1
|
Wang T, Xue H, Liu H, Yuan H, Huang D, Jiang Y. Advancements in metabolic engineering: unlocking the potential of key organic acids for sustainable industrial applications. Front Bioeng Biotechnol 2025; 13:1556516. [PMID: 40134770 PMCID: PMC11933101 DOI: 10.3389/fbioe.2025.1556516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
This review explores the advancements, application potential, and challenges of microbial metabolic engineering strategies for sustainable organic acid production. By integrating gene editing, pathway reconstruction, and dynamic regulation, microbial platforms have achieved enhanced biosynthesis of key organic acids such as pyruvate, lactic acid, and succinic acid. Strategies including by-product pathway knockout, key enzyme overexpression, and improved CO2 fixation have contributed to higher production efficiency. Additionally, utilizing non-food biomass sources, such as lignocellulose, algal feedstocks, and industrial waste, has reduced reliance on conventional carbon sources, supporting sustainability goals. However, challenges remain in substrate inhibition, purification complexity, and metabolic flux imbalances. Addressing these requires omics-driven metabolic optimization, stress-resistant strain development, and biorefinery integration. Future research should focus on system-level design to enhance cost-effectiveness and sustainability, advancing industrial bio-manufacturing of organic acids.
Collapse
Affiliation(s)
- Tengfei Wang
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Han Xue
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Hongling Liu
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Haibo Yuan
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Di Huang
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Yi Jiang
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| |
Collapse
|
2
|
Udourioh GA, Solomon MM, Okolie JA. A Review of the Valorization of Dairy Industry Wastes through Thermochemical, Biological, and Integrated Processes for Value-Added Products. Food Sci Anim Resour 2025; 45:375-408. [PMID: 40093637 PMCID: PMC11907414 DOI: 10.5851/kosfa.2025.e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/10/2024] [Accepted: 01/13/2025] [Indexed: 03/19/2025] Open
Abstract
The dairy industry is a significant player in the food industry, providing essential products such as milk, cheese, butter, yogurt, and milk powder to meet the global population's needs. However, the industry's activities have resulted in significant pollution, with heavy waste generation, disposal, and effluent emissions into the environment. Properly handling dairy waste residues is a major challenge, with up to 60% of the total treatment cost in the processing unit allocated to waste management. Therefore, valorizing dairy waste into useful products presents a significant advantage for the dairy industry. Numerous studies have proposed various approaches to convert dairy waste into useful products, including thermochemical, biological, and integrated conversion pathways. This review presents an overview of these approaches and identifies the best possible method for valorizing dairy waste and by-products. The research presents up-to-date information on the recovery of value-added products from dairy waste, such as biogas, biofertilizers, biopolymers, and biosurfactants, with a focus on integrating technology for environmental sustainability. Furthermore, the obstacles and prospects in dairy waste valorization have been presented. This review is a valuable resource for developing and deploying dairy waste valorization technologies, and it also presents research opportunities in this field.
Collapse
Affiliation(s)
- Godwin A Udourioh
- Department of Pure and Applied Chemistry, Veritas University Abuja, Abuja 6523, Nigeria
| | - Moses M Solomon
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Jude A Okolie
- Gallogly College of Engineering, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
3
|
Zhang M, Zhao S. Different transcriptomic and metabolomic analysis of Saccharomyces cerevisiae BY4742 and CEN.PK2-1C strains. Arch Microbiol 2024; 206:460. [PMID: 39508902 DOI: 10.1007/s00203-024-04178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
To establish efficient yeast cell factories, it is necessary to understand the transcriptional and metabolic changes among different yeasts. Saccharomyces cerevisiae BY4742 and CEN.PK2-1C strains are originated from different yeast strains and are commonly used as model organisms and chassis cells in molecular biology study and synthetic biology-based natural production. Metabolomic analysis showed that the BY4742 strain produced higher levels of phenylalanine, tyrosine than CEN.PK2-1C, while CEN.PK2-1C produced high levels of indoleacetaldehyde, indolepyruvate. Transcriptomic analysis showed that the two strains showed large differences in the glycolysis pathway and pyruvate metabolism pathway. CEN.PK2-1C had greater glycolysis flux than BY4742, whereas BY4742 has greater flux in the pathway of pyruvate metabolism to produce fumarate. These findings provide a basis knowledge of the metabolomic and transcriptomic differences between BY4742 and CEN.PK2-1C strains, and also provide preliminary information for strain selection for molecular biology study and synthetic biology-based natural product production.
Collapse
Affiliation(s)
- Meihong Zhang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shujuan Zhao
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
4
|
Sun W, Wang S, Tan X, Guo L, Liu W, Tian W, Zhang H, Jiang T, Meng W, Liu Y, Kang Z, Lü C, Gao C, Xu P, Ma C. Production of α-ketoisovalerate with whey powder by systemic metabolic engineering of Klebsiella oxytoca. Microb Cell Fact 2024; 23:264. [PMID: 39367476 PMCID: PMC11452931 DOI: 10.1186/s12934-024-02545-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Whey, which has high biochemical oxygen demand and chemical oxygen demand, is mass-produced as a major by-product of the dairying industry. Microbial fermentation using whey as the carbon source may convert this potential pollutant into value-added products. This study investigated the potential of using whey powder to produce α-ketoisovalerate, an important platform chemical. RESULTS Klebsiella oxytoca VKO-9, an efficient L-valine producing strain belonging to Risk Group 1 organism, was selected for the production of α-ketoisovalerate. The leucine dehydrogenase and branched-chain α-keto acid dehydrogenase, which catalyzed the reductive amination and oxidative decarboxylation of α-ketoisovalerate, respectively, were inactivated to enhance the accumulation of α-ketoisovalerate. The production of α-ketoisovalerate was also improved through overexpressing α-acetolactate synthase responsible for pyruvate polymerization and mutant acetohydroxyacid isomeroreductase related to α-acetolactate reduction. The obtained strain K. oxytoca KIV-7 produced 37.3 g/L of α-ketoisovalerate from lactose, the major utilizable carbohydrate in whey. In addition, K. oxytoca KIV-7 also produced α-ketoisovalerate from whey powder with a concentration of 40.7 g/L and a yield of 0.418 g/g. CONCLUSION The process introduced in this study enabled efficient α-ketoisovalerate production from low-cost substrate whey powder. Since the key genes for α-ketoisovalerate generation were integrated in genome of K. oxytoca KIV-7 and constitutively expressed, this strain is promising in stable α-ketoisovalerate fermentation and can be used as a chassis strain for α-ketoisovalerate derivatives production.
Collapse
Affiliation(s)
- Weikang Sun
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China
| | - Shuo Wang
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China
| | - Xiaoxu Tan
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China
| | - Leilei Guo
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China
| | - Wei Liu
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China
| | - Wenjia Tian
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China
| | - Hui Zhang
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China
| | - Tianyi Jiang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Wensi Meng
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China
| | - Yidong Liu
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China
| | - Zhaoqi Kang
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China.
| |
Collapse
|
5
|
Yun EJ, Lee SH, Kim S, Ryu HS, Kim KH. Catabolism of 2-keto-3-deoxy-galactonate and the production of its enantiomers. Appl Microbiol Biotechnol 2024; 108:403. [PMID: 38954014 PMCID: PMC11219438 DOI: 10.1007/s00253-024-13235-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024]
Abstract
2-Keto-3-deoxy-galactonate (KDGal) serves as a pivotal metabolic intermediate within both the fungal D-galacturonate pathway, which is integral to pectin catabolism, and the bacterial DeLey-Doudoroff pathway for D-galactose catabolism. The presence of KDGal enantiomers, L-KDGal and D-KDGal, varies across these pathways. Fungal pathways generate L-KDGal through the reduction and dehydration of D-galacturonate, whereas bacterial pathways produce D-KDGal through the oxidation and dehydration of D-galactose. Two distinct catabolic routes further metabolize KDGal: a nonphosphorolytic pathway that employs aldolase and a phosphorolytic pathway involving kinase and aldolase. Recent findings have revealed that L-KDGal, identified in the bacterial catabolism of 3,6-anhydro-L-galactose, a major component of red seaweeds, is also catabolized by Escherichia coli, which is traditionally known to be catabolized by specific fungal species, such as Trichoderma reesei. Furthermore, the potential industrial applications of KDGal and its derivatives, such as pyruvate and D- and L-glyceraldehyde, are underscored by their significant biological functions. This review comprehensively outlines the catabolism of L-KDGal and D-KDGal across different biological systems, highlights stereospecific methods for discriminating between enantiomers, and explores industrial application prospects for producing KDGal enantiomers. KEY POINTS: • KDGal is a metabolic intermediate in fungal and bacterial pathways • Stereospecific enzymes can be used to identify the enantiomeric nature of KDGal • KDGal can be used to induce pectin catabolism or produce functional materials.
Collapse
Affiliation(s)
- Eun Ju Yun
- Division of Biotechnology, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Sun-Hee Lee
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Subin Kim
- Division of Biotechnology, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Hae Seul Ryu
- Division of Biotechnology, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
6
|
Cao M, Sun W, Wang S, Di H, Du Q, Tan X, Meng W, Kang Z, Liu Y, Xu P, Lü C, Ma C, Gao C. Efficient L-valine production using systematically metabolic engineered Klebsiella oxytoca. BIORESOURCE TECHNOLOGY 2024; 395:130403. [PMID: 38295958 DOI: 10.1016/j.biortech.2024.130403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/15/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
L-Valine, a branched-chain amino acid with diversified applications, is biosynthesized with α-acetolactate as the key precursor. In this study, the metabolic flux in Klebsiella oxytoca PDL-K5, a Risk Group 1 organism producing 2,3-butanediol as the major fermentation product, was rearranged to L-valine production by introducing exogenous L-valine biosynthesis pathway and blocking endogenous 2,3-butanediol generation at the metabolic branch point α-acetolactate. After further enhancing L-valine efflux, strengthening pyruvate polymerization and selecting of key enzymes for L-valine synthesis, a plasmid-free K. oxytoca strain VKO-9 was obtained. Fed-batch fermentation with K. oxytoca VKO-9 in a 7.5 L fermenter generated 122 g/L L-valine with a yield of 0.587 g/g in 56 h. In addition, repeated fed-batch fermentation was conducted to prevent precipitation of L-valine due to oversaturation. The average concentration, yield, and productivity of produced L-valine in three cycles of repeated fed-batch fermentation were 81.3 g/L, 0.599 g/g, and 3.39 g/L/h, respectively.
Collapse
Affiliation(s)
- Menghao Cao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Weikang Sun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Shuo Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Haiyan Di
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Qihang Du
- Shandong Institute of Metrology, Jinan 250101, China
| | - Xiaoxu Tan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Wensi Meng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Zhaoqi Kang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yidong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
7
|
Yang L, Jia C, Xie B, Chen M, Cheng X, Chen X, Dong W, Zhou J, Jiang M. Lighting up Pyruvate Metabolism in Saccharomyces cerevisiae by a Genetically Encoded Fluorescent Biosensor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1651-1659. [PMID: 38206807 DOI: 10.1021/acs.jafc.3c08724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Monitoring intracellular pyruvate is useful for the exploration of fundamental metabolism and for guiding the construction of yeast cell factories for chemical production. Here, we employed a genetically encoded fluorescent Pyronic biosensor to light up the pyruvate metabolic state in the cytoplasm, nucleus, and mitochondria of Saccharomyces cerevisiae BY4741. A strong correlation was observed between the pyruvate fluctuation in mitochondria and cytoplasm when exposed to different metabolites. Further metabolic analysis of pyruvate uptake and glycolytic dynamics showed that glucose and fructose dose-dependently activated cytoplasmic pyruvate levels more effectively than direct exposure to pyruvate. Meanwhile, the Pyronic biosensor could visually distinguish phenotypes of the wild-type S. cerevisiae BY4741 and the pyruvate-hyperproducing S. cerevisiae TAM at a single-cell resolution, having the potential for high-throughput screening. Overall, Pyronic biosensors targeting different suborganelles contribute to mapping and studying the central carbon metabolism in-depth and guide the design and construction of yeast cell factories.
Collapse
Affiliation(s)
- Lu Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Chaochao Jia
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Bin Xie
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Minjiao Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Xiawei Cheng
- School of Pharmacy, Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiaoqiang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, P. R. China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, P. R. China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, P. R. China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, P. R. China
| |
Collapse
|
8
|
Sun Y, Guo S, Wu T, Zhang J, Kwok LY, Sun Z, Zhang H, Wang J. Untargeted mass spectrometry-based metabolomics approach unveils biochemical changes in compound probiotic fermented milk during fermentation. NPJ Sci Food 2023; 7:21. [PMID: 37225736 DOI: 10.1038/s41538-023-00197-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/15/2023] [Indexed: 05/26/2023] Open
Abstract
Probiotic functional products have drawn wide attention because of their increasing popularity. However, few studies have analyzed probiotic-specific metabolism in the fermentation process. This study applied UPLC-QE-MS-based metabolomics to track changes in the milk metabolomes in the course of fermentation by two probiotic strains, Lacticaseibacillus paracasei PC-01 and Bifidobacterium adolescentis B8589. We observed substantial changes in the probiotic fermented milk metabolome between 0 and 36 h of fermentation, and the differences between the milk metabolomes at the interim period (36 h and 60 h) and the ripening stage (60 h and 72 h) were less obvious. A number of time point-specific differential metabolites were identified, mainly belonging to organic acids, amino acids, and fatty acids. Nine of the identified differential metabolites are linked to the tricarboxylic acid cycle, glutamate metabolism, and fatty acid metabolism. The contents of pyruvic acid, γ-aminobutyric acid, and capric acid increased at the end of fermentation, which can contribute to the nutritional quality and functional properties of the probiotic fermented milk. This time-course metabolomics study analyzed probiotic-specific fermentative changes in milk, providing detailed information of probiotic metabolism in a milk matrix and the potential beneficial mechanism of probiotic fermented milk.
Collapse
Affiliation(s)
- Yaru Sun
- Key Laboratory of Dairy Biotechnology and Engineering (Inner Mongolia Agricultural University), Ministry of Education, 010018, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, 010018, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Shuai Guo
- Key Laboratory of Dairy Biotechnology and Engineering (Inner Mongolia Agricultural University), Ministry of Education, 010018, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, 010018, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Ting Wu
- Key Laboratory of Dairy Biotechnology and Engineering (Inner Mongolia Agricultural University), Ministry of Education, 010018, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, 010018, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Jingwen Zhang
- Key Laboratory of Dairy Biotechnology and Engineering (Inner Mongolia Agricultural University), Ministry of Education, 010018, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, 010018, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering (Inner Mongolia Agricultural University), Ministry of Education, 010018, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, 010018, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering (Inner Mongolia Agricultural University), Ministry of Education, 010018, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, 010018, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering (Inner Mongolia Agricultural University), Ministry of Education, 010018, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, 010018, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Jicheng Wang
- Key Laboratory of Dairy Biotechnology and Engineering (Inner Mongolia Agricultural University), Ministry of Education, 010018, Hohhot, China.
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, 010018, Hohhot, China.
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, 010018, Hohhot, China.
| |
Collapse
|
9
|
Carranza-Saavedra D, Torres-Bacete J, Blázquez B, Sánchez Henao CP, Zapata Montoya JE, Nogales J. System metabolic engineering of Escherichia coli W for the production of 2-ketoisovalerate using unconventional feedstock. Front Bioeng Biotechnol 2023; 11:1176445. [PMID: 37152640 PMCID: PMC10158823 DOI: 10.3389/fbioe.2023.1176445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
Replacing traditional substrates in industrial bioprocesses to advance the sustainable production of chemicals is an urgent need in the context of the circular economy. However, since the limited degradability of non-conventional carbon sources often returns lower yields, effective exploitation of such substrates requires a multi-layer optimization which includes not only the provision of a suitable feedstock but the use of highly robust and metabolically versatile microbial biocatalysts. We tackled this challenge by means of systems metabolic engineering and validated Escherichia coli W as a promising cell factory for the production of the key building block chemical 2-ketoisovalerate (2-KIV) using whey as carbon source, a widely available and low-cost agro-industrial waste. First, we assessed the growth performance of Escherichia coli W on mono and disaccharides and demonstrated that using whey as carbon source enhances it significantly. Second, we searched the available literature and used metabolic modeling approaches to scrutinize the metabolic space of E. coli and explore its potential for overproduction of 2-KIV identifying as basic strategies the block of pyruvate depletion and the modulation of NAD/NADP ratio. We then used our model predictions to construct a suitable microbial chassis capable of overproducing 2-KIV with minimal genetic perturbations, i.e., deleting the pyruvate dehydrogenase and malate dehydrogenase. Finally, we used modular cloning to construct a synthetic 2-KIV pathway that was not sensitive to negative feedback, which effectively resulted in a rerouting of pyruvate towards 2-KIV. The resulting strain shows titers of up to 3.22 ± 0.07 g/L of 2-KIV and 1.40 ± 0.04 g/L of L-valine in 24 h using whey in batch cultures. Additionally, we obtained yields of up to 0.81 g 2-KIV/g substrate. The optimal microbial chassis we present here has minimal genetic modifications and is free of nutritional autotrophies to deliver high 2-KIV production rates using whey as a non-conventional substrate.
Collapse
Affiliation(s)
- Darwin Carranza-Saavedra
- Faculty of Pharmaceutical and Food Sciences, Nutrition and Food Technology Group, University of Antioquia, Medellín, Colombia
- Department of Systems Biology, National Centre for Biotechnology (CSIC), Systems Biotechnology Group, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy‐Spanish National Research Council (SusPlast‐CSIC), Madrid, Spain
| | - Jesús Torres-Bacete
- Department of Systems Biology, National Centre for Biotechnology (CSIC), Systems Biotechnology Group, Madrid, Spain
| | - Blas Blázquez
- Department of Systems Biology, National Centre for Biotechnology (CSIC), Systems Biotechnology Group, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy‐Spanish National Research Council (SusPlast‐CSIC), Madrid, Spain
| | - Claudia Patricia Sánchez Henao
- Faculty of Pharmaceutical and Food Sciences, Nutrition and Food Technology Group, University of Antioquia, Medellín, Colombia
| | - José Edgar Zapata Montoya
- Faculty of Pharmaceutical and Food Sciences, Nutrition and Food Technology Group, University of Antioquia, Medellín, Colombia
| | - Juan Nogales
- Department of Systems Biology, National Centre for Biotechnology (CSIC), Systems Biotechnology Group, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy‐Spanish National Research Council (SusPlast‐CSIC), Madrid, Spain
| |
Collapse
|
10
|
Xiao D, Hu C, Xu X, Lü C, Wang Q, Zhang W, Gao C, Xu P, Wang X, Ma C. A d,l-lactate biosensor based on allosteric transcription factor LldR and amplified luminescent proximity homogeneous assay. Biosens Bioelectron 2022; 211:114378. [PMID: 35617798 DOI: 10.1016/j.bios.2022.114378] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/02/2022]
Abstract
Lactate, a hydroxycarboxylic acid commercially produced by microbial fermentation, is widely applied in diverse industrial fields. Lactate exists in two stereoisomeric forms (d-lactate and l-lactate). d-Lactate and l-lactate are often simultaneously present in many biological samples. Therefore, a biosensor able to detect both d- and l-lactate is required but previously unavailable. Herein, an allosteric transcription factor LldR from Pseudomonas aeruginosa PAO1, which responds to both d-lactate and l-lactate, was combined with amplified luminescent proximity homogeneous assay technology to develop a d,l-lactate biosensor. The proposed biosensor was optimized by mutation of DNA sequence in binding site of LldR. The optimized biosensor BLac-6 can accurately detect the concentration of lactate independent on ratio of the two isomers in pending test samples. The biosensor was also tentatively used in quantitative analysis of d-lactate, l-lactate, or d,l-lactate in fermentation samples produced by three recombinant strains of Klebsiella oxytoca. With its desirable properties, the biosensor BLac-6 may be a potential choice for monitoring the concentration of lactate during industrial fermentation.
Collapse
Affiliation(s)
- Dan Xiao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Chunxia Hu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Xianzhi Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Qian Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Wen Zhang
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, PR China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xia Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
11
|
Sar T, Harirchi S, Ramezani M, Bulkan G, Akbas MY, Pandey A, Taherzadeh MJ. Potential utilization of dairy industries by-products and wastes through microbial processes: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152253. [PMID: 34902412 DOI: 10.1016/j.scitotenv.2021.152253] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
The dairy industry generates excessive amounts of waste and by-products while it gives a wide range of dairy products. Alternative biotechnological uses of these wastes need to be determined to aerobic and anaerobic treatment systems due to their high chemical oxygen demand (COD) levels and rich nutrient (lactose, protein and fat) contents. This work presents a critical review on the fermentation-engineering aspects based on defining the effective use of dairy effluents in the production of various microbial products such as biofuel, enzyme, organic acid, polymer, biomass production, etc. In addition to microbial processes, techno-economic analyses to the integration of some microbial products into the biorefinery and feasibility of the related processes have been presented. Overall, the inclusion of dairy wastes into the designed microbial processes seems also promising for commercial approaches. Especially the digestion of dairy wastes with cow manure and/or different substrates will provide a positive net present value (NPV) and a payback period (PBP) less than 10 years to the plant in terms of biogas production.
Collapse
Affiliation(s)
- Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden; Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohaddaseh Ramezani
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), ACECR, Tehran, Iran
| | - Gülru Bulkan
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Meltem Yesilcimen Akbas
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli 41400, Turkey
| | - Ashok Pandey
- CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | | |
Collapse
|