division, ICAR - National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Ansuman Senapati
- Crop Production Division, ICAR - National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Maddalena Del Gallo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, L'Aquila, Italy
| | | | - Amaresh Kumar Nayak
- Crop Production Division, ICAR - National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Vijayakumar Shanmugam
- Institute of Nano Science and Technology, Habitat Centre, Phase- 10, Sector- 64, Mohali, 160062, Punjab, India
| | - Periyasamy Panneerselvam
- Crop Production Division, ICAR - National Rice Research Institute, Cuttack, 753006, Odisha, India.
| |
Collapse
|
11
|
Nazari M, Shabani R, Ajdary M, Ashjari M, Shirazi R, Govahi A, Kermanian F, Mehdizadeh M. Effects of Au@Ag core-shell nanostructure with alginate coating on male reproductive system in mice. Toxicol Rep 2023; 10:104-116. [PMID: 36685271 PMCID: PMC9853145 DOI: 10.1016/j.toxrep.2023.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023] Open
Abstract
Despite the widespread use of silver nanoparticles (NPs), these NPs can accumulate and have toxic effects on various organs. However, the effects of silver nanostructures (Ag-NS) with alginate coating on the male reproductive system have not been studied. Therefore, this study aimed to investigate the impacts of this NS on sperm function and testicular structure. After the synthesis and characterization of Ag-NS, the animals were divided into five groups (n = 8), including one control group, two sham groups (received 1.5 mg/kg/day alginate solution for 14 and 35 days), and two treatment groups (received Ag-NS at the same dose and time). Following injections, sperm parameters, apoptosis, and autophagy were analyzed by the TUNEL assay and measurement of the mRNA expression of Bax, Bcl-2, caspase-3, LC3, and Beclin-1. Fertilization rate was assessed by in vitro fertilization (IVF), and testicular structure was analyzed using the TUNEL assay and hematoxylin and eosin (H&E) staining. The results showed that the NS was rod-shaped, had a size of about 60 nm, and could reduce sperm function and fertility. Gene expression results demonstrated an increase in the apoptotic markers and a decrease in autophagy markers, indicating apoptotic cell death. Moreover, Ag-NS invaded testicular tissues, especially in the chronic phase (35 days), resulting in tissue alteration and epithelium disintegration. The results suggest that sperm parameters and fertility were affected. In addition, NS has negative influences on testicular tissues, causing infertility in men exposed to these NS.
Collapse
Key Words
- AA, Ascorbic acid
- AMPkinase, 5' adenosine monophosphate-activated protein kinase
- ANOVA, Analysis of variance
- Ag-NPs, silver nanoparticles
- AgNO3,, Silver nitrate
- Apoptosis
- Atg3, Autophagy related 3
- Autophagy
- BAX, Bcl-2-associated X protein
- BTB, Blood-testes barrier
- Bcl-2, B-cell lymphoma 2
- CSNs, Core-shell nanostructures
- CTAB, Cetyltrimethylammonium bromide
- DLS, Dynamic light scattering
- DW, Distilled water
- FTIR, Fourier transform infrared spectroscopy
- FYN kinase, Proto-oncogene tyrosine-protein kinase
- Fertilization
- H2SO4,, Sulphuric acid
- HAuCl4, Tetrachloroauric acid trihydrate
- HR-TEM, High-resolution transmission electron microscopy
- ICP-MS, Inductively coupled plasma mass spectrometry
- IL, Interleukins
- IU, International Unit
- IgE, Immunoglobulin E
- NIH, National Institutes of Health
- NMRI, Naval Medical Research Institute
- NMs, Nanomaterials
- NRs, Nano rods
- NaBH4,, Sodium borohydride
- NaOH, Sodium hydroxide
- Nanostructures
- OD, Optical density
- PBS, Phosphate-buffered saline
- PI, Propidium Iodide
- PMSG, Pregnant Mare Serum Gonadotropin
- PdI, Polydispersity index
- ROS, Reactive oxygen species
- SD, standard deviation
- SERS, Surface enhanced Raman scattering
- SNRs, Silver Nano rods
- SSCs, Spermatogonial stem cells
- Semen analysis
- TDT, Terminal deoxynucleotidyl transferase
- TGA, Thermal gravimetric Analysis
- TGF-β, Transforming growth factor
- TUNEL, Terminal deoxynucleotidyl transferase dUTP nick end labeling
- Testicular tissue
- cDNA, Complementary DNA
- ct, cycle threshold
- dUTP, Deoxyuridine triphosphate
- hCG, human chorionic gonadotropin
- q RT-PCR, Quantitative real time - polymerase chain reaction
- rpm, Rotations Per Minute
Collapse
Affiliation(s)
- Mahsa Nazari
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Reproductive Sciences and Technology Research Center, Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Ajdary
- Endometriosis Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohsen Ashjari
- Chemical Engineering Department, Faculty of Engineering, University of Kashan, Kashan, Iran
| | - Reza Shirazi
- Department of Anatomy, School of Medical Sciences, Medicine & Health, UNSW Sydney, Sydney, Australia
| | - Azam Govahi
- Endometriosis Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Fatemeh Kermanian
- Department of Anatomy, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Mehdizadeh
- Reproductive Sciences and Technology Research Center, Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Joo K, Lee J(J, Hwang J. NAM and TPB Approach to Consumers' Decision-Making Framework in the Context of Indoor Smart Farm Restaurants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14604. [PMID: 36361490 PMCID: PMC9654818 DOI: 10.3390/ijerph192114604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The movement toward smart farming, which has productivity and eco-friendly roles, is emerging in the foodservice industry in the form of indoor smart farm restaurants. The purpose of this study was to investigate the consumer decision-making processes in the context of indoor smart farm restaurants. The investigational framework was designed around the norm activation model (NAM) and the theory of planned behavior (TPB), with the moderating role of age. In particular, this study merged NAM and TPB to assess the effect of awareness of consumption consequences on consumers' attitudes as well as the role played by subjective norms in the formation of personal norms. Data were collected from 304 respondents in South Korea. As a result of structural equation modeling, the proposed hypotheses of causal relationships were generally supported, excluding only the relationship between subjective norm and behavioral intention. The moderating role of age was identified in the relationships between (1) subjective norm and attitude, and (2) personal norm and behavioral intention. This study presents not only theoretical contributions as the first empirical study on consumer behavior in the context of indoor smart farm restaurants but also presents practical suggestions from the perspective of green marketing.
Collapse
Affiliation(s)
- Kyuhyeon Joo
- The College of Hospitality and Tourism Management, Sejong University, Seoul 143747, Korea
| | - Junghoon (Jay) Lee
- School of Hospitality Leadership, East Carolina University, 306 Rivers Building, Greenville, NC 27858-4353, USA
| | - Jinsoo Hwang
- The College of Hospitality and Tourism Management, Sejong University, Seoul 143747, Korea
| |
Collapse
|
13
|
Suppression of dry root rot disease caused by Rhizoctonia bataticola (Taub.) Butler in chickpea plants by application of thiamine loaded chitosan nanoparticles. Microb Pathog 2022; 173:105893. [DOI: 10.1016/j.micpath.2022.105893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
|
14
|
Issaka E, Fapohunda FO, Amu-Darko JNO, Yeboah L, Yakubu S, Varjani S, Ali N, Bilal M. Biochar-based composites for remediation of polluted wastewater and soil environments: Challenges and prospects. CHEMOSPHERE 2022; 297:134163. [PMID: 35240157 DOI: 10.1016/j.chemosphere.2022.134163] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/13/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceuticals, heavy metals, pesticides, and dyes are the main environmental contaminants that have serious effects on both land and aquatic lives and necessitate the development of effective methods to mitigate these issues. Although some conventional methods are in use to tackle soil contamination, but biochar and biochar-based composites represent a reliable and sustainable means to deal with a spectrum of toxic organic and inorganic pollutants from contaminated environments. The capacity of biochars and derived constructs to remediate inorganic dyes, pesticides, insecticides, heavy metals, and pharmaceuticals from environmental matrices is attributed to their extensive surface area, surface functional groups, pore size distribution, and high sorption capability of these pollutants in water and soil environments. Application conditions, biochar feedstock, pyrolysis conditions and precursor materials are the factors that influence the capacity and functionality of biochar to adsorb pollutants from wastewater and soil. These factors, when improved, can benefit biochar in agrochemical and heavy metal remediation from various environments. However, the processes involved in biochar production and their influence in enhancing pollutant sequestration remain unclear. Therefore, this paper throws light on the current strategies, operational conditions, and sequestration performance of biochar and biochar-based composites for agrochemical and heavy metal in soil and water environments. The main challenges associated with biochar preparation and exploitation, toxicity evaluation, research directions and future prospects for biochar in environmental remediation are also outlined.
Collapse
Affiliation(s)
- Eliasu Issaka
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | | | | | - Linda Yeboah
- School of Biological Sciences, University of Ghana, Legon, 00233, Accra, Ghana
| | - Salome Yakubu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010, Gujarat, India
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
15
|
Morphological, Histological and Ultrastructural Changes in Hordeum vulgare (L.) Roots That Have Been Exposed to Negatively Charged Gold Nanoparticles. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, there has been an impressive development of nanotechnology. This has resulted in the increasing release of nanomaterials (NM) into the environment, thereby causing the risk of an uncontrolled impact on living organisms, including plants. More studies indicated the biotoxic effect of NM on plants, including crops. The interaction of nanoparticles (NP) with food crops is extremely important as they are a link to the food chain. The objective of this study was to investigate the effect of negatively charged gold nanoparticles (-) AuNP (at two concentrations; 25 µg/mL or 50 µg/mL) on barley (Hordeum vulgare L.) root development. Morphological, histological and ultrastructural analyses (with the use of stereomicroscope, bright filed microscope and transmission electron microscope) revealed that regardless of the concentration, (-) AuNP did not enter into the plant body. However, the dose of (-) AuNP proved to be important for the plant’s response because different morphological, histological and ultrastructural changes were observed in the treated roots. The NP treatment caused: red root colouration, a local increase in the root diameter and a decreased formation of the root hair cells (on morphological level), damage to the rhizodermal cells, vacuolisation of the cortical cells, a detachment of the cell files between the cortical cells, atypical divisions of the cells, disorder of the meristem organisation (on the histological level), the appearance of periplasmic space, numerous vesicles and multivesicular bodies, electron-dense spots in cytoplasm, alterations in the structure of the mitochondria, breakdown of the tonoplast and the plasmalemma (on the ultrastructural level).
Collapse
|
16
|
Ullah S, Ali S, Binte Abid A, Nafees M. Modulating response of Zea mays to induced salinity stress through application of nitrate mediated silver nanoparticles and indole acetic acid. Microsc Res Tech 2021; 85:1135-1145. [PMID: 34775653 DOI: 10.1002/jemt.23982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/21/2021] [Accepted: 11/03/2021] [Indexed: 11/11/2022]
Abstract
Nanotechnology has been amplified in different areas of science as well as agriculture in the present era. So, the present work was designed to evaluate the result of nitrate mediated silver nanoparticles (Nit-AgNPs) and indole acetic acid (IAA) on physio-biochemical features of the selected maize variety (Pahari white) under 40 and 80 mM salinity induction. Seeds were propagated in triplicates in earthen pots (18 cm inferior and superior inside diameter, 20 cm stature, and 2 cm breadth) filled with silt and soil (1:2) having 3.09-5.12 Electrical conductivity (EC), 6.8-7.3 pH, and 4-16% moisture contents. Scanning electron microscopy results showed the average particle size around 90 nm indicating a high surface area suitable for adsorption properties, agglomerated, roughly spherical, and were uniformly dispersed. Elemental quantification of biosynthesized AgNPs analyzed via energy dispersive X-ray spectroscopy showed a strong peak at 3.0 KeV along with the presence of elements K, N, O, and C. Results of Thermo-gravimetric Analysis (TGA)/Differential Thermal Analysis (DTA) showed endothermic major decline at 150-300°C, while exothermic peak at 300-400°C. The growth responses at 40 mM salinity concentration have been reduced representing from the least boundary of chlorophyll "a," "b," and peroxidase content, whereas; this adverse effect has been reduced by operation of Nit-AgNPs as separate treatment and in combination with IAA. From the current study, it has been concluded that salinity concentration at 80 mM adversely affected the values of osmolytes, protein, and superoxide dismutase whereas the maximum amplitude of proline reduced by the application of Nit-AgNPs as distinct treatment indicating that the plant behaves normal with the combined application of nanoparticles and IAA.
Collapse
Affiliation(s)
- Sami Ullah
- Plant Physiology Lab., Department of Botany, University of Peshawar, Peshawar, Pakistan
| | - Sara Ali
- Plant Physiology Lab., Department of Botany, University of Peshawar, Peshawar, Pakistan
| | - Afroz Binte Abid
- Plant Physiology Lab., Department of Botany, University of Peshawar, Peshawar, Pakistan
| | - Muhammad Nafees
- Plant Physiology Lab., Department of Botany, University of Peshawar, Peshawar, Pakistan
| |
Collapse
|
17
|
Arya SS, Lenka SK, Cahill DM, Rookes JE. Designer nanoparticles for plant cell culture systems: Mechanisms of elicitation and harnessing of specialized metabolites. Bioessays 2021; 43:e2100081. [PMID: 34608646 DOI: 10.1002/bies.202100081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 11/07/2022]
Abstract
Plant cell culture systems have become an attractive and sustainable approach to produce high-value and commercially significant metabolites under controlled conditions. Strategies involving elicitor supplementation into plant cell culture media are employed to mimic natural conditions for increasing the metabolite yield. Studies on nanoparticles (NPs) that have investigated elicitation of specialized metabolism have shown the potential of NPs to be a substitute for biotic elicitors such as phytohormones and microbial extracts. Customizable physicochemical characteristics allow the design of monodispersed-, stimulus-responsive-, and hormone-carrying-NPs of precise geometries to enhance their elicitation capabilities based on target metabolite/plant cell culture type. We contextualize advances in NP-mediated elicitation, especially stimulation of specialized metabolic pathways, the underlying mechanisms, impacts on gene regulation, and NP-associated cytotoxicity. The novelty of the concept lies in unleashing the potential of designer NPs to enhance yield, harness metabolites, and transform nanoelicitation from exploratory investigations to a commercially viable strategy.
Collapse
Affiliation(s)
- Sagar S Arya
- School of Life and Environmental Sciences, Deakin University, Geelong Campus at Waurn Ponds, Geelong, Victoria, Australia.,TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana, India
| | - Sangram K Lenka
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana, India
| | - David M Cahill
- School of Life and Environmental Sciences, Deakin University, Geelong Campus at Waurn Ponds, Geelong, Victoria, Australia
| | - James E Rookes
- School of Life and Environmental Sciences, Deakin University, Geelong Campus at Waurn Ponds, Geelong, Victoria, Australia
| |
Collapse
|
18
|
Regular Polymeric Microspheres with Highly Developed Internal Structure and Remarkable Thermal Stability. MATERIALS 2021; 14:ma14092240. [PMID: 33925374 PMCID: PMC8123802 DOI: 10.3390/ma14092240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/12/2021] [Accepted: 04/25/2021] [Indexed: 12/21/2022]
Abstract
In this study, the synthesis and characterization of permanently porous polymeric microspheres was presented. The microspheres were obtained via suspension polymerization using diverse functional monomers, such as 4,4′-bis(methacryloyloxymethylphenyl)sulphone, 1,4-bis(methacryloyloxymethyl)benzene, 4,4′-bis(methacryloyloxymethylphenyl)methane, N-vinylpyrrolidone, ethylene glycol dimethacrylate, and divinylbenzene as a co-monomer. As porogenic solvents, toluene and chlorobenzene were applied. The main aim of the research was to synthesize polymers having a highly developed internal structure and a good thermal stability. The synthesized materials were characterized by ATR-FTIR, scanning electron microscopy, a size distribution analysis, a low-temperature nitrogen adsorption–desorption method, differential scanning calorimetry, and thermogravimetry coupled with FTIR and inverse gas chromatography. It was found that, depending on the functional monomer, regular microspheres with a specific surface area in the range of 418–746 m2/g can be successfully synthesized. Moreover, all the synthesized copolymers showed a good thermal stability. In helium, they exhibited 5% mass losses at temperatures over 300 °C, whereas in air these values were only slightly lower. In addition, the presence of miscellaneous functional groups promoted diverse kinds of interactions. Therefore, the microspheres can be possibly use in many adsorption techniques including high temperature processes.
Collapse
|