1
|
Wang R, Wang S, Chen J, Xu Y, Yu X, Barboiu M, Zhang Y. Enhanced activity and self-regeneration in dynameric cross-linked enzyme nanoaggregates. SCIENCE ADVANCES 2025; 11:eads9371. [PMID: 40073133 PMCID: PMC11900872 DOI: 10.1126/sciadv.ads9371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025]
Abstract
Directed evolution, enzyme design, and effective immobilization have been used to improve the catalytic activity. Dynamic polymers offer a promising platform to improve enzyme activity in aqueous solutions. Here, amphiphilic dynamers and lipase self-assemble into nanoparticles of 150- to 600-nanometer diameter, showing remarkable threefold enhancement in catalytic activity. In addition, they also demonstrated the ability to promote the reversible refolding of the partially or completely denatured lipase. The catalytic efficiency is completed with its more convenient handling of dynameric nanoparticles facilitating the efficient recovery and reuse of the enzyme with cost-effective uses. Molecular simulation studies revealed an in-depth understanding of how the dynamer action mechanism affects the conformational changes of lipase. The dynamer served as an effective hydrophobic support, facilitating the lid opening and substrate access to the catalytic triad, resulting in a substantial activation with an improved stability and recyclability of the lipase.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P.R. China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Shang Wang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Xiaowei Yu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Mihail Barboiu
- Adaptive Supramolecular Nanosystems Group, Institut Européen des Membranes, University of Montpellier, CNRS UMR 5365, ENSCM, Place Eugène Bataillon, CC 047, F-34095 Montpellier, France
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| |
Collapse
|
2
|
Huang Z, Ni D, Chen Z, Zhu Y, Zhang W, Mu W. Application of molecular dynamics simulation in the field of food enzymes: improving the thermal-stability and catalytic ability. Crit Rev Food Sci Nutr 2024; 64:11396-11408. [PMID: 37485919 DOI: 10.1080/10408398.2023.2238054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Enzymes can produce high-quality food with low pollution, high function, high acceptability, and medical aid. However, most enzymes, in their native form, do not meet the industrial requirements. Sequence-based and structure-based methods are the two main strategies used for enzyme modification. Molecular Dynamics (MD) simulation is a sufficiently comprehensive technology, from a molecular perspective, which has been widely used for structure information analysis and enzyme modification. In this review, we summarize the progress and development of MD simulation, particularly for software, force fields, and a standard procedure. Subsequently, we review the application of MD simulation in various food enzymes for thermostability and catalytic improvement was reviewed in depth. Finally, the limitations and prospects of MD simulation in food enzyme modification research are discussed. This review highlights the significance of MD simulation and its prospects in food enzyme modification.
Collapse
Affiliation(s)
- Zhaolin Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Ziwei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
3
|
Lu T, Qian Y, Zhu Y, Ju X, Dai W, Xu Q, Yang Q, Li S, Yuan B, Huang J. Efficient Expression and Application of a Modified Rhizomucor miehei Lipase for Simultaneous Production of Biodiesel and Eicosapentaenoic Acid Ethyl Ester from Nannochloropsis Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39028993 DOI: 10.1021/acs.jafc.4c02360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Few reports exist on one-step enzymatic methods for the simultaneous production of biodiesel and eicosapentaenoic acid ethyl ester (EPA-EE), a high-value pharmaceutical compound. This study aimed to efficiently express Rhizomucor miehei lipase (pRML) in Pichia pastoris X-33 via propeptide mutation and high-copy strain screening. The mutated enzyme was then used to simultaneously catalyze the production of both biodiesel and EPA-EE. The P46N mutation in the propeptide (P46N-pRML) significantly boosted its production, with the four-copy strain increasing enzyme yield by 3.7-fold, reaching 3425 U/mL. Meanwhile, its optimal temperature increased to 45-50 °C, pH expanded to 7.0-8.0, specific activity doubled, Km reduced to one-third, and kcat/Km increased 7-fold. Notably, P46N-pRML efficiently converts Nannochloropsis gaditana oil's eicosapentaenoic acid (EPA). Under optimal conditions, it achieves up to 93% biodiesel and 92% EPA-EE yields in 9 h. Our study introduces a novel, efficient one-step green method to produce both biodiesel and EPA-EE using this advanced enzyme.
Collapse
Affiliation(s)
- Tong Lu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Yifan Qian
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - YuQing Zhu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Xiuyun Ju
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Weiwei Dai
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Quanbin Xu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Qianqian Yang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Shuting Li
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Bo Yuan
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Jinjin Huang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| |
Collapse
|
4
|
Li X, Rahim K, Shen X, Cui X, Du C, Zhang G. Development of a Universal One-Step Purification and Activation Method to Engineer Protein-Glutaminase through Rational Design. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10477-10486. [PMID: 38657166 DOI: 10.1021/acs.jafc.4c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Cytotoxic enzymes often exist as zymogens containing prodomains to keep them in an inactive state. Protein-glutaminase (PG), which can enhance various functional characteristics of food proteins, is an enzyme containing pro-PG and mature-PG (mPG). However, poor activity and stability limit its application while tedious purification and activation steps limit its high-throughput engineering. Here, based on structural analysis, we replaced the linker sequence between pro-PG and mPG with the HRV3C protease recognition sequence and then coexpressed it with HRV3C protease in Escherichia coli to develop an efficient one-step purification and activation method for PG. We then used this method to obtain several mutants designed by a combination of computer-aided approach and beneficial point mutations. The specific activity (131.6 U/mg) of the best variant D1 was 4.14-fold that of the wild type, and t1/2 and T5010 increased by 13 min and 7 °C, respectively. D1 could effectively improve the solubility and emulsification of wheat proteins, more than twice the effect of the wild type. We also discussed the mechanism underlying the improved properties of D1. In summary, we not only provide a universal one-step purification and activation method to facilitate zymogen engineering but also obtain an excellent PG mutant.
Collapse
Affiliation(s)
- Xiaodi Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kashif Rahim
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xingyu Shen
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Cui
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Du
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guimin Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
5
|
Xing S, Long J, Xie W, Luo C, He L, Li C, Zeng X. Characterization of a recombinant Aspergillus niger GZUF36 lipase immobilized by ionic liquid modification strategy. Appl Microbiol Biotechnol 2024; 108:233. [PMID: 38400957 PMCID: PMC10894092 DOI: 10.1007/s00253-024-13071-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/22/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024]
Abstract
Enzyme immobilized on magnetic nanomaterials is a promising biocatalyst with efficient recovery under applied magnets. In this study, a recombinant extracellular lipase from Aspergillus niger GZUF36 (PEXANL1) expressed in Pichia pastoris GS115 was immobilized on ionic liquid-modified magnetic nano ferric oxide (Fe3O4@SiO2@ILs) via electrostatic and hydrophobic interaction. The morphology, structure, and properties of Fe3O4@SiO2@ILs and immobilized PEXANL1 were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, x-ray diffraction, vibration sample magnetometer, and zeta potential analysis. Under optimized conditions, the immobilization efficiency and activity recovery of immobilized PEXANL1 were 52 ± 2% and 122 ± 2%, respectively. The enzymatic properties of immobilized PEXANL1 were also investigated. The results showed that immobilized PEXANL1 achieved the maximum activity at pH 5.0 and 45 °C, and the lipolytic activity of immobilized PEXANL1 was more than twice that of PEXANL1. Compared to PEXANL1, immobilized PEXANL1 exhibited enhanced tolerance to temperature, metal ions, surfactants, and organic solvents. The operation stability experiments revealed that immobilized PEXANL1 maintained 86 ± 3% of its activity after 6 reaction cycles. The enhanced catalytic performance in enzyme immobilization on Fe3O4@SiO2@ILs made nanobiocatalysts a compelling choice for bio-industrial applications. Furthermore, Fe3O4@SiO2@ILs could also benefit various industrial enzymes and their practical uses. KEY POINTS: • Immobilized PEXANL1 was confirmed by SEM, FT-IR, and XRD. • The specific activity of immobilized PEXANL1 was more than twice that of PEXANL1. • Immobilized PEXANL1 had improved properties with good operational stability.
Collapse
Affiliation(s)
- Shuqi Xing
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Jia Long
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Wei Xie
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Chaocheng Luo
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Laping He
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China.
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang, 550025, People's Republic of China.
- College of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, People's Republic of China.
| | - Cuiqin Li
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang, 550025, People's Republic of China.
- College of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, People's Republic of China.
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, People's Republic of China.
| | - Xuefeng Zeng
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, People's Republic of China
| |
Collapse
|
6
|
Guan A, Hou Y, Yang R, Qin J. Enzyme engineering for functional lipids synthesis: recent advance and perspective. BIORESOUR BIOPROCESS 2024; 11:1. [PMID: 38647956 PMCID: PMC10992173 DOI: 10.1186/s40643-023-00723-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/24/2023] [Indexed: 04/25/2024] Open
Abstract
Functional lipids, primarily derived through the modification of natural lipids by various processes, are widely acknowledged for their potential to impart health benefits. In contrast to chemical methods for lipid modification, enzymatic catalysis offers distinct advantages, including high selectivity, mild operating conditions, and reduced byproduct formation. Nevertheless, enzymes face challenges in industrial applications, such as low activity, stability, and undesired selectivity. To address these challenges, protein engineering techniques have been implemented to enhance enzyme performance in functional lipid synthesis. This article aims to review recent advances in protein engineering, encompassing approaches from directed evolution to rational design, with the goal of improving the properties of lipid-modifying enzymes. Furthermore, the article explores the future prospects and challenges associated with enzyme-catalyzed functional lipid synthesis.
Collapse
Affiliation(s)
- Ailin Guan
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yue Hou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Run Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiufu Qin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
7
|
Huang J, Xie X, Zheng Z, Ye L, Wang P, Xu L, Wu Y, Yan J, Yang M, Yan Y. De Novo Computational Design of a Lipase with Hydrolysis Activity towards Middle-Chained Fatty Acid Esters. Int J Mol Sci 2023; 24:ijms24108581. [PMID: 37239928 DOI: 10.3390/ijms24108581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Innovations in biocatalysts provide great prospects for intolerant environments or novel reactions. Due to the limited catalytic capacity and the long-term and labor-intensive characteristics of mining enzymes with the desired functions, de novo enzyme design was developed to obtain industrial application candidates in a rapid and convenient way. Here, based on the catalytic mechanisms and the known structures of proteins, we proposed a computational protein design strategy combining de novo enzyme design and laboratory-directed evolution. Starting with the theozyme constructed using a quantum-mechanical approach, the theoretical enzyme-skeleton combinations were assembled and optimized via the Rosetta "inside-out" protocol. A small number of designed sequences were experimentally screened using SDS-PAGE, mass spectrometry and a qualitative activity assay in which the designed enzyme 1a8uD1 exhibited a measurable hydrolysis activity of 24.25 ± 0.57 U/g towards p-nitrophenyl octanoate. To improve the activity of the designed enzyme, molecular dynamics simulations and the RosettaDesign application were utilized to further optimize the substrate binding mode and amino acid sequence, thus keeping the residues of theozyme intact. The redesigned lipase 1a8uD1-M8 displayed enhanced hydrolysis activity towards p-nitrophenyl octanoate-3.34 times higher than that of 1a8uD1. Meanwhile, the natural skeleton protein (PDB entry 1a8u) did not display any hydrolysis activity, confirming that the hydrolysis abilities of the designed 1a8uD1 and the redesigned 1a8uD1-M8 were devised from scratch. More importantly, the designed 1a8uD1-M8 was also able to hydrolyze the natural middle-chained substrate (glycerol trioctanoate), for which the activity was 27.67 ± 0.69 U/g. This study indicates that the strategy employed here has great potential to generate novel enzymes exhibiting the desired reactions.
Collapse
Affiliation(s)
- Jinsha Huang
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoman Xie
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhen Zheng
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Luona Ye
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Pengbo Wang
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li Xu
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ying Wu
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jinyong Yan
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Min Yang
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
8
|
Zhang Z, Long M, Zheng N, Lü X, Zhu C, Osire T, Xia X. Inside Out Computational Redesign of Cavities for Improving Thermostability and Catalytic Activity of Rhizomucor Miehei Lipase. Appl Environ Microbiol 2023; 89:e0217222. [PMID: 36912632 PMCID: PMC10057959 DOI: 10.1128/aem.02172-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/15/2023] [Indexed: 03/14/2023] Open
Abstract
Cavities are created by hydrophobic interactions between residue side chain atoms during the folding of enzymes. Redesigning cavities can improve the thermostability and catalytic activity of the enzyme; however, the synergistic effect of cavities remains unclear. In this study, Rhizomucor miehei lipase (RML) was used as a model to explore volume fluctuation and spatial distribution changes of the internal cavities, which could reveal the roles of internal cavities in the thermostability and catalytic activity. We present an inside out cavity engineering (CE) strategy based on computational techniques to explore how changes in the volumes and spatial distribution of cavities affect the thermostability and catalytic activity of the enzyme. We obtained 12 single-point mutants, among which the melting temperatures (Tm) of 8 mutants showed an increase of more than 2°C. Sixteen multipoint mutations were further designed by spatial distribution rearrangement of internal cavities. The Tm of the most stable triple variant, with mutations including T21V (a change of T to V at position 21), S27A, and T198L (T21V/S27A/T198L), was elevated by 11.0°C, together with a 28.7-fold increase in the half-life at 65°C and a specific activity increase of 9.9-fold (up to 5,828 U mg-1), one of the highest lipase activities reported. The possible mechanism of decreased volumes and spatial rearrangement of the internal cavities improved the stability of the enzyme, optimizing the outer substrate tunnel to improve the catalytic efficiency. Overall, the inside out computational redesign of cavities method could help to deeply understand the effect of cavities on enzymatic stability and activity, which would be beneficial for protein engineering efforts to optimize natural enzymes. IMPORTANCE In the present study, R. miehei lipase, which is widely used in various industries, provides an opportunity to explore the effects of internal cavities on the thermostability and catalytic activity of enzymes. Here, we execute high hydrostatic pressure molecular dynamics (HP-MD) simulations to screen the critical internal cavity and reshape the internal cavities through site-directed mutation. We show that as the global internal cavity volume decreases, cavity rearrangement can improve the stability of the protein while optimizing the substrate channel to improve the catalytic efficiency. Our results provide significant insights into understanding the mechanism of action of the internal cavity. Our strategy is expected to be applied to other enzymes to promote increases in thermostability and catalytic activity.
Collapse
Affiliation(s)
- Zehua Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Mengfei Long
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Nan Zheng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiang Lü
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Cailin Zhu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Tolbert Osire
- Faculty of Biology, Shenzhen MSU-BIT University, Guangdong, China
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Yu Y, Xu S, He R, Liang G. Application of Molecular Simulation Methods in Food Science: Status and Prospects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2684-2703. [PMID: 36719790 DOI: 10.1021/acs.jafc.2c06789] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Molecular simulation methods, such as molecular docking, molecular dynamic (MD) simulation, and quantum chemical (QC) calculation, have become popular as characterization and/or virtual screening tools because they can visually display interaction details that in vitro experiments can not capture and quickly screen bioactive compounds from large databases with millions of molecules. Currently, interdisciplinary research has expanded molecular simulation technology from computer aided drug design (CADD) to food science. More food scientists are supporting their hypotheses/results with this technology. To understand better the use of molecular simulation methods, it is necessary to systematically summarize the latest applications and usage trends of molecular simulation methods in the research field of food science. However, this type of review article is rare. To bridge this gap, we have comprehensively summarized the principle, combination usage, and application of molecular simulation methods in food science. We also analyzed the limitations and future trends and offered valuable strategies with the latest technologies to help food scientists use molecular simulation methods.
Collapse
Affiliation(s)
- Yuandong Yu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing400030, China
| | - Shiqi Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing400030, China
| | - Ran He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing400030, China
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing400030, China
| |
Collapse
|
10
|
Alteration of Chain-Length Selectivity and Thermostability of Rhizopus oryzae Lipase via Virtual Saturation Mutagenesis Coupled with Disulfide Bond Design. Appl Environ Microbiol 2023; 89:e0187822. [PMID: 36602359 PMCID: PMC9888275 DOI: 10.1128/aem.01878-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Rhizopus oryzae lipase (ROL) is one of the most important enzymes used in the food, biofuel, and pharmaceutical industries. However, the highly demanding conditions of industrial processes can reduce its stability and activity. To seek a feasible method to improve both the catalytic activity and the thermostability of this lipase, first, the structure of ROL was divided into catalytic and noncatalytic regions by identifying critical amino acids in the crevice-like binding pocket. Second, a mutant screening library aimed at improvement of ROL catalytic performance by virtual saturation mutagenesis of residues in the catalytic region was constructed based on Rosetta's Cartesian_ddg protocol. A double mutant, E265V/S267W (with an E-to-V change at residue 265 and an S-to-W change at residue 267), with markedly improved catalytic activity toward diverse chain-length fatty acid esters was identified. Then, computational design of disulfide bonds was conducted for the noncatalytic amino acids of E265V/S267W, and two potential disulfide bonds, S61C-S115C and E190C-E238C, were identified as candidates. Experimental data validated that the variant E265V/S267W/S61C-S115C/E190C-E238C had superior stability, with an increase of 8.5°C in the melting temperature and a half-life of 31.7 min at 60°C, 4.2-fold longer than that of the wild-type enzyme. Moreover, the variant improved the lipase activity toward five 4-nitrophenyl esters by 1.5 to 3.8 times, exhibiting a potential to modify the catalytic efficiency. IMPORTANCE Rhizopus oryzae lipase (ROL) is very attractive in biotechnology and industry as a safe and environmentally friendly biocatalyst. Functional expression of ROL in Escherichia coli facilitates effective high-throughput screening for positive variants. This work highlights a method to improve both selectivity and thermostability based on a combination of virtual saturation mutagenesis in the substrate pocket and disulfide bond prediction in the noncatalytic region. Using the method, ROL thermostability and activity to diverse 4-nitrophenyl esters could be substantially improved. The strategy of rational introduction of multiple mutations in different functional domains of the enzyme is a great prospect in the modification of biocatalysts.
Collapse
|
11
|
Agro-Industrial Food Waste as a Low-Cost Substrate for Sustainable Production of Industrial Enzymes: A Critical Review. Catalysts 2022. [DOI: 10.3390/catal12111373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The grave environmental, social, and economic concerns over the unprecedented exploitation of non-renewable energy resources have drawn the attention of policy makers and research organizations towards the sustainable use of agro-industrial food and crop wastes. Enzymes are versatile biocatalysts with immense potential to transform the food industry and lignocellulosic biorefineries. Microbial enzymes offer cleaner and greener solutions to produce fine chemicals and compounds. The production of industrially important enzymes from abundantly present agro-industrial food waste offers economic solutions for the commercial production of value-added chemicals. The recent developments in biocatalytic systems are designed to either increase the catalytic capability of the commercial enzymes or create new enzymes with distinctive properties. The limitations of low catalytic efficiency and enzyme denaturation in ambient conditions can be mitigated by employing diverse and inexpensive immobilization carriers, such as agro-food based materials, biopolymers, and nanomaterials. Moreover, revolutionary protein engineering tools help in designing and constructing tailored enzymes with improved substrate specificity, catalytic activity, stability, and reaction product inhibition. This review discusses the recent developments in the production of essential industrial enzymes from agro-industrial food trash and the application of low-cost immobilization and enzyme engineering approaches for sustainable development.
Collapse
|
12
|
Zargari F, Nikfarjam Z, Nakhaei E, Ghorbanipour M, Nowroozi A, Amiri A. Study of tyramine-binding mechanism and insecticidal activity of oil extracted from Eucalyptus against Sitophilus oryzae. Front Chem 2022; 10:964700. [PMID: 36212071 PMCID: PMC9538504 DOI: 10.3389/fchem.2022.964700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/18/2022] [Indexed: 12/02/2022] Open
Abstract
The rice weevil, Sitophilus oryzae (L.), is a major pest of stored grains throughout the world, which causes quantitative and qualitative losses of food commodities. Eucalyptus essential oils (EOs) possess insecticidal and repellent properties, which make them a potential option for insect control in stored grains with environmentally friendly properties. In the current study, the binding mechanism of tyramine (TA) as a control compound has been investigated by funnel metadynamics (FM) simulation toward the homology model of tyramine1 receptor (TyrR) to explore its binding mode and key residues involved in the binding mechanism. EO compounds have been extracted from the leaf and flower part of Eucalyptus camaldulensis and characterized by GC/MS, and their effectiveness has been evaluated by molecular docking and conventional molecular dynamic (CMD) simulation toward the TyrR model. The FM results suggested that Asp114 followed by Asp80, Asn91, and Asn427 are crucial residues in the binding and the functioning of TA toward TyrR in Sitophilus Oryzae. The GC/MS analysis confirmed a total of 54 and 31 constituents in leaf and flower, respectively, where most of the components (29) are common in both groups. This analysis also revealed the significant concentration of Eucalyptus and α-pinene in leaves and flower EOs. The docking followed by CMD was performed to find the most effective compound in Eucalyptus EOs. In this regard, butanoic acid, 3-methyl-, 3-methyl butyl ester (B12) and 2-Octen-1-ol, 3,7-dimethyl- (B23) from leaf and trans- β-Ocimene (G04) from flower showed the maximum dock score and binding free energy, making them the leading candidates to replace tyramine in TyrR. The MM-PB/GBSA and MD analysis proved that the B12 structure is the most effective compound in inhibition of TyrR.
Collapse
Affiliation(s)
- Farshid Zargari
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan (USB), Zahedan, Iran
| | - Zahra Nikfarjam
- Department of Physical & Computational Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
- *Correspondence: Zahra Nikfarjam,
| | - Ebrahim Nakhaei
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan (USB), Zahedan, Iran
| | - Masoumeh Ghorbanipour
- Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Alireza Nowroozi
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan (USB), Zahedan, Iran
| | - Azam Amiri
- College of Geography and Environmental Planning, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|
13
|
Chen G, Khan IM, He W, Li Y, Jin P, Campanella OH, Zhang H, Huo Y, Chen Y, Yang H, Miao M. Rebuilding the lid region from conformational and dynamic features to engineering applications of lipase in foods: Current status and future prospects. Compr Rev Food Sci Food Saf 2022; 21:2688-2714. [PMID: 35470946 DOI: 10.1111/1541-4337.12965] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/17/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
The applications of lipases in esterification, amidation, and transesterification have broadened their potential in the production of fine compounds with high cumulative values. Mostly, the catalytic triad of lipases is covered by either one or two mobile peptides called the "lid" that control the substrate channel to the catalytic center. The lid holds unique conformational allostery via interfacial activation to regulate the dynamics and catalytic functions of lipases, thereby highlighting its importance in redesigning these enzymes for industrial applications. The structural characteristic of lipase, the dynamics of lids, and the roles of lid in lipase catalysis were summarized, providing opportunities for rebuilding lid region by biotechniques (e.g., metagenomic technology and protein engineering) and enzyme immobilization. The review focused on the advantages and disadvantages of strategies rebuilding the lid region. The main shortcomings of biotechnologies on lid rebuilding were discussed such as negative effects on lipase (e.g., a decrease of activity). Additionally, the main shortcomings (e.g., enzyme desorption at high temperatre) in immobilization on hydrophobic supports via interfacial action were presented. Solutions to the mentioned problems were proposed by combinations of computational design with biotechnologies, and improvements of lipase immobilization (e.g., immobilization protocols and support design). Finally, the review provides future perspectives about designing hyperfunctional lipases as biocatalysts in the food industry based on lid conformation and dynamics.
Collapse
Affiliation(s)
- Gang Chen
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wensen He
- School of Food Science and Technology, Jiangsu University, Zhenjiang, China
| | - Yongxin Li
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Peng Jin
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Osvaldo H Campanella
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Department of Food Science and Technology, Ohio State University, Columbus, Ohio, USA
| | - Haihua Zhang
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Yanrong Huo
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Yang Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Huqing Yang
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
14
|
Cai Y, Xing S, Zhang Q, Zhu R, Cheng K, Li C, Zeng X, He L. Expression, purification, properties, and substrate specificity analysis of Aspergillus niger GZUF36 lipase in Escherichia coli. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
15
|
Sheik Amamuddy O, Glenister M, Tshabalala T, Tastan Bishop Ö. MDM-TASK-web: MD-TASK and MODE-TASK web server for analyzing protein dynamics. Comput Struct Biotechnol J 2021; 19:5059-5071. [PMID: 34589183 PMCID: PMC8455658 DOI: 10.1016/j.csbj.2021.08.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/28/2021] [Accepted: 08/28/2021] [Indexed: 11/18/2022] Open
Abstract
The web server, MDM-TASK-web, combines the MD-TASK and MODE-TASK software suites, which are aimed at the coarse-grained analysis of static and all-atom MD-simulated proteins, using a variety of non-conventional approaches, such as dynamic residue network analysis, perturbation-response scanning, dynamic cross-correlation, essential dynamics and normal mode analysis. Altogether, these tools allow for the exploration of protein dynamics at various levels of detail, spanning single residue perturbations and weighted contact network representations, to global residue centrality measurements and the investigation of global protein motion. Typically, following molecular dynamic simulations designed to investigate intrinsic and extrinsic protein perturbations (for instance induced by allosteric and orthosteric ligands, protein binding, temperature, pH and mutations), this selection of tools can be used to further describe protein dynamics. This may lead to the discovery of key residues involved in biological processes, such as drug resistance. The server simplifies the set-up required for running these tools and visualizing their results. Several scripts from the tool suites were updated and new ones were also added and integrated with 2D/3D visualization via the web interface. An embedded work-flow, integrated documentation and visualization tools shorten the number of steps to follow, starting from calculations to result visualization. The Django-powered web server (available at https://mdmtaskweb.rubi.ru.ac.za/) is compatible with all major web browsers. All scripts implemented in the web platform are freely available at https://github.com/RUBi-ZA/MD-TASK/tree/mdm-task-web and https://github.com/RUBi-ZA/MODE-TASK/tree/mdm-task-web.
Collapse
Affiliation(s)
- Olivier Sheik Amamuddy
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| | - Michael Glenister
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| | - Thulani Tshabalala
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
16
|
Wang S, Xu Y, Yu XW. Micro-Aqueous Organic System: A Neglected Model in Computational Lipase Design? Biomolecules 2021; 11:848. [PMID: 34200257 PMCID: PMC8226779 DOI: 10.3390/biom11060848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
Water content is an important factor in lipase-catalyzed reactions in organic media but is frequently ignored in the study of lipases by molecular dynamics (MD) simulation. In this study, Candida antarctica lipase B, Candida rugosa lipase and Rhizopus chinensis lipase were used as research models to explore the mechanisms of lipase in micro-aqueous organic solvent (MAOS) media. MD simulations indicated that lipases in MAOS systems showed unique conformations distinguished from those seen in non-aqueous organic solvent systems. The position of water molecules aggregated on the protein surface in MAOS media is the major determinant of the unique conformations of lipases and particularly impacts the distribution of hydrophilic and hydrophobic amino acids on the lipase surface. Additionally, two maxima were observed in the water-lipase radial distribution function in MAOS systems, implying the formation of two water shells around lipase in these systems. The energy landscapes of lipases along solvent accessible areas of catalytic residues and the minimum energy path indicated the dynamic open states of lipases in MAOS systems differ from those in other solvent environments. This study confirmed the necessity of considering the influence of the microenvironment on MD simulations of lipase-catalyzed reactions in organic media.
Collapse
Affiliation(s)
| | | | - Xiao-Wei Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (S.W.); (Y.X.)
| |
Collapse
|