1
|
Liu B, Wan Y, Xiong M, Li J, Wu H, Chen X, He J. Identification and Characterization of a Novel Nitroreductase Transforming the Herbicide Mesotrione in Metabacillus sp. JX24. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40397523 DOI: 10.1021/acs.jafc.4c11559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Mesotrione, a commonly used 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor herbicide, threatens agro-ecosystem sustainability and nontarget organisms. Microbes play a significant role in the biodegradation of mesotrione. However, an understanding of the molecular mechanisms involved in mesotrione degradation is still quite limited. Here, a bacterial strain Metabacillus sp. JX24 capable of degrading mesotrione was isolated. The strain could effectively degrade about 98% of 100 μM mesotrione within 12 h. It was revealed that mesotrione was degraded through successive reduction of its nitro group to generate 2-amino-4-methylsulfonylbenzoic acid (AMBA). A gene, mnrA, encoding a novel nitroreductase MnrA responsible for the transformation of mesotrione, was cloned from strain JX24. MnrA shared low sequence identities (<20%) with the reported mesotrione nitroreductases. The purified MnrA catalyzed the nitro reduction of mesotrione with NADH or NADPH as cofactors in vitro. The Km and kcat/Km values of MnrA for mesotrione were 22.0 μM and 0.57 μM-1 min-1, respectively. The detoxification assay indicated that AMBA, the product of MnrA-mediated mesotrione reduction, did not inhibit HPPD activity, suggesting that MnrA confers a detoxifying action on mesotrione. Our work provides a novel enzymatic resource for the elimination of mesotrione residues in the environment.
Collapse
Affiliation(s)
- Bin Liu
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yingying Wan
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Miaohuan Xiong
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Jialu Li
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Huipeng Wu
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xuelan Chen
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Jian He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
2
|
Wu J, Gao A, Wang B, Yang Y, Li N, Zhang H. Cloning and Expression of the Isoprocarb Hydrolase Gene cehA from the Newly Isolated Isoprocarb-Degrading Strain Sphingobium sp. R-7. Curr Microbiol 2025; 82:239. [PMID: 40208354 DOI: 10.1007/s00284-025-04183-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/09/2025] [Indexed: 04/11/2025]
Abstract
To remove the isoprocarb residues from the environment, a bacterial strain that was capable of degrading isoprocarb was isolated from agricultural soils where isoprocarb has been applied for a long period, and named R-7. On the basis of its cellular morphology and phenotypic features and 16S rRNA phylogenetic analysis, strain R-7 was preliminarily identified as Sphingobium sp. This strain could grow on isoprocarb as a sole carbon source and degrade 98.3% of 0.5 mM of isoprocarb within 16 h in batch liquid culture. The metabolite produced was identified as 2-isopropylphenol by high-performance liquid chromatography and tandem mass spectrometry (HPLC-MS/MS) analysis. Strain R-7 hydrolysed the ester bond of isoprocarb to generate 2-isopropylphenol, but this metabolite was not further degraded. Upon the genome comparison, the isoprocarb hydrolase gene cehA was cloned from strain R-7 and expressed in Escherichia coli BL21. The purified CehAR-7 displayed maximal enzymatic activity at 40 °C and pH 7.0. The apparent Km and kcat values of CehAR-7 for isoprocarb were 169.12 ± 7.74 µmol L-1 and 347 ± 17.73 min-1, respectively. CehAR-7 could hydrolyse carbaryl and isoprocarb efficiently, although its ability to hydrolyse carbofuran, oxamyl and methomyl was poor. In conclusion, this study provided an efficient isoprocarb-degrading microorganism, and identified the isoprocarb hydrolase CehA from strain R-7, which has potential applications for microbial remediation of isoprocarb-polluted environments.
Collapse
Affiliation(s)
- Jing Wu
- College of Life Science, Nanyang Normal University, Nanyang, 473061, Henan, China
| | - Ao Gao
- College of Life Science, Nanyang Normal University, Nanyang, 473061, Henan, China
| | - Bohan Wang
- College of Life Science, Nanyang Normal University, Nanyang, 473061, Henan, China
| | - Yingxin Yang
- College of Life Science, Nanyang Normal University, Nanyang, 473061, Henan, China
| | - Na Li
- College of Life Science, Nanyang Normal University, Nanyang, 473061, Henan, China.
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Hao Zhang
- College of Life Science, Nanyang Normal University, Nanyang, 473061, Henan, China
| |
Collapse
|
3
|
Zhang P, Cao H, Li T, Fu Y. Virtual Screening and Bioassay of Novel Protoporphyrinogen Oxidase and p-Hydroxyphenylpyruvate Dioxygenase Dual-Target Inhibitors. Molecules 2025; 30:1491. [PMID: 40286087 PMCID: PMC11990379 DOI: 10.3390/molecules30071491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Novel herbicide development is a challenge for weed control. Protoporphyrinogen oxidase (PPO) and p-hydroxyphenylpyruvate dioxygenase (HPPD) are two key enzymes involved in plant photosynthesis. The multi virtual screening protocol was adopted to design a common skeleton based on the two target enzymes, and fragment growth of the skeleton was performed. The constructed compounds were searched for structural similarity, and the accuracy of the selected compounds was further verified using the Bayesian model. Finally, eight compounds were obtained, and the binding mode with the target was studied deeply. The obtained compounds interact with the key residues of HPPD and PPO proteins similarly to commercial herbicides, and the stability of binding with proteins is also good. The activity of the screening results was determined by an enzyme activity test in vitro. The herbicidal effect of the compound was studied by phenotypic experiment. The final results showed that Z-4 and Z-7 have the potential to become new dual-target herbicides.
Collapse
Affiliation(s)
- Panxiu Zhang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; (P.Z.); (H.C.); (T.L.)
| | - Haifeng Cao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; (P.Z.); (H.C.); (T.L.)
- National Soybean Engineering Technology Research Center, Northeast Agricultural University, Harbin 150030, China
| | - Tiansong Li
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; (P.Z.); (H.C.); (T.L.)
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; (P.Z.); (H.C.); (T.L.)
- Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China
| |
Collapse
|
4
|
Lin Q, Wu X, Guo C, Li L, Peng T, Zou X, Li G, Wang J. Effects of different concentrations of chlormequat chloride on bacterial community composition and diversity in peanut soil. BMC Microbiol 2025; 25:129. [PMID: 40069633 PMCID: PMC11895187 DOI: 10.1186/s12866-025-03828-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/13/2025] [Indexed: 03/15/2025] Open
Abstract
The application of pesticides may have significant impacts on soil environment and communities. In order to understand the deep relationship between the application of chlormequat chloride (CC) and the bacterial community in peanut soil, high-resolution characterization was performed using peanut soil samples (12 points; 0-20 cm rhizosphere soil) from untreated and sprayed with different concentrations of CC. Experimental data showed that with the increase of concentration, operational taxonomic units (OTUs) richness showed a decreasing tendency. The OTUs richness at low concentration (D, 50% CC diluted 5000 times, 45 g ai/ha), medium concentration (M, 50% CC diluted 300 times, 75 g ai/ha), and high concentration (G, 50% CC diluted 1000 times, 225 g ai/ha) were 5583, 5430, and 3910, respectively. Low concentrations increased the composition and relative abundance of soil bacterial communities. In contrast, high concentrations significantly reduced bacterial diversity. As the concentration of CC increases, the abundance of Proteobacteria decreases, while the abundance of Firmicutes and Bacteroidetes increases. The number of Acidobacterium and Bacteroidetes increased in groups D and M, while it decreased in group G. D, M and G groups showed a decrease in the abundance of Pseudomonas, polaromonas, and Azovibrio compared to CK, while the abundance of Flavobacterium increased. In addition, the abundance of Rahnella1 decreased in groups D and M, while the abundance increased in group G. The main metabolic pathways included the metabolisms of nucleotides, terpenoids, polyketides, other amino acids, cofactors, vitamins, lipids, glycan biosynthesis, energy, carbohydrates, xenobiotics, amino acids, and other secondary metabolites.
Collapse
Affiliation(s)
- Qiujun Lin
- Institute of Agricultural Quality Standards and Testing Technology, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Xianxin Wu
- Institute of Agricultural Quality Standards and Testing Technology, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Chunjing Guo
- Institute of Agricultural Quality Standards and Testing Technology, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Lina Li
- Institute of Agricultural Quality Standards and Testing Technology, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Tianshu Peng
- Institute of Agricultural Quality Standards and Testing Technology, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Xun Zou
- Institute of Agricultural Quality Standards and Testing Technology, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Guang Li
- Institute of Agricultural Quality Standards and Testing Technology, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Jianzhong Wang
- Institute of Agricultural Quality Standards and Testing Technology, Liaoning Academy of Agricultural Sciences, Shenyang, China.
| |
Collapse
|
5
|
Hu S, Luo K, Tang T, Ma G, Peng Y, Zhang Y, Liu Y, Pan L, Li S. Characterization of a Topramezone-Resistant Rice Mutant TZR1: Insights into GST-Mediated Detoxification and Antioxidant Responses. PLANTS (BASEL, SWITZERLAND) 2025; 14:425. [PMID: 39942986 PMCID: PMC11819949 DOI: 10.3390/plants14030425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025]
Abstract
Mutagenesis breeding, combined with the application of corresponding herbicides to develop herbicide-resistant rice germplasm, provides great promise for the management of weeds and weedy rice. In this study, a topramezone-resistant rice mutant, TZR1, was developed from the indica rice line Chuangyu 9H (CY9H) through radiation mutagenesis and topramezone selection. Dose-response curves revealed that the resistance index of TZR1 to topramezone was 1.94-fold compared to that of CY9H. The resistance mechanism of TZR1 was not due to target-site resistance. This resistance could be reversed by a specific inhibitor of glutathione S-transferase (GST). The activity of antioxidant enzymes was analyzed. SNPs and Indels were detected using whole-genome resequencing; differentially expressed genes were identified through RNA sequencing. Then, they underwent Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Key candidate genes associated with topramezone resistance were validated via a real-time quantitative PCR assay. Five GST genes, two UDP-glycosyltransferase genes, and three ATP-binding cassette transporter genes were identified as potential contributors to topramezone detoxification in TZR1. Overall, these findings suggest that GST enzymes possibly play an important role in TZR1 resistance to topramezone. This study will provide valuable information for the scientific application of 4-hydroxyphenylpyruvate dioxygenase inhibitors in paddy fields in future.
Collapse
Affiliation(s)
- Shiyuan Hu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (S.H.); (K.L.)
| | - Kai Luo
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (S.H.); (K.L.)
| | - Tao Tang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (T.T.); (G.M.); (Y.P.)
| | - Guolan Ma
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (T.T.); (G.M.); (Y.P.)
| | - Yajun Peng
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (T.T.); (G.M.); (Y.P.)
| | - Yuzhu Zhang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; (Y.Z.); (Y.L.)
| | - Yang Liu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; (Y.Z.); (Y.L.)
| | - Lang Pan
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (S.H.); (K.L.)
| | - Sifu Li
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (S.H.); (K.L.)
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (T.T.); (G.M.); (Y.P.)
| |
Collapse
|
6
|
Zhou X, Huang J, Xu S, Cheng H, Liu B, Huang J, Liu J, Pan D, Wu X. Novel Bifunctional Amidase Catalyzing the Degradation of Propanil and Aryloxyphenoxypropionate Herbicides in Rhodococcus sp. C-1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18067-18077. [PMID: 39082634 DOI: 10.1021/acs.jafc.4c02268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Propanil residues can contaminate habitats where microbial degradation is predominant. In this study, an efficient propanil-degrading strain C-1 was isolated from paddy and identified as Rhodococcus sp. It can completely degrade 10 μg/L-150 mg/L propanil within 0.33-10 h via the hydrolysis of the amide bond, forming 3,4-dichloroaniline. A novel bifunctional amidase, PamC, was identified in strain C-1. PamC can catalyze the hydrolysis of the amide bond of propanil to produce 3,4-dichloroaniline as well as the hydrolysis of the ester bonds of aryloxyphenoxypropionate herbicides (APPHs, clodinafop-propargyl, cyhalofop-butyl, fenoxaprop-p-ethyl, fluazifop-p-butyl, haloxyfop-p-methyl, and quizalofop-p-ethyl) to form aryloxyphenoxypropionic acids. Molecular docking and site-directed mutagenesis confirmed that the catalytic triad Lys82-Ser157-Ser181 was the active center for PamC to hydrolyze propanil and cyhalofop-butyl. This study presents a novel bifunctional amidase with capabilities for both amide and ester bond hydrolysis and enhances our understanding of the molecular mechanisms underlying the degradation of propanil and APPHs.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Jinjin Huang
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Shiwei Xu
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Huan Cheng
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Bin Liu
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Junwei Huang
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Junwei Liu
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Dandan Pan
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xiangwei Wu
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
7
|
Zeng X, Ma X, Dong J, Li B, Hua Liu S, Yin J, Yang GF. A Protocol for Activated Bioorthogonal Fluorescence Labeling and Imaging of 4-Hydroxyphenylpyruvate Dioxygenase in Plants. Angew Chem Int Ed Engl 2023; 62:e202312618. [PMID: 37795547 DOI: 10.1002/anie.202312618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) plays a crucial role in the synthesis of nutrients needed to maintain optimal plant growth. Its level is closely linked to the extent of abiotic stress experienced by plants. Moreover, it is also the target of commercial herbicides. Therefore, labeling of HPPD in plants not only enables visualization of its tissue distribution and cellular uptake, it also facilitates assessment of abiotic stress of plants and provides information needed for the development of effective environmentally friendly herbicides. In this study, we created a method for fluorescence labeling of HPPD that avoids interference with the normal growth of plants. In this strategy, a perylene-linked dibenzyl-cyclooctyne undergoes strain-promoted azide-alkyne cycloaddition with an azide-containing HPPD ligand. The activation-based labeling process results in a significant emission enhancement caused by the change in the fluorescent forms from an excimer to a monomer. Notably, this activated bioorthogonal strategy is applicable to visualizing HPPD in Arabidopsis thaliana, and assessing its response to multiple abiotic stresses. Also, it can be employed to monitor in vivo levels and locations of HPPD in crops. Consequently, the labeling strategy will be a significant tool in investigations of HPPD-related abiotic stress mechanisms, discovering novel herbicides, and uncovering unknown biological functions.
Collapse
Affiliation(s)
- Xiaoyan Zeng
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| | - Xiaoxie Ma
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| | - Jin Dong
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| | - Biao Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| | - Sheng Hua Liu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| | - Jun Yin
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| | - Guang-Fu Yang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| |
Collapse
|
8
|
Chen L, Liu R, Tan Q, Luo H, Chen Y, Jin Y, Zheng Z, Zhang B, Guo D. Improving the Herbicide Resistance of Rice 4-Hydroxyphenylpyruvate Dioxygenase by DNA Shuffling Basis-Directed Evolution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15186-15193. [PMID: 37788677 DOI: 10.1021/acs.jafc.3c04079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is an ideal target for herbicide resistance genetic engineering. In this study, a mutant MFRR-2 with mesotrione resistance was screened from an Oryza sativa HPPD and mutant-Zea mays HPPD DNA shuffling library. The enzyme properties showed that although the stability of the mutant decreased in vitro, the enzyme activity of MFRR-2 at the optimum temperature of 25 °C was still equivalent to that of OsHPPD. Under 50 μM mesotrione treatment, MFRR-2 enzyme activity remained at approximately 90%, while the enzyme activity of OsHPPD decreased by approximately 50%. Surprisingly, Fe2+ was found to have an inhibitory effect on the enzyme activity. Then, the transgenic rice of the MFRR-2 gene showed approximately 1.5 times mesotrione resistance compared to OsHPPD transgenic rice. In conclusion, this study has conducted a beneficial exploration on the use of DNA shuffling for HPPD-directed evolution, and the mutant has potential application value for herbicide resistance genetic engineering.
Collapse
Affiliation(s)
- Le Chen
- College of Tropical Crops, Hainan University, Haikou 570228, P. R. China
- Key Laboratory of Jiangsu Province for Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China
| | - Rui Liu
- College of Tropical Crops, Hainan University, Haikou 570228, P. R. China
| | - Qing Tan
- College of Tropical Crops, Hainan University, Haikou 570228, P. R. China
| | - Hongmei Luo
- College of Tropical Crops, Hainan University, Haikou 570228, P. R. China
| | - Yuyu Chen
- College of Tropical Crops, Hainan University, Haikou 570228, P. R. China
| | - Yaru Jin
- College of Tropical Crops, Hainan University, Haikou 570228, P. R. China
| | - Zhongbing Zheng
- College of Tropical Crops, Hainan University, Haikou 570228, P. R. China
| | - Baolong Zhang
- College of Tropical Crops, Hainan University, Haikou 570228, P. R. China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, P. R. China
- Key Laboratory of Jiangsu Province for Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China
| | - Dongshu Guo
- Key Laboratory of Jiangsu Province for Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China
| |
Collapse
|
9
|
Liu Y, Yan Q, Ma J, Wang J, Jiang Z, Yang S. Directed evolution of a β-N-acetylhexosaminidase from Haloferula sp. for lacto-N-triose II and lacto-N-neotetraose synthesis from chitin. Enzyme Microb Technol 2023; 164:110177. [PMID: 36549095 DOI: 10.1016/j.enzmictec.2022.110177] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
In our previous study, a β-N-acetylhexosaminidase (HaHex74) from Haloferula sp. showing high human milk oligosaccharides (HMOs) synthesis ability was identified and characterized. In this study, HaHex74 was further engineered by directed evolution and site-saturation mutagenesis to improve its transglycosylation activity for HMOs synthesis. A mutant (mHaHex74) with improved transglycosylation activity (HaHex74-Asn401Ile/His394Leu) was obtained and characterized. mHaHex74 exhibited maximal activity at pH 5.5 and 35 °C, respectively, which were distinct from that of HaHex74 (pH 6.5 and 45 °C). Moreover, mHaHex74 showed the highest LNT2 conversion ratio of 28.2% from N,N'-diacetyl chitobiose (GlcNAc2), which is 2.2 folds higher than that of HaHex74. A three-enzyme cascade reaction for the synthesis of LNT2 and LNnT from chitin was performed in a 5-L reactor, and the contents of LNT2 and LNnT reached up to 15.0 g L1 and 4.9 g L1, respectively. Therefore, mHaHex74 maybe a good candidate for enzymatic synthesis of HMOs.
Collapse
Affiliation(s)
- Yihao Liu
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian, Beijing 100083, China
| | - Qiaojuan Yan
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian, Beijing 100083, China
| | - Junwen Ma
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian, Beijing 100083, China
| | - Jianyu Wang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian, Beijing 100083, China
| | - Zhengqiang Jiang
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian, Beijing 100083, China.
| | - Shaoqing Yang
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian, Beijing 100083, China.
| |
Collapse
|
10
|
Wang H, Lei P, Liu B, Zhu J, He Q, Chen L, He J. Mutations of Asn321 and Glu322 Improve Resistance of 4-Hydroxyphenylpyruvate Dioxygenase SpHPPDm to Topramezone. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9703-9710. [PMID: 35856450 DOI: 10.1021/acs.jafc.2c02327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As a highly efficient 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor herbicide, topramezone is an ideal target for herbicide-resistant genetic engineering. In this study, two mutants, K-19 (N321Y) and K-63 (Q166R/E322V), with topramezone resistance increased by 205.3 and 58.5%, respectively, were screened from the random mutation library of SpHPPDm, a topramezone-resistant HPPD mutant that we previously obtained. Sites N321 and E322 were identified as key sites for increased topramezone resistance by single-site mutation analysis. A mutant KB-145 (N321Y/E322K) was further obtained by saturation mutation at sites N321 and E322. The topramezone resistance of KB-145 increased by 955.3% compared to mutant SpHPPDm. In conclusion, this study identifies two new sites that significantly affect the topramezone resistance of SpHPPDm, which provides new insights into the molecular mechanism of herbicide resistance of HPPD, and the acquired mutants have great application potential in the construction of herbicide-resistant crops.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Peng Lei
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Bin Liu
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Jianchun Zhu
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Qin He
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Le Chen
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu 210014, People's Republic of China
| | - Jian He
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
11
|
Zeng H, Zhang W, Wang Z, Geng W, Feng G, Gan X. Novel Pyrazole Amides as Potential 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7400-7411. [PMID: 35687877 DOI: 10.1021/acs.jafc.2c02123] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is an important target for the development of new herbicides. HPPD inhibitors can hinder photosynthesis and induce weed death with bleaching symptoms. To explore the novel skeleton of HPPD inhibitors, a series of novel pyrazole amide derivatives were synthesized and evaluated for their inhibitory effects on Arabidopsis thaliana HPPD (AtHPPD) and herbicidal activities. Some compounds had excellent inhibitory activities against AtHPPD. Among them, compound B5 displayed top-rank inhibitory activity against AtHPPD with an IC50 value of 0.04 μM, which was obviously superior to that of topramezone (IC50 value of 0.11 μM). Furthermore, compounds B2 and B7 had 100% herbicidal activities in Petri dish assays against Portulaca oleracea and Amaranthus tricolor at 100 μg/mL. In particular, compound B7 not only possessed strong AtHPPD inhibitory activity but also exhibited significant preemergence herbicidal activity. However, compound B7 was completely harmless to soybean, cotton, and wheat. In addition, the molecular docking and microscale thermophoresis measurement experiment verified that compounds can bind well with AtHPPD via π-π interactions. The present work provides a new approach for the rational design of more effective HPPD inhibitors, and pyrazole amides could be used as useful substructures for the development of new HPPD inhibitors and preemergence herbicidal agents.
Collapse
Affiliation(s)
- Huanan Zeng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Wei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhengxing Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Wang Geng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Gang Feng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
12
|
Wang H, Liu B, Lei P, Zhu J, Chen L, He Q, He J. Improving the herbicide resistance of 4-hydroxyphenylpyruvate dioxygenase SpHPPD by directed evolution. Enzyme Microb Technol 2021; 154:109964. [PMID: 34902641 DOI: 10.1016/j.enzmictec.2021.109964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/27/2021] [Accepted: 12/06/2021] [Indexed: 11/03/2022]
Abstract
Topramezone, a highly efficient 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibitor herbicide, is an ideal target for herbicide-resistant genetic engineering. However, there is still a lack of HPPD gene that is highly resistant to topramezone. In previous studies, we obtained a topramezone-resistant HPPD (SpHPPDm) gene from Sphingobium sp. TPM-19, however, its resistance strength still could not meet the requirements for construction of herbicide-resistant crop. In this study, random mutagenesis (error-prone PCR) was employed to improve the topramezone resistance of SpHPPDm. Two mutants with improved resistance, K-28 (E322R) and K-113 (K249R, G327C), were screened from the random mutation library of SpHPPDm. The catalytic efficiency (kcat/Km) of mutants K-28 and K-113 only slightly decreased by approximately 2%. The half-maximal inhibitory concentration (IC50) of topramezone increased by 58.5% and 195.5% for mutants K-28 and K-113, respectively. Furthermore, mutant K-113 also showed significantly improved resistance to mesotrione and DKN (the active ingredient of isoxaflutole) with the IC50 increasing by 60.3% and 167.5%, respectively; while mutant K-28 only showed increased resistance to mesotrione with IC50 increasing by 77.6%, but reduced resistance to DKN with IC50 declining by 20.9%. Site-directed mutation assays revealed that G327C, but not K249R, contributed to topramezone resistance in mutant K-113. This study provides genetic resources for the genetic engineering of HPPD-inhibitor-resistant crops and a basis for further research on HPPD resistance mechanisms.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Bin Liu
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Peng Lei
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Jianchun Zhu
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Le Chen
- Excellence and innovation center, Jiangsu Academy of Agricultural Science, Nanjing 210014, China.
| | - Qin He
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Jian He
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| |
Collapse
|
13
|
Li J, Zhang W, Lin Z, Huang Y, Bhatt P, Chen S. Emerging Strategies for the Bioremediation of the Phenylurea Herbicide Diuron. Front Microbiol 2021; 12:686509. [PMID: 34475856 PMCID: PMC8406775 DOI: 10.3389/fmicb.2021.686509] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/16/2021] [Indexed: 02/04/2023] Open
Abstract
Diuron (DUR) is a phenylurea herbicide widely used for the effective control of most annual and perennial weeds in farming areas. The extensive use of DUR has led to its widespread presence in soil, sediment, and aquatic environments, which poses a threat to non-target crops, animals, humans, and ecosystems. Therefore, the removal of DUR from contaminated environments has been a hot topic for researchers in recent decades. Bioremediation seldom leaves harmful intermediate metabolites and is emerging as the most effective and eco-friendly strategy for removing DUR from the environment. Microorganisms, such as bacteria, fungi, and actinomycetes, can use DUR as their sole source of carbon. Some of them have been isolated, including organisms from the bacterial genera Arthrobacter, Bacillus, Vagococcus, Burkholderia, Micrococcus, Stenotrophomonas, and Pseudomonas and fungal genera Aspergillus, Pycnoporus, Pluteus, Trametes, Neurospora, Cunninghamella, and Mortierella. A number of studies have investigated the toxicity and fate of DUR, its degradation pathways and metabolites, and DUR-degrading hydrolases and related genes. However, few reviews have focused on the microbial degradation and biochemical mechanisms of DUR. The common microbial degradation pathway for DUR is via transformation to 3,4-dichloroaniline, which is then metabolized through two different metabolic pathways: dehalogenation and hydroxylation, the products of which are further degraded via cooperative metabolism. Microbial degradation hydrolases, including PuhA, PuhB, LibA, HylA, Phh, Mhh, and LahB, provide new knowledge about the underlying pathways governing DUR metabolism. The present review summarizes the state-of-the-art knowledge regarding (1) the environmental occurrence and toxicity of DUR, (2) newly isolated and identified DUR-degrading microbes and their enzymes/genes, and (3) the bioremediation of DUR in soil and water environments. This review further updates the recent knowledge on bioremediation strategies with a focus on the metabolic pathways and molecular mechanisms involved in the bioremediation of DUR.
Collapse
Affiliation(s)
- Jiayi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|