1
|
Kugler BA, Maurer A, Fu X, Franczak E, Ernst N, Schwartze K, Allen J, Li T, Crawford PA, Koch LG, Britton SL, Shankar K, Burgess SC, Thyfault JP. Aerobic Capacity and Exercise Mediate Protection Against Hepatic Steatosis via Enhanced Bile Acid Metabolism. FUNCTION 2025; 6:zqaf019. [PMID: 40194946 PMCID: PMC12086534 DOI: 10.1093/function/zqaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 04/09/2025] Open
Abstract
High cardiorespiratory fitness and exercise show evidence of altering bile acid (BA) metabolism and are known to protect or treat diet-induced hepatic steatosis, respectively. Here, we tested the hypothesis that high intrinsic aerobic capacity and exercise both increase hepatic BA synthesis measured by the incorporation of 2H2O. We also leveraged mice with inducible liver-specific deletion of Cyp7a1 (LCyp7a1KO), which encodes the rate-limiting enzyme for BA synthesis, to test if exercise-induced BA synthesis is critical for exercise to reduce hepatic steatosis. The synthesis of hepatic BA, cholesterol, and de novo lipogenesis was measured in rats bred for either high (HCR) or low (LCR) aerobic capacity consuming acute and chronic high-fat diets. HCR rats had increased synthesis of cholesterol and certain BA species in the liver compared to LCR rats. We also found that chronic exercise with voluntary wheel running (VWR) (4 weeks) increased newly synthesized BAs of specific species in male C57BL/6J mice compared to sedentary mice. Loss of Cyp7a1 resulted in fewer new BAs and increased liver triglycerides compared to controls after a 10-week high-fat diet. Additionally, exercise via VWR for 4 weeks effectively reduced hepatic triglycerides in the high-fat diet-fed control male and female mice as expected; however, exercise in LCyp7a1KO mice did not lower liver triglycerides in either sex. These results show that aerobic capacity and exercise increase hepatic BA metabolism, which may be critical for combatting hepatic steatosis.
Collapse
Affiliation(s)
- Benjamin A Kugler
- Departments of Cell Biology and Physiology, Kansas Medical Center, Kansas City, KS, 66160, USA
- Division of Endocrinology and Clinical Pharmacology, Department of Internal Medicine, KU Diabetes Institute, Kansas Medical Center, Kansas City, KS, 66106, USA
| | - Adrianna Maurer
- Departments of Cell Biology and Physiology, Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Xiaorong Fu
- Center for Human Nutrition and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Edziu Franczak
- Departments of Cell Biology and Physiology, Kansas Medical Center, Kansas City, KS, 66160, USA
- Division of Endocrinology and Clinical Pharmacology, Department of Internal Medicine, KU Diabetes Institute, Kansas Medical Center, Kansas City, KS, 66106, USA
| | - Nick Ernst
- Departments of Cell Biology and Physiology, Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Kevin Schwartze
- Departments of Cell Biology and Physiology, Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Julie Allen
- Departments of Cell Biology and Physiology, Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Tiangang Li
- Department of Biochemistry and Physiology and Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Peter A Crawford
- Division of Molecular Medicine, Department of Medicine, and Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo, Toledo, OH, 43614, USA
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kartik Shankar
- USDA Agricultural Research Service, Responsive Agricultural Food Systems Research Unit, College Station, TX, USA
| | - Shawn C Burgess
- Center for Human Nutrition and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - John P Thyfault
- Departments of Cell Biology and Physiology, Kansas Medical Center, Kansas City, KS, 66160, USA
- Division of Endocrinology and Clinical Pharmacology, Department of Internal Medicine, KU Diabetes Institute, Kansas Medical Center, Kansas City, KS, 66106, USA
- Kansas Center for Metabolism and Obesity Research, Kansas Medical Center, Kansas City, KS, 66160, USA
- Kansas City VA Medical Center, Kansas City, 64128, MO
| |
Collapse
|
2
|
Ghaffari MH, Ostendorf CS, Hemmert KJ, Schuchardt S, Koch C, Sauerwein H. Longitudinal characterization of plasma and fecal bile acids in dairy heifers from birth to first calving in response to transition milk feeding. J Dairy Sci 2025; 108:5475-5488. [PMID: 40216228 DOI: 10.3168/jds.2025-26307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/27/2025] [Indexed: 05/03/2025]
Abstract
This study aimed to characterize plasma bile acid changes from birth to first calving and evaluate the effects of early transition milk (TM) feeding versus milk replacer (MR) during key stages. Fecal bile acids in TM-fed calves were also analyzed, offering insights into bile acid metabolism. Thirty female Holstein calves were fed TM or MR for the first 5 d, followed by 12 L/d MR. From d 14, calves were fed MR and starter with gradual weaning between wk 8 and 14. Blood samples were collected at 7 time points: 30 min and 12 h after birth, preweaning (wk 2, 6), weaning (wk 14), 8 mo, 13 mo, 3 wk before calving, at calving, and 3 wk after calving. Fecal samples were collected from a subset of TM-fed calves (n = 10) at birth, wk 6, wk 14, 8 mo, and calving. Samples were analyzed for bile acids using the Biocrates MxP Quant 500 kit. Cholic acid (CA) in plasma showed significant time-treatment interactions, with higher levels in TM-fed calves at weaning. Taurine- and glycine-conjugated bile acids had no treatment or time-treatment interactions, but all plasma bile acids showed significant time effects. Principal component analysis revealed that bile acid profiles at birth and after colostrum intake were tightly clustered. Plasma bile acid profiles showed greater dispersion during milk feeding and weaning, with tighter clustering observed postweaning, particularly at 13 mo, and in the transition period. Significant effects were observed for CA, deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA), with CA showing a notable interaction and being higher in TM-fed calves at weaning than in MR-fed calves. Bile acid levels increased toward weaning, peaked at wk 14, and decreased after weaning. Glycine-conjugated bile acids changed over time, with glycocholic acid (GCA) and glycodeoxycholic acid (GDCA) peaking at weaning, and glycochenodeoxycholic acid (GCDCA) being elevated before weaning, decreasing thereafter, and increasing again at calving. Taurine-conjugated bile acids also showed temporal changes, peaking at wk 6. The shifts in bile acid composition from birth to postcalving, with taurolithocholic acid (TLCA), GDCA, and taurocholic acid (TCA) initially dominating, CA increasing at weaning, and GDCA and DCA dominating at calving, with CA increasing again postcalving. During the transition to calving, CA decreased whereas glycine-conjugated bile acids increased relative to taurine-conjugated bile acids in plasma, irrespective of treatment. Fecal bile acid profiles in TM-fed calves clustered distinctly at birth, evolving through pre- to postweaning and calving, with increasing profile overlap over time. Most fecal bile acids, except DCA and CA, were abundant at birth but declined over time. Both DCA and CA increased postweaning, mirroring plasma trends. From wk 6 to calving, DCA was the dominant bile acid, accounting for the highest percentage of total bile acids excreted in feces. Spearman's correlation analysis was performed to assess the relationship between plasma and fecal bile acids in TN-fed calves. A significant positive correlation was observed only for GCDCA (Spearman's rank correlation coefficient [rho] = 0.35), whereas all other bile acids were not correlated. These results illustrate the complex dynamics of bile acid profiles during calf development.
Collapse
Affiliation(s)
- M H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany.
| | - C S Ostendorf
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany
| | - K J Hemmert
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - S Schuchardt
- Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany
| | - C Koch
- Educational and Research Centre for Animal Husbandry, Hofgut Neumühle, 67728 Münchweiler an der Alsenz, Germany
| | - H Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
3
|
Gong X, Liu D, Liu L, Yang G, Lei Y, Li N, Chen Y, Yu H, Li X, Xiang D. Plasma bile acid profile analysis by liquid chromatography-tandem mass spectrometry and its application in healthy subjects and IBD patients. J Pharm Biomed Anal 2025; 255:116639. [PMID: 39709683 DOI: 10.1016/j.jpba.2024.116639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/03/2024] [Accepted: 12/14/2024] [Indexed: 12/24/2024]
Abstract
Bile acids (BAs), not only promote the absorption of fat-soluble nutrients and regulate the metabolism of multiple substances but also have a potential role as diagnostic and prognostic indicators in a variety of diseases such as cholestasis, hepatocellular carcinoma, and diabetes mellitus. Here, a rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous quantification of 50 BAs was developed and validated. Sample preparation included internal standard spiking, followed by protein precipitation, centrifugation, solvent evaporation, and reconstitution. Baseline separation of all isobaric BA species was achieved on an Ultimate XS-C18 column (5 μm, 150 mm × 4.6 mm). The method showed good linearity with high regression coefficients (>0.990) with acceptable accuracy and precision for intra-day and inter-day analyses and achieved good recovery rates for representative analytes. No apparent carryover or matrix effect was observed. The analytical method was successfully applied to the determination of the plasma BA profile in healthy subjects and patients with inflammatory bowel disease (IBD). The routine instrumentation, low sample volume, simple pretreatment, wide range of BAs, and good separation make this LC-MS/MS method suitable for use as a BA profile assay in clinical and basic research studies. This method could be poised to identify possible BA biomarkers for non-invasive early diagnosis and therapeutic evaluation of IBD.
Collapse
Affiliation(s)
- Xuepeng Gong
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lu Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guangjie Yang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yongfang Lei
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - NingHong Li
- Department of Pharmacy, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
| | - Yufei Chen
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hengyi Yu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiping Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dong Xiang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
4
|
Xia F, Cui P, Liu L, Chen J, Zhou Q, Wang Q, Zhou H. Quantification of gut microbiome metabolites using chemical isotope derivatization strategy combined with LC-MS/MS: Application in neonatal hypoxic-ischemic encephalopathy rat model. J Pharm Biomed Anal 2024; 248:116312. [PMID: 38908236 DOI: 10.1016/j.jpba.2024.116312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
The gut microbiome plays pivotal roles in various physiological and pathological processes, with key metabolites including short chain fatty acids (SCFAs), bile acids (BAs), and tryptophan (TRP) derivatives gaining significant attention for their diverse physiological roles. However, quantifying these metabolites presents challenges due to structural similarity, low abundance, and inherent technical limitations in traditional detection methods. In this study, we developed a precise and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method utilizing a chemical isotope derivatization technique employing 4-(aminomethyl)-N,N-dimethylaniline-d0/d6 (4-AND-d0/d6) reagents to quantify 37 typical gut microbiome-derived metabolites. This method achieved an impressive 1500-fold enhancement in sensitivity for detecting metabolites, compared to methods using non-derivatized, intact molecules. Moreover, the quantitative accuracy of our chemical isotope derivatization strategy proved comparable to the stable isotope labeled internal standards (SIL-IS) method. Subsequently, we successfully applied this newly developed method to quantify target metabolites in plasma, brain, and fecal samples obtained from a neonatal hypoxic-ischemic encephalopathy (HIE) rat model. The aim was to identify crucial metabolites associated with the progression of HIE. Overall, our sensitive and reliable quantification method holds promise in elucidating the role of gut microbiome metabolites in the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Fangbo Xia
- Microbiome Medicine Centre, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University Guangzhou, Guangdong 510280, China.
| | - Peng Cui
- Microbiome Medicine Centre, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University Guangzhou, Guangdong 510280, China
| | - Ling Liu
- Microbiome Medicine Centre, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University Guangzhou, Guangdong 510280, China
| | - Junhe Chen
- Microbiome Medicine Centre, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University Guangzhou, Guangdong 510280, China
| | - Qiqi Zhou
- Microbiome Medicine Centre, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University Guangzhou, Guangdong 510280, China
| | - Qian Wang
- Microbiome Medicine Centre, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University Guangzhou, Guangdong 510280, China.
| | - Hongwei Zhou
- Microbiome Medicine Centre, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University Guangzhou, Guangdong 510280, China.
| |
Collapse
|
5
|
Dicks L, Schuh-von Graevenitz K, Prehn C, Sadri H, Murani E, Hosseini Ghaffari M, Häussler S. Bile acid profiles and mRNA abundance of bile acid-related genes in adipose tissue of dairy cows with high versus normal body condition. J Dairy Sci 2024; 107:6288-6307. [PMID: 38490538 DOI: 10.3168/jds.2024-24346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024]
Abstract
Besides their lipid-digestive role, bile acids (BA) influence overall energy homeostasis, such as glucose and lipid metabolism. We hypothesized that BA along with their receptors, regulatory enzymes, and transporters are present in subcutaneous adipose tissue (scAT). In addition, we hypothesized that their mRNA abundance varies with the body condition of dairy cows around calving. Therefore, we analyzed BA in serum and scAT as well as the mRNA abundance of BA-related enzymes, transporters, and receptors in scAT during the transition period in cows with different body conditions around calving. In a previously established animal model, 38 German Holstein cows were divided into either a high (HBCS; n = 19) or normal BCS (NBCS; n = 19) group based on their BCS and back-fat thickness (BFT). Cows were fed different diets to achieve the targeted differences in BCS and BFT (NBCS: BCS <3.5, BFT <1.2 cm; HBCS: BCS >3.75, BFT >1.4 cm) until dry-off at 7 wk antepartum. During the dry period and subsequent lactation, both groups were fed the same diets according to their energy demands. Using a targeted metabolomics approach via liquid chromatography-electrospray ionization-MS /MS, BA were analyzed in serum and scAT at wk -7, 1, 3, and 12 relative to parturition. In serum, 15 BA were observed: cholic acid (CA), chenodeoxycholic acid (CDCA), glycocholic acid (GCA), taurocholic acid (TCA), glycochenodeoxycholic acid (GCDCA), taurochenodeoxycholic acid, deoxycholic acid (DCA), lithocholic acid, glycodeoxycholic acid (GDCA), glycolithocholic acid, taurodeoxycholic acid, taurolithocholic acid, β-muricholic acid, tauromuricholic acid (sum of α and β), and glycoursodeoxycholic acid, whereas in scAT 7 BA were detected: CA, GCA, TCA, GCDCA, taurochenodeoxycholic acid, GDCA, and taurodeoxycholic acid. In serum and scAT samples, the primary BA CA and its conjugate GCA were predominantly detected. Increasing serum concentrations of CA, CDCA, TCA, GCA, GCDCA, DCA, and β-muricholic acid with the onset of lactation might be related to the increasing DMI after parturition. Furthermore, serum concentrations of CA, CDCA, GCA, DCA, GCDCA, TCA, lithocholic acid, and GDCA were lower in HBCS cows compared with NBCS cows, concomitant with increased lipolysis in HBCS cows. The correlation between CA in serum and scAT may point to the transport of CA across cell membranes. Overall, the findings of the present study suggest a potential role of BA in lipid metabolism depending on the body condition of periparturient dairy cows.
Collapse
Affiliation(s)
- Lena Dicks
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - Katharina Schuh-von Graevenitz
- Department of Life Sciences and Engineering, Animal Nutrition and Hygiene Unit, University of Applied Sciences Bingen, 55411 Bingen am Rhein, Germany
| | - Cornelia Prehn
- Helmholtz Zentrum München, German Research Center for Environmental Health, Metabolomics and Proteomics Core, 85764 Neuherberg, Germany
| | - Hassan Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 516616471 Tabriz, Iran
| | - Eduard Murani
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | | | - Susanne Häussler
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
6
|
Xie Y, Fang X, Wang A, Xu S, Li Y, Xia W. Association of cord plasma metabolites with birth weight: results from metabolomic and lipidomic studies of discovery and validation cohorts. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024; 64:87-96. [PMID: 38243991 DOI: 10.1002/uog.27591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/29/2023] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
OBJECTIVE Birth weight is a good predictor of fetal intrauterine growth and long-term health, and several studies have evaluated the relationship between metabolites and birth weight. The aim of this study was to investigate the association of cord blood metabolomics and lipidomics with birth weight, using a two-stage discovery and validation approach. METHODS Firstly, a pseudotargeted metabolomics approach was applied to detect metabolites in 504 cord blood samples in the discovery set enrolled from the Wuhan Healthy Baby Cohort, China. Metabolome-wide association scan analysis and pathway enrichment were applied to identify metabolites and metabolic pathways that were significantly associated with birth weight adjusted for gestational age Z-score (BW Z-score). Logistic regression models were used to analyze the association of metabolites in the most significantly associated pathways with small-for-gestational age (SGA) at delivery and low birth weight (LBW). Subsequently, 350 cord blood samples in a validation cohort were subjected to targeted analysis to validate the metabolites identified by screening in the discovery cohort. RESULTS In the discovery set, of 2566 metabolites detected, 2418 metabolites were retained for subsequent analysis after data preprocessing. Of these, 513 metabolites were significantly associated with BW Z-score (P-value adjusted for false discovery rate (PFDR) < 0.05), of which 298 Kyoto Encyclopedia of Genes and Genomes (KEGG)-annotated metabolites were included in the pathway analysis. The primary bile acid biosynthesis pathway was the most relevant metabolic pathway associated with BW Z-score. Elevated cord plasma primary bile acids were associated with lower BW Z-score and higher risk of SGA or LBW in the discovery and validation cohorts. In the validation set, a 2-fold increase in taurochenodeoxycholic acid (TCDCA) and in taurocholic acid (TCA) was associated with a decrease in BW Z-score (estimated β coefficient, -0.10 (95% CI, -0.20 to 0.00) and -0.18 (95% CI, -0.31 to -0.04), respectively), after adjusting for covariates. In addition, a 2-fold increase in cord plasma TCDCA and of cord plasma TCA was associated with an increased risk of SGA (adjusted odds ratio (OR), 1.52 (95% CI, 1.00-2.30) and 1.77 (95% CI, 1.05-2.98), respectively). The adjusted OR for LBW, for a 2-fold increase in TCDCA and TCA concentration, were 2.39 (95% CI, 1.00-5.71) and 3.21 (95% CI, 0.96-10.74), respectively. CONCLUSIONS These results indicate a significant association of elevated primary bile acids, particularly TCDCA and TCA, in cord blood with lower BW Z-score, as well as increased risk of SGA and LBW. Abnormalities of primary bile acid metabolism may play an important role in restricted fetal development. © 2024 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- Y Xie
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - X Fang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - A Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - S Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- School of Environmental Science and Engineering, Hainan University, Haikou, Hainan, China
| | - Y Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - W Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
7
|
Zhang S, Cai T, Lin J, Liu JJ, Zhao YG, Cao MY. Analysis of 15 bile acids in human plasma based on C18 functionalized magnetic organic polymer nanocomposite coupled with liquid chromatography-tandem mass spectrometry. J Chromatogr A 2024; 1725:464962. [PMID: 38704923 DOI: 10.1016/j.chroma.2024.464962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Because of the "enterohepatic circulation" of bile acid, liver damage can be reflected by monitoring the content of bile acid in the serum of the organism. To monitor the concentration of 15 bile acids in plasma samples, a new technique of PRiME (process, ruggedness, improvement, matrix effect, ease of use) pass-through cleanup procedure combined with high performance liquid chromatography-tandem quadrupole mass spectrometry (HPLC-MS/MS) was developed. The sorbent used in the PRiME pass-through cleanup procedure is a new type of magnetic organic resin composite nano-material modified by C18 (C18-PS-DVB-GMA-Fe3O4), which has high cleanup efficiency of plasma samples. It also shows good performance in the separation and analysis of 15 kinds of bile acids. Under the optimal conditions, the results show higher cleanup efficiency of C18-PS-DVB-GMA-Fe3O4 with recoveries in the range of 82.1-115 %. The limit of quantitative (LOQs) of 15 bile acids were in the range of 0.033 µg/L-0.19 µg/L, and the RSD values of 15 bile acids were in the range of 3.00-11.9 %. Validation results on linearity, specificity, accuracy and precision, as well as on the application to analysis of 15 bile acids in 100 human plasma samples demonstrate the applicability to clinical studies.
Collapse
Affiliation(s)
- Shun Zhang
- Ningbo No.2 Hospital, Ningbo 315010, China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo 315010, China; Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo 315010, China
| | - Ting Cai
- Ningbo No.2 Hospital, Ningbo 315010, China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo 315010, China; Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo 315010, China
| | - Jing Lin
- Ningbo No.2 Hospital, Ningbo 315010, China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo 315010, China; Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo 315010, China
| | - Jia-Juan Liu
- Ningbo No.2 Hospital, Ningbo 315010, China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo 315010, China; Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo 315010, China
| | - Yong-Gang Zhao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Min-Yi Cao
- Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China.
| |
Collapse
|
8
|
Dicks L, Schuh-von Graevenitz K, Prehn C, Sadri H, Ghaffari MH, Häussler S. Bile acid profiles and mRNA expression of bile acid-related genes in the liver of dairy cows with high versus normal body condition. J Dairy Sci 2024:S0022-0302(24)00922-6. [PMID: 38876220 DOI: 10.3168/jds.2024-24844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/12/2024] [Indexed: 06/16/2024]
Abstract
Bile acids (BA) play a crucial role not only in lipid digestion but also in the regulation of overall energy homeostasis, including glucose and lipid metabolism. The aim of this study was to investigate BA profiles and mRNA expression of BA-related genes in the liver of high versus normal body condition in dairy cows. We hypothesized that body condition and the transition from gestation to lactation affect hepatic BA concentrations as well as the mRNA abundance of BA-related receptors, regulatory enzymes, and transporters. Therefore, we analyzed BA in the liver as well as the mRNA abundance of BA-related synthesizing enzymes, transporters, and receptors in the liver during the transition period in cows with different body conditions around calving. In a previously established animal model, 38 German Holstein cows were divided into groups with high body condition score (BCS) (HBCS; n = 19) or normal BCS (NBCS; n = 19) based on BCS and backfat thickness (BFT). Cows were fed diets aimed at achieving the targeted differences in BCS and BFT (NBCS: BCS <3.5, BFT <1.2 cm; HBCS: BCS >3.75, BFT >1.4 cm) until they were dried off at wk 7 before parturition. Both groups were fed identical diets during the dry period and subsequent lactation. Liver biopsies were taken at wk -7, 1, 3, and 12 relative to parturition. For BA measurement, a targeted metabolomics approach with LC-ESI-MS/MS was used to analyze BA in the liver. The mRNA abundance of targeted genes related to BA-synthesizing enzymes, transporters, and receptors in the liver was analyzed using microfluidic quantitative PCR. In total, we could detect 14 BA in the liver: 6 primary and 8 secondary BA, with glycocholic acid (GCA) being the most abundant one. The increase of glycine-conjugated BA after parturition, in parallel to increasing serum glycine concentrations may originate from an enhanced mobilization of muscle protein to meet the high nutritional requirements in early lactating cows. Higher DMI in NBCS cows compared with HBCS cows was associated with higher liver BA concentrations such as GCA, deoxycholic acid (DCA), and cholic acid (CA). The mRNA abundance of BA-related enzymes measured herein suggests the dominance of the alternative signaling pathway in the liver of HBCS cows. Overall, BA profiles and BA metabolism in the liver depend on both, the body condition and lactation-induced effects in periparturient dairy cows.
Collapse
Affiliation(s)
- Lena Dicks
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - Katharina Schuh-von Graevenitz
- Department of Life Sciences and Engineering, Animal Nutrition and Hygiene Unit, University of Applied Sciences Bingen, 55411 Bingen am Rhein, Germany
| | - Cornelia Prehn
- Helmholtz Zentrum München, German Research Center for Environmental Health, Metabolomics and Proteomics Core, 85764 Neuherberg, Germany
| | - Hassan Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 516616471 Tabriz, Iran
| | - Morteza H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - Susanne Häussler
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
9
|
Zhang N, Kandalai S, Zhou X, Hossain F, Zheng Q. Applying multi-omics toward tumor microbiome research. IMETA 2023; 2:e73. [PMID: 38868335 PMCID: PMC10989946 DOI: 10.1002/imt2.73] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/30/2022] [Accepted: 11/28/2022] [Indexed: 06/14/2024]
Abstract
Rather than a "short-term tenant," the tumor microbiome has been shown to play a vital role as a "permanent resident," affecting carcinogenesis, cancer development, metastasis, and cancer therapies. As the tumor microbiome has great potential to become a target for the early diagnosis and treatment of cancer, recent research on the relevance of the tumor microbiota has attracted a wide range of attention from various scientific fields, resulting in remarkable progress that benefits from the development of interdisciplinary technologies. However, there are still a great variety of challenges in this emerging area, such as the low biomass of intratumoral bacteria and unculturable character of some microbial species. Due to the complexity of tumor microbiome research (e.g., the heterogeneity of tumor microenvironment), new methods with high spatial and temporal resolution are urgently needed. Among these developing methods, multi-omics technologies (combinations of genomics, transcriptomics, proteomics, and metabolomics) are powerful approaches that can facilitate the understanding of the tumor microbiome on different levels of the central dogma. Therefore, multi-omics (especially single-cell omics) will make enormous impacts on the future studies of the interplay between microbes and tumor microenvironment. In this review, we have systematically summarized the advances in multi-omics and their existing and potential applications in tumor microbiome research, thus providing an omics toolbox for investigators to reference in the future.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Radiation Oncology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
- Center for Cancer Metabolism, Ohio State University Comprehensive Cancer Center ‐ James Cancer Hospital and Solove Research InstituteThe Ohio State UniversityOhioColumbusUSA
| | - Shruthi Kandalai
- Department of Radiation Oncology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
- Center for Cancer Metabolism, Ohio State University Comprehensive Cancer Center ‐ James Cancer Hospital and Solove Research InstituteThe Ohio State UniversityOhioColumbusUSA
| | - Xiaozhuang Zhou
- Department of Radiation Oncology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
- Center for Cancer Metabolism, Ohio State University Comprehensive Cancer Center ‐ James Cancer Hospital and Solove Research InstituteThe Ohio State UniversityOhioColumbusUSA
| | - Farzana Hossain
- Department of Radiation Oncology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
- Center for Cancer Metabolism, Ohio State University Comprehensive Cancer Center ‐ James Cancer Hospital and Solove Research InstituteThe Ohio State UniversityOhioColumbusUSA
| | - Qingfei Zheng
- Department of Radiation Oncology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
- Center for Cancer Metabolism, Ohio State University Comprehensive Cancer Center ‐ James Cancer Hospital and Solove Research InstituteThe Ohio State UniversityOhioColumbusUSA
- Department of Biological Chemistry and Pharmacology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
10
|
Lenci I, Milana M, Signorello A, Grassi G, Baiocchi L. Secondary bile acids and the biliary epithelia: The good and the bad. World J Gastroenterol 2023; 29:357-366. [PMID: 36687129 PMCID: PMC9846939 DOI: 10.3748/wjg.v29.i2.357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/12/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
The biliary tract has been considered for several decades a passive system just leading the hepatic bile to the intestine. Nowadays several researches demonstrated an important role of biliary epithelia (i.e. cholangiocytes) in bile formation. The study of biliary processes therefore maintains a continuous interest since the possible important implications regarding chronic cholestatic human diseases, such as primary biliary cholangitis or primary sclerosing cholangitis. Bile acids (BAs), produced by the liver, are the most represented organic molecules in bile. The physiologic importance of BAs was initially attributed to their behavior as natural detergents but several studies now demonstrate they are also important signaling molecules. In this minireview the effect of BAs on the biliary epithelia are reported focusing in particular on secondary (deriving by bacterial manipulation of primary molecules) ones. This class of BAs is demonstrated to have relevant biological effects, ranging from toxic to therapeutic ones. In this family ursodeoxycholic and lithocholic acid present the most interesting features. The molecular mechanisms linking ursodeoxycholic acid to its beneficial effects on the biliary tract are discussed in details as well as data on the processes leading to lithocholic damage. These findings suggest that expansion of research in the field of BAs/cholangiocytes interaction may increase our understanding of cholestatic diseases and should be helpful in designing more effective therapies for biliary disorders.
Collapse
Affiliation(s)
- Ilaria Lenci
- Hepatology Unit, Policlinico Tor Vergata, Rome 00133, Italy
| | - Martina Milana
- Hepatology Unit, Policlinico Tor Vergata, Rome 00133, Italy
| | | | | | | |
Collapse
|
11
|
Ruan D, Wu S, Fouad AM, Zhu Y, Huang W, Chen Z, Gou Z, Wang Y, Han Y, Yan S, Zheng C, Jiang S. Curcumin alleviates LPS-induced intestinal homeostatic imbalance through reshaping gut microbiota structure and regulating group 3 innate lymphoid cells in chickens. Food Funct 2022; 13:11811-11824. [PMID: 36306140 DOI: 10.1039/d2fo02598a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Gastrointestinal dysfunction is associated with a disturbance of immune homeostasis, changes in the intestinal microbiome, alteration of the composition of the bile acid pool, and dynamic imbalance of group 3 innate lymphoid cells (ILC3s). Curcumin (CUR), a polyphenolic compound isolated from turmeric, has been known to attenuate intestinal inflammation in potential therapies for gastrointestinal diseases. It was hypothesized that CUR could target the gut microbiome to modulate bile acid (BA) metabolism and the function of ILC3s in ameliorating lipopolysaccharide (LPS)-induced imbalance of intestinal homeostasis in chickens. Seven hundred and twenty 1-day-old crossbred chickens were randomly divided into four treatments, namely CON_saline (basal diet + saline control), CUR_saline (basal diet + 300 mg kg-1 curcumin + saline), CON_LPS (basal diet + LPS), and CUR_LPS (basal diet + 300 mg kg-1 curcumin + LPS), each consisting of 6 replicates of 30 birds. On days 14, 17, and 21, the chickens in the CON_LPS and CUR_LPS treatments were intraperitoneally injected with LPS at 0.5 mg per kg BW. Dietary CUR supplementation significantly decreased LPS-induced suppression of growth performance and injury to the intestinal tight junctions and decreased the vulnerability to LPS-induced acute inflammatory response by inhibiting pro-inflammatory (interleukin-1β and tumor necrosis factor-α) cytokines. CUR reshaped the cecal microbial community and BA metabolism, contributing to regulation of the intestinal mucosal immunity by promoting the anti-inflammatory (interleukin 10, IL-10) cytokines and enhancing the concentrations of primary and secondary BA metabolites (chenodexycholic acid, lithocholic acid). LPS decreased farnesoid X receptor (FXR) and G protein-coupled receptor class C group 5 member A synthesis, which was reversed by CUR administration, along with an increase in interleukin 22 (IL-22) production from ILC3s. Dietary supplementation of CUR increased the prevalence of Butyricicoccus and Enterococcus and enhanced the tricarboxylic acid cycle of intestinal epithelial cells. In addition, curcumin supplementation significantly increased sirtuin 1 and sirtuin 5 transcription and protein expression, which contributes to regulating mitochondrial metabolic and oxidative stress responses to alleviate LPS-induced enteritis. Our findings demonstrated that curcumin played a pivotal role in regulating the structure of the intestinal microbiome for health promotion and the treatment of intestinal dysbiosis. The beneficial effects of CUR may be attributed to the modulation of the BA-FXR pathway and inhibition of inflammation that induces IL-22 secretion by ILC3s in the intestinal lamina propria.
Collapse
Affiliation(s)
- Dong Ruan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.
| | - Shaowen Wu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ahmed Mohamed Fouad
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Yongwen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenjie Huang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhilong Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.
| | - Zhongyong Gou
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.
| | - Yibing Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.
| | - Yongquan Han
- Guangzhou Cohoo Biotechnology Co., Ltd, Guangzhou 510663, China
| | - Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chuntian Zheng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.
| | - Shouqun Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.
| |
Collapse
|
12
|
Gregor A, Huber L, Auernigg-Haselmaier S, Sternberg F, Billerhart M, Dunkel A, Somoza V, Ogris M, Kofler B, Longo VD, König J, Duszka K. A Comparison of the Impact of Restrictive Diets on the Gastrointestinal Tract of Mice. Nutrients 2022; 14:nu14153120. [PMID: 35956298 PMCID: PMC9370610 DOI: 10.3390/nu14153120] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
The rate of gut inflammatory diseases is growing in modern society. Previously, we showed that caloric restriction (CR) shapes gut microbiota composition and diminishes the expression of inflammatory factors along the gastrointestinal (GI) tract. The current project aimed to assess whether prominent dietary restrictive approaches, including intermittent fasting (IF), fasting-mimicking diet (FMD), and ketogenic diet (KD) have a similar effect as CR. We sought to verify which of the restrictive dietary approaches is the most potent and if the molecular pathways responsible for the impact of the diets overlap. We characterized the impact of the diets in the context of several dietary restriction-related parameters, including immune status in the GI tract; microbiota and its metabolites; bile acids (BAs); gut morphology; as well as autophagy-, mitochondria-, and energy restriction-related parameters. The effects of the various diets are very similar, particularly between CR, IF, and FMD. The occurrence of a 50 kDa truncated form of occludin, the composition of the microbiota, and BAs distinguished KD from the other diets. Based on the results, we were able to provide a comprehensive picture of the impact of restrictive diets on the gut, indicating that restrictive protocols aimed at improving gut health may be interchangeable.
Collapse
Affiliation(s)
- András Gregor
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria; (A.G.); (L.H.); (S.A.-H.); (J.K.)
| | - Laura Huber
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria; (A.G.); (L.H.); (S.A.-H.); (J.K.)
| | - Sandra Auernigg-Haselmaier
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria; (A.G.); (L.H.); (S.A.-H.); (J.K.)
| | - Felix Sternberg
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Magdalena Billerhart
- Laboratory of Macromolecular Cancer Therapeutics (MMCT), Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (M.B.); (M.O.)
| | - Andreas Dunkel
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany; (A.D.); (V.S.)
| | - Veronika Somoza
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany; (A.D.); (V.S.)
| | - Manfred Ogris
- Laboratory of Macromolecular Cancer Therapeutics (MMCT), Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (M.B.); (M.O.)
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Valter D. Longo
- Longevity Institute, Leonard Davis, Los Angeles, CA 90089, USA;
| | - Jürgen König
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria; (A.G.); (L.H.); (S.A.-H.); (J.K.)
| | - Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria; (A.G.); (L.H.); (S.A.-H.); (J.K.)
- Correspondence:
| |
Collapse
|