1
|
Liu X, An Y, Gao H. Engineering cascade biocatalysis in whole cells for syringic acid bioproduction. Microb Cell Fact 2024; 23:162. [PMID: 38824548 PMCID: PMC11143566 DOI: 10.1186/s12934-024-02441-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Syringic acid (SA) is a high-value natural compound with diverse biological activities and wide applications, commonly found in fruits, vegetables, and herbs. SA is primarily produced through chemical synthesis, nonetheless, these chemical methods have many drawbacks, such as considerable equipment requirements, harsh reaction conditions, expensive catalysts, and numerous by-products. Therefore, in this study, a novel biotransformation route for SA production was designed and developed by using engineered whole cells. RESULTS An O-methyltransferase from Desulfuromonas acetoxidans (DesAOMT), which preferentially catalyzes a methyl transfer reaction on the meta-hydroxyl group of catechol analogues, was identified. The whole cells expressing DesAOMT can transform gallic acid (GA) into SA when S-adenosyl methionine (SAM) is used as a methyl donor. We constructed a multi-enzyme cascade reaction in Escherichia coli, containing an endogenous shikimate kinase (AroL) and a chorismate lyase (UbiC), along with a p-hydroxybenzoate hydroxylase mutant (PobA**) from Pseudomonas fluorescens, and DesAOMT; SA was biosynthesized from shikimic acid (SHA) by using whole cells catalysis. The metabolic system of chassis cells also affected the efficiency of SA biosynthesis, blocking the chorismate metabolism pathway improved SA production. When the supply of the cofactor NADPH was optimized, the titer of SA reached 133 μM (26.2 mg/L). CONCLUSION Overall, we designed a multi-enzyme cascade in E. coli for SA biosynthesis by using resting or growing whole cells. This work identified an O-methyltransferase (DesAOMT), which can catalyze the methylation of GA to produce SA. The multi-enzyme cascade containing four enzymes expressed in an engineered E. coli for synthesizing of SA from SHA. The metabolic system of the strain and biotransformation conditions influenced catalytic efficiency. This study provides a new green route for SA biosynthesis.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Science, Beijing Institute of Technology, No 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Yi An
- School of Life Science, Beijing Institute of Technology, No 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Haijun Gao
- School of Life Science, Beijing Institute of Technology, No 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
2
|
Lee S, Kim S, Kim IK, Kim KJ. Structural and Biochemical Studies on Product Inhibition of S-Adenosylmethionine Synthetase from Corynebacterium glutamicum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15692-15700. [PMID: 37846083 DOI: 10.1021/acs.jafc.3c05180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
S-Adenosylmethionine (SAM) acts as a methyl donor in living organisms, and S-adenosylmethionine synthetase (MetK) is an essential enzyme for cells, as it synthesizes SAM from methionine and adenosine triphosphate (ATP). This study determined the crystal structures of the apo form and adenosine/triphosphate complex form of MetK from Corynebacterium glutamicum (CgMetK). Results showed that CgMetK has an allosteric inhibitor binding site for the SAM product in the vicinity of the active site and is inhibited by SAM both competitively and noncompetitively. Through structure-guided protein engineering, the CgMetKE68A variant was developed that exhibited an almost complete release of inhibition by SAM with rather enhanced enzyme activity. The crystal structure of the CgMetKE68A variant revealed that the formation of a new hydrogen bond between Tyr66 and Glu102 by the E68A mutation disrupted the allosteric SAM binding site and also improved the protein thermal stability by strengthening the tetramerization of the enzyme.
Collapse
Affiliation(s)
- Seunghwan Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seongmin Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Il-Kwon Kim
- KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
3
|
Lee SH, Seo H, Hong H, Kim M, Kim KJ. Molecular mechanism underlying high-affinity terephthalate binding and conformational change of TBP from Ideonella sakaiensis. Int J Biol Macromol 2023:125252. [PMID: 37295700 DOI: 10.1016/j.ijbiomac.2023.125252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Ideonella sakaiensis is the bacterium that can survive by degrading polyethylene terephthalate (PET) plastic, and terephthalic acid (TPA) binding protein (IsTBP) is an essential periplasmic protein for uptake of TPA into the cytosol for complete degradation of PET. Here, we demonstrated that IsTBP has remarkably high specificity for TPA among 33 monophenolic compounds and two 1,6-dicarboxylic acids tested. Structural comparisons with 6-carboxylic acid binding protein (RpAdpC) and TBP from Comamonas sp. E6 (CsTphC) revealed the key structural features that contribute to high TPA specificity and affinity of IsTBP. We also elucidated the molecular mechanism underlying the conformational change upon TPA binding. In addition, we developed the IsTBP variant with enhanced TPA sensitivity, which can be expanded for the use of TBP as a biosensor for PET degradation.
Collapse
Affiliation(s)
- Seul Hoo Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hogyun Seo
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hwaseok Hong
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Mijeong Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea; Zyen Co, Daegu 41566, Republic of Korea.
| |
Collapse
|
4
|
Production of various phenolic aldehyde compounds using the 4CL-FCHL biosynthesis platform. Int J Biol Macromol 2023; 226:608-617. [PMID: 36521700 DOI: 10.1016/j.ijbiomac.2022.12.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/24/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Vanillin (3-methoxy-4-hydroxybenzaldehyde) is one of the most important flavoring substances used in the cosmetic and food industries. Feruloyl-CoA hydratase/lyase (FCHL) is an enzyme that catalyzes the production of vanillin from feruloyl-CoA. In this study, we report kinetic parameters and biochemical properties of FCHL from Sphingomonas paucimobilis SYK-6 (SpFCHL). Also, the crystal structures of an apo-form of SpFCHL and two complexed forms with acetyl-CoA and vanillin/CoA was present. Comparing the apo structure to its complexed forms of SpFCHL, a gate loop with an "open and closed" role was observed at the entrance of the substrate-binding site. With vanillin and CoA complexed to SpFCHL, we captured a conformational change in the feruloyl moiety-binding pocket that repositions the catalytic SpFCHLE146 and other key residues. This binding pocket does not tightly fit the vanillin structure, suggesting substrate promiscuity of this enzyme. This observation is in good agreement with assay results for phenylpropanoid-CoAs and indicates important physicochemical properties of the substrate for the hydratase/lyase reaction mechanism. In addition, we showed that various phenolic aldehydes could be produced using the 4CL-FCHL biosynthesis platform.
Collapse
|
5
|
Ma Y, Jiang B, Liu K, Li R, Chen L, Liu Z, Xiang G, An J, Luo H, Wu J, Lv C, Pan Y, Ling T, Zhao M. Multi-omics analysis of the metabolism of phenolic compounds in tea leaves by Aspergillus luchuensis during fermentation of pu-erh tea. Food Res Int 2022; 162:111981. [DOI: 10.1016/j.foodres.2022.111981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/26/2022] [Accepted: 09/23/2022] [Indexed: 11/28/2022]
|
6
|
Xue Y, Liang Y, Zhang W, Geng C, Feng D, Huang X, Dong S, Zhang Y, Sun J, Qi F, Lu X. Characterization and Structural Analysis of Emodin- O-Methyltransferase from Aspergillus terreus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5728-5737. [PMID: 35475366 DOI: 10.1021/acs.jafc.2c01281] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
All O-methylated derivatives of emodin, including physcion, questin, and 1-O-methylemodin, show potential antifungal activities. Notably, emodin and questin are two pivotal intermediates of geodin biosynthesis in Aspergillus terreus. Although most of the geodin biosynthetic steps have been investigated, the key O-methyltransferase (OMT) responsible for the O-methylation of emodin to generate questin has remained unidentified. Herein, through phylogenetic tree analysis and in vitro biochemical assays, the long-sought class II emodin-O-methyltransferase GedA has been functionally characterized. Additionally, the catalytic mechanism and key residues at the catalytic site of GedA were elucidated by enzyme-substrate-methyl donor analogue ternary complex crystal structure determination and site-directed mutagenesis. As we demonstrate, GedA adopts a typical general acid/base (E446/H373)-mediated transmethylation mechanism. In particular, residue D374 is also crucial for efficient catalysis through blocking the formation of intramolecular hydrogen bonds in emodin. This study will facilitate future engineering of GedA for the production of physcion or other site-specific O-methylated anthraquinone derivatives with potential applications as biopesticides.
Collapse
Affiliation(s)
- Yingying Xue
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Yajing Liang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China
| | - Wei Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ce Geng
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China
| | - Dandan Feng
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China
| | - Xuenian Huang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng Dong
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China
| | - Yingfang Zhang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Jia Sun
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Feifei Qi
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China
| | - Xuefeng Lu
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Marine Biology and Biotechnology Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266101, China
| |
Collapse
|