1
|
Andresen MS, Mowinckel MC, Skarpen E, Andersen E, Sandset PM, Chollet ME, Stavik B. Identification and evaluation of Pharmacological enhancers of the factor VII p.Q160R variant. Sci Rep 2025; 15:14315. [PMID: 40274887 PMCID: PMC12022090 DOI: 10.1038/s41598-025-98689-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
Congenital factor (F) VII deficiency is caused by mutations in the F7 gene. The p.Q160R variant manifests with bleeding episodes due to reduced FVII activity and antigen in patient plasma, most likely caused by protein misfolding and intracellular retention. As current replacement therapy is expensive and requires frequent intravenous injections, there is an unmet need for new and less invasive therapeutic strategies. Drug repurposing allows for rapid, more cost-effective discovery and implementation of new treatments, and identification of pharmacological enhancers of FVII variant activity would be of clinical importance. High-throughput screening of > 1800 FDA-approved drugs identified the orally available histone deacetylase inhibitor abexinostat and the inhaled surfactant tyloxapol as enhancers of FVII p.Q160R variant activity. The positive hits were verified in an in vitro cell model transiently expressing wild type or variant FVII and ex vivo in patients' plasma. Both drugs showed a dose-response effect on FVII antigen and activity levels in conditioned cell medium and on FVII activity in patients' plasma. In conclusion, the efficacy of the FDA-approved drugs abexinostat and tyloxapol in enhancing FVII variant activity constitute a proof of principle for high-throughput identification of drugs that may be feasible for novel treatment of FVII deficiency.
Collapse
Affiliation(s)
- M S Andresen
- Department of Haematology, Oslo University Hospital, Oslo, Norway.
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway.
| | - M C Mowinckel
- Department of Haematology, Oslo University Hospital, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - E Skarpen
- Core Facility for Advanced Light Microscopy, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - E Andersen
- Department of Haematology, Oslo University Hospital, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - P M Sandset
- Department of Haematology, Oslo University Hospital, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - M E Chollet
- Department of Haematology, Oslo University Hospital, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - B Stavik
- Department of Haematology, Oslo University Hospital, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
2
|
Zhang J, Yang W, Zhu Y, Li Z, Zheng Y, Zhang Y, Gao W, Zhang X, Wu Z, Gao L. Microenvironment-induced programmable nanotherapeutics restore mitochondrial dysfunction for the amelioration of non-alcoholic fatty liver disease. Acta Biomater 2025; 194:323-335. [PMID: 39805524 DOI: 10.1016/j.actbio.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/04/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a metabolic liver disorder with severe complications. Mitochondrial dysfunction due to over-opening of the mitochondrial permeability transition pore (mPTP) in liver cells plays a central role in the development and progression of NAFLD. Restoring mitochondrial function is a promising strategy for NAFLD therapy. Herein, we designed and developed a microenvironment-induced programmable nanotherapeutic to restore mitochondrial function and ameliorate NAFLD. cyclosporine (Cyclosporine capsules) A (CsA), as a highly effective inhibitors of the opening of mPTP, was chosen in the present work. Nanotherapeutics were prepared by assembling two structurally simple multifunctional glucosamine derivatives: dextran-grafted galactose (Dex-Gal) and Dex-triphenylphosphine (Dex-TPP). Galactose units in the nanotherapeutics guide the hepatocyte-specific uptake. Detachment of galactose from acidic lysosomes via Schiff base cleavage exposes the TPP moieties, which subsequently steers the nanotherapeutics to escape from lysosomes and target mitochondria through an enhanced positive charge, enabling precise in situ drug delivery. Simultaneously, the nanotherapeutics improved mitochondrial dysfunction by inhibiting palmitic acid-induced opening of the mitochondrial permeability transition pore in HepG2 cells, maintaining mitochondrial membrane potential, and decreasing reactive oxygen species production. Furthermore, CsA@Dex-Gal/TPP accumulated in the livers of NAFLD mice, restored mitochondrial autophagy, regulated abnormalities in glucose and lipid metabolism, and improved hepatic lipid deposition. This study offers a new cascading strategy for targeting liver cell mitochondria to treat NAFLD and other mitochondria-associated diseases. STATEMENT OF SIGNIFICANCE: We design microenvironment-induced programmable nanotherapeutics for NAFLD Nanotherapeutics has the capabilities of lysosomal escape and mitochondrial targeting Nanotherapeutics improves mitochondrial dysfunction and ameliorates NAFLD This study offers a new cascading strategy for other mitochondria-associated diseases.
Collapse
Affiliation(s)
- Jun Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China
| | - Wenyi Yang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China
| | - Yue Zhu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China
| | - Zhanbin Li
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China
| | - Yin Zheng
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, Shandong 250012, China
| | - Yufei Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Weisong Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, Shandong 250012, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhongming Wu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China.
| | - Ling Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China.
| |
Collapse
|
3
|
Svobodová G, Horní M, Velecká E, Boušová I. Metabolic dysfunction-associated steatotic liver disease-induced changes in the antioxidant system: a review. Arch Toxicol 2025; 99:1-22. [PMID: 39443317 PMCID: PMC11748479 DOI: 10.1007/s00204-024-03889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a heterogeneous condition characterized by liver steatosis, inflammation, consequent fibrosis, and cirrhosis. Chronic impairment of lipid metabolism is closely related to oxidative stress, leading to cellular lipotoxicity, mitochondrial dysfunction, and endoplasmic reticulum stress. The detrimental effect of oxidative stress is usually accompanied by changes in antioxidant defense mechanisms, with the alterations in antioxidant enzymes expression/activities during MASLD development and progression reported in many clinical and experimental studies. This review will provide a comprehensive overview of the present research on MASLD-induced changes in the catalytic activity and expression of the main antioxidant enzymes (superoxide dismutases, catalase, glutathione peroxidases, glutathione S-transferases, glutathione reductase, NAD(P)H:quinone oxidoreductase) and in the level of non-enzymatic antioxidant glutathione. Furthermore, an overview of the therapeutic effects of vitamin E on antioxidant enzymes during the progression of MASLD will be presented. Generally, at the beginning of MASLD development, the expression/activity of antioxidant enzymes usually increases to protect organisms against the increased production of reactive oxygen species. However, in advanced stage of MASLD, the expression/activity of several antioxidants generally decreases due to damage to hepatic and extrahepatic cells, which further exacerbates the damage. Although the results obtained in patients, in various experimental animal or cell models have been inconsistent, taken together the importance of antioxidant enzymes in MASLD development and progression has been clearly shown.
Collapse
Affiliation(s)
- Gabriela Svobodová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Martin Horní
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Eva Velecká
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Iva Boušová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
4
|
Li X, Zhou L, Zheng Y, He T, Guo H, Li J, Zhang J. Establishment of a non-alcoholic fatty liver disease model by high fat diet in adult zebrafish. Animal Model Exp Med 2024; 7:904-913. [PMID: 36942644 PMCID: PMC11680480 DOI: 10.1002/ame2.12309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/30/2022] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in recent years, but the pathogenesis is not fully understood. Therefore, it is important to establish an effective animal model for studying NAFLD. METHODS Adult zebrafish were fed a normal diet or a high-fat diet combined with egg yolk powder for 30 days. Body mass index (BMI) was measured to determine overall obesity. Serum lipids were measured using triglyceride (TG) and total cholesterol (TC) kits. Liver lipid deposition was detected by Oil Red O staining. Liver injury was assessed by measuring glutathione aminotransferase (AST) and glutamic acid aminotransferase (ALT) levels. Reactive oxygen species (ROS) and malondialdehyde (MDA) were used to evaluate oxidative damage. The level of inflammation was assessed by qRT-PCR for pro-inflammatory factors. H&E staining was used for pathological histology. Caspase-3 immunofluorescence measured apoptosis. Physiological disruption was assessed via RNA-seq analysis of genes at the transcriptional level and validated by qRT-PCR. RESULTS The high-fat diet led to significant obesity in zebrafish, with elevated BMI, hepatic TC, and TG. Severe lipid deposition in the liver was observed by ORO and H&E staining, accompanied by massive steatosis and ballooning. Serum AST and ALT levels were elevated, and significant liver damage was observed. The antioxidant system in the body was severely imbalanced. Hepatocytes showed massive apoptosis. RNA-seq results indicated that several physiological processes, including endoplasmic reticulum stress, and glucolipid metabolism, were disrupted. CONCLUSION Additional feeding of egg yolk powder to adult zebrafish for 30 consecutive days can mimic the pathology of human nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Xiang Li
- Department of Nutrition, School of Public HealthGuangdong Medical UniversityZhanjiangChina
- Zhanjiang Key Laboratory of Zebrafish Model for Development and DiseaseAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Lei Zhou
- Zhanjiang Key Laboratory of Zebrafish Model for Development and DiseaseAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Yuying Zheng
- Zhanjiang Key Laboratory of Zebrafish Model for Development and DiseaseAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Taiping He
- Department of Nutrition, School of Public HealthGuangdong Medical UniversityZhanjiangChina
| | - Honghui Guo
- Department of Nutrition, School of Public HealthGuangdong Medical UniversityZhanjiangChina
| | - Jiangbin Li
- School of Medical TechnologyGuangdong Medical UniversityDongguanChina
| | - Jingjing Zhang
- Zhanjiang Key Laboratory of Zebrafish Model for Development and DiseaseAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| |
Collapse
|
5
|
Dong H, Zhao Y, Teng H, Jiang T, Yue Y, Zhang S, Fan L, Yan M, Shao S. Pueraria lobata antioxidant extract ameliorates non-alcoholic fatty liver by altering hepatic fat accumulation and oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118468. [PMID: 38906339 DOI: 10.1016/j.jep.2024.118468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/07/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pueraria lobata is essential medicinal and edible homologous plants widely cultivated in Asian countries. Therefore, P. lobata is widely used in the food, health products and pharmaceutical industries and have significant domestic and international market potential and research value. P. lobata has remarkable biological activities in protecting liver, relieving alcoholism, antioxidation, anti-tumor and anti-inflammation in clinic. However, the potential mechanism of ethyl acetate extract of Pueraria lobata after 70% alcohol extraction (APL) ameliorating nonalcoholic fatty liver disease (NAFLD) has not been clarified. AIM OF THE STUDY This study aimed to investigate the ameliorative effect of P. lobata extract on human hepatoma cells and injury in rats, and to evaluate its therapeutic potential for ameliorating NAFLD. METHODS Firstly, the effective part of P. lobata extract was determined as APL by measuring its total substances and antioxidant activity. And then the in vitro and in vivo models of NAFLD were adopted., HepG2 cells were incubated with palmitic acid (PA) and hydrogen peroxide (H2O2). In order to evaluate the effect of APL, Simvastatin and Vitamin C (VC) were used as positive control. Various parameters related to lipogenesis and fatty acid β-oxidation were studied, such as intracellular lipid accumulation, reactive oxygen species (ROS), Western Blot, mitochondrial membrane potential, apoptosis, and the mechanism of APL improving NAFLD. The chemical components of APL were further determined by HPLC and UPLC-MS, and molecular docking was carried out with Keap1/Nrf2/HO-1 pathway related proteins. RESULTS APL significantly reduced lipid accumulation and levels of oxidative stress-related factors in vitro and in vivo. Immunohistochemical、Western Blot and PCR analysis showed that the expressions of Nrf2 and HO-1 were up-regulated in APL treatment. The Nrf2 inhibitor ML385 can block the rescue by APL of cellular oxidative stress and lipid accumulation induced by H2O2 and PA, demonstrating its dependence on Nrf2. UPLC/MS analysis showed that there were 3'-hydroxyl puerarin, puerarin, 3'-methoxy puerarin, daidzein, genistin, ononin, daidzin and genistein. CONCLUSION This study further clarified the mechanism of P. lobata extract in improving NAFLD, which provided a scientific basis for developing new drugs to protect liver injury and laid a solid foundation for developing P. lobata Chinese herbal medicine resources.
Collapse
Affiliation(s)
- Hongying Dong
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yu Zhao
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - He Teng
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Ting Jiang
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yihan Yue
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Shuang Zhang
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lin Fan
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Mingming Yan
- Changchun University of Chinese Medicine, Changchun, Jilin, China; Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China.
| | - Shuai Shao
- Changchun University of Chinese Medicine, Changchun, Jilin, China; Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China.
| |
Collapse
|
6
|
Wang Q, Wei Y, Wang Y, Yu Z, Qin H, Zhao L, Cheng J, Shen B, Jin M, Feng H. Total flavonoids of Broussonetia papyrifera alleviate non-alcohol fatty liver disease via regulating Nrf2/AMPK/mTOR signaling pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159497. [PMID: 38649009 DOI: 10.1016/j.bbalip.2024.159497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 03/30/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUNDS Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent chronic liver diseases. The leaves of Broussonetia papyrifera contain a large number of flavonoids, which have a variety of biological functions. METHODS In vitro experiments, free fatty acids were used to stimulate HepG2 cells. NAFLD model was established in vivo in mice fed with high fat diet (HFD) or intraperitoneally injected with Tyloxapol (Ty). At the same time, Total flavonoids of Broussonetia papyrifera (TFBP) was used to interfere with HepG2 cells or mice. RESULTS The results showed that TFBP significantly decreased the lipid accumulation induced by oil acid (OA) with palmitic acid (PA) in HepG2 cells. TFBP decreased the total cholesterol (TC), the triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and increased high-density lipoprotein cholesterol (HDLC) in serum. TFBP could also effectively inhibit the generation of reactive oxygen species (ROS) and restrained the level of myeloperoxidase (MPO), and enhance the activity of superoxide dismutase (SOD) to alleviate the injury from oxidative stress in the liver. Additionally, TFBP activated nuclear factor erythroid-2-related factor 2 (Nrf2) pathway to increasing the phosphorylation of AMP-activated protein kinase (AMPK). Meanwhile, protein levels of mTORC signaling pathway were evidently restrained with the treatment of TFBP. CONCLUSION Our experiments proved that TFBP has the therapeutic effect in NAFLD, and the activation of Nrf2 and AMPK signaling pathways should make sense.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yunfei Wei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yeling Wang
- Departments of Cardiovascular Medicine, First Hospital, Jilin University, Changchun 130021, PR China
| | - Ziyang Yu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Haiyan Qin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lilei Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jiaqi Cheng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Bingyu Shen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Meiyu Jin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Haihua Feng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
7
|
Culletta G, Buttari B, Arese M, Brogi S, Almerico AM, Saso L, Tutone M. Natural products as non-covalent and covalent modulators of the KEAP1/NRF2 pathway exerting antioxidant effects. Eur J Med Chem 2024; 270:116355. [PMID: 38555855 DOI: 10.1016/j.ejmech.2024.116355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
By controlling several antioxidant and detoxifying genes at the transcriptional level, including NAD(P)H quinone oxidoreductase 1 (NQO1), multidrug resistance-associated proteins (MRPs), UDP-glucuronosyltransferase (UGT), glutamate-cysteine ligase catalytic (GCLC) and modifier (GCLM) subunits, glutathione S-transferase (GST), sulfiredoxin1 (SRXN1), and heme-oxygenase-1 (HMOX1), the KEAP1/NRF2 pathway plays a crucial role in the oxidative stress response. Accordingly, the discovery of modulators of this pathway, activating cellular signaling through NRF2, and targeting the antioxidant response element (ARE) genes is pivotal for the development of effective antioxidant agents. In this context, natural products could represent promising drug candidates for supplementation to provide antioxidant capacity to human cells. In recent decades, by coupling in silico and experimental methods, several natural products have been characterized to exert antioxidant effects by targeting the KEAP1/NRF2 pathway. In this review article, we analyze several natural products that were investigated experimentally and in silico for their ability to modulate KEAP1/NRF2 by non-covalent and covalent mechanisms. These latter represent the two main sections of this article. For each class of inhibitors, we reviewed their antioxidant effects and potential therapeutic applications, and where possible, we analyzed the structure-activity relationship (SAR). Moreover, the main computational techniques used for the most promising identified compounds are detailed in this survey, providing an updated view on the development of natural products as antioxidant agents.
Collapse
Affiliation(s)
- Giulia Culletta
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, 00161, Rome, Italy
| | - Marzia Arese
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, 00185, Rome, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy; Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.
| | - Anna Maria Almerico
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P.Le Aldo Moro 5, 00185, Rome, Italy
| | - Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| |
Collapse
|
8
|
Huang L, Tan L, Lv Z, Chen W, Wu J. Pharmacology of bioactive compounds from plant extracts for improving non-alcoholic fatty liver disease through endoplasmic reticulum stress modulation: A comprehensive review. Heliyon 2024; 10:e25053. [PMID: 38322838 PMCID: PMC10844061 DOI: 10.1016/j.heliyon.2024.e25053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver condition with significant clinical implications. Emerging research indicates endoplasmic reticulum (ER) stress as a critical pathogenic factor governing inflammatory responses, lipid metabolism and insulin signal transduction in patients with NAFLD. ER stress-associated activation of multiple signal transduction pathways, including the unfolded protein response, disrupts lipid homeostasis and substantially contributes to NAFLD development and progression. Targeting ER stress for liver function enhancement presents an innovative therapeutic strategy. Notably, the natural bioactive compounds of plant extracts have shown potential for treating NAFLD by reducing the level of ER stress marker proteins and mitigating inflammation, stress responses, and de novo lipogenesis. However, owing to limited comprehensive reviews, the effectiveness and pharmacology of these bioactive compounds remain uncertain. Objectives To address the abovementioned challenges, the current review categorizes the bioactive compounds of plant extracts by chemical structures and properties into flavonoids, phenols, terpenoids, glycosides, lipids and quinones and examines their ameliorative potential for NAFLD under ER stress. Methods This review systematically analyses the literature on the interactions of bioactive compounds from plant extracts with molecular targets under ER stress, providing a holistic view of NAFLD therapy. Results Bioactive compounds from plant extracts may improve NAFLD by alleviating ER stress; reducing lipid synthesis, inflammation, oxidative stress and apoptosis and enhancing fatty acid metabolism. This provides a multifaceted approach for treating NAFLD. Conclusion This review underscores the role of ER stress in NAFLD and the potential of plant bioactive compounds in treating this condition. The molecular mechanisms by which plant bioactive compounds interact with their ER stress targets provide a basis for further exploration in NAFLD management.
Collapse
Affiliation(s)
- Liying Huang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Liping Tan
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Zhuo Lv
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Wenhui Chen
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Junzi Wu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| |
Collapse
|
9
|
Yu W, Zhang F, Meng D, Zhang X, Feng Y, Yin G, Liang P, Chen S, Liu H. Mechanism of Action and Related Natural Regulators of Nrf2 in Nonalcoholic Fatty Liver Disease. Curr Drug Deliv 2024; 21:1300-1319. [PMID: 39034715 DOI: 10.2174/0115672018260113231023064614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 07/23/2024]
Abstract
With the acceleration of people's pace of life, non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in the world, which greatly threatens people's health and safety. Therefore, there is still an urgent need for higher-quality research and treatment in this area. Nuclear factor Red-2-related factor 2 (Nrf2), as a key transcription factor in the regulation of oxidative stress, plays an important role in inducing the body's antioxidant response. Although there are no approved drugs targeting Nrf2 to treat NAFLD so far, it is still of great significance to target Nrf2 to alleviate NAFLD. In recent years, studies have reported that many natural products treat NAFLD by acting on Nrf2 or Nrf2 pathways. This article reviews the role of Nrf2 in the pathogenesis of NAFLD and summarizes the currently reported natural products targeting Nrf2 or Nrf2 pathway for the treatment of NAFLD, which provides new ideas for the development of new NAFLD-related drugs.
Collapse
Affiliation(s)
- Wenfei Yu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People's Republic of China
| | - Decheng Meng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Xin Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Yanan Feng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Guoliang Yin
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Pengpeng Liang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Suwen Chen
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Hongshuai Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| |
Collapse
|
10
|
Zhang M, Bai X, Du Q, Xu J, Wang D, Chen L, Dong K, Chen Z, Yang J. The Different Mechanisms of Lipid Accumulation in Hepatocytes Induced by Oleic Acid/Palmitic Acid and High-Fat Diet. Molecules 2023; 28:6714. [PMID: 37764494 PMCID: PMC10536454 DOI: 10.3390/molecules28186714] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the primary chronic liver disease worldwide, mainly manifested by hepatic steatosis. Hepatic lipids may be derived from dietary intake, plasma free fatty acid (FFA) uptake, or hepatic de novo lipogenesis (DNL). Currently, cellular and animal models of hepatocellular steatosis are widely used to study the pathogenesis of NAFLD and to investigate therapeutic agents. However, whether there are differences between the in vivo and in vitro models of the mechanisms that cause lipid accumulation has not been reported. We used OA/PA-induced NCTC 1469 cells and high-fat-diet-fed C57BL/6J mice to simulate a hepatocyte steatosis model of NAFLD and to detect indicators related to FFA uptake and DNL. In addition, when serological indicators were analysed in the mouse model, it was found that serum FASN levels decreased. The results revealed that, in the cellular model, indicators related to DNL were decreased, FASN enzyme activity was unchanged, and indicators related to FFA uptake were increased, including the high expression of CD36; while, in the animal model, indicators related to both FFA uptake and de novo synthesis were increased, including the high expression of CD36 and the increased protein levels of FASN with enhanced enzyme activity. In addition, after an analysis of the serological indicators in the mouse model, it was found that the serum levels of FASN were reduced. In conclusion, the OA/PA-induced cellular model can be used to study the mechanism of FFA uptake, whereas the high-fat-diet-induced mouse model can be used to study the mechanism of FFA uptake and DNL. Combined treatment with CD36 and FASN may be more effective against NAFLD. FASN in the serum can be used as one of the indicators for the clinical diagnosis of NAFLD.
Collapse
Affiliation(s)
- Miao Zhang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101400, China; (M.Z.); (X.B.); (Q.D.); (J.X.); (D.W.); (L.C.); (K.D.)
| | - Xue Bai
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101400, China; (M.Z.); (X.B.); (Q.D.); (J.X.); (D.W.); (L.C.); (K.D.)
| | - Qian Du
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101400, China; (M.Z.); (X.B.); (Q.D.); (J.X.); (D.W.); (L.C.); (K.D.)
| | - Jiaojiao Xu
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101400, China; (M.Z.); (X.B.); (Q.D.); (J.X.); (D.W.); (L.C.); (K.D.)
| | - Danqing Wang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101400, China; (M.Z.); (X.B.); (Q.D.); (J.X.); (D.W.); (L.C.); (K.D.)
| | - Lei Chen
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101400, China; (M.Z.); (X.B.); (Q.D.); (J.X.); (D.W.); (L.C.); (K.D.)
| | - Keting Dong
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101400, China; (M.Z.); (X.B.); (Q.D.); (J.X.); (D.W.); (L.C.); (K.D.)
| | - Ziyue Chen
- School of Nursing, Capital Medical University, Beijing 100069, China;
| | - Jianhong Yang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101400, China; (M.Z.); (X.B.); (Q.D.); (J.X.); (D.W.); (L.C.); (K.D.)
| |
Collapse
|
11
|
Zhang J, Qi A, Liu L, Cai C, Xu H. Gas Chromatography-Mass Spectrometry-Based Cerebrospinal Fluid Metabolomics to Reveal the Protection of Coptisine against Transient Focal Cerebral Ischemia-Reperfusion Injury via Anti-Inflammation and Antioxidant. Molecules 2023; 28:6350. [PMID: 37687175 PMCID: PMC10489949 DOI: 10.3390/molecules28176350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Coptisine (Cop) exerts a neuroprotective effect on central nervous system disease, particularly ischemic stroke. However, its protective mechanism is still unclear. This study aimed to investigate the protective effect of Cop on cerebral ischemia-reperfusion (IR) rats with a middle cerebral artery occlusion model by integrating a gas chromatography-mass spectrometry (GC-MS)-based metabolomics approach with biochemical assessment. Our results showed that Cop could improve neurobehavioral function and decrease the ischemia size in IR rats. In addition, Cop was found to decrease inflammatory mediators (e.g., prostaglandin D2 (PGD2) and tumor necrosis factor-α (TNF-α) and attenuate oxidative stress response (e.g., increase the superoxide dismutase (SOD) expression and decrease 8-iso-PGF2α level). Furthermore, the GC-MS-based cerebrospinal fluid (CSF) metabolomics analysis indicated that Cop influenced the level of glycine, 2,3,4-trihydroxybutyric acid, oleic acid, glycerol, and ribose during IR injury. Cop exhibited a good neuroprotective effect against cerebral IR injury and metabolic alterations, which might be mediated through its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Junjie Zhang
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Research Center of Chinese Herbal Resource Science and Engineering, School of Traditional Chinese Meteria Medica, Guangzhou University of Chinese Medicine, Ministry of Education, Guangzhou 510006, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524023, China; (A.Q.); (L.L.)
- School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China
| | - Ao Qi
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524023, China; (A.Q.); (L.L.)
- School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China
| | - Lulu Liu
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524023, China; (A.Q.); (L.L.)
- School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China
| | - Chun Cai
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524023, China; (A.Q.); (L.L.)
- School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China
| | - Hui Xu
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Research Center of Chinese Herbal Resource Science and Engineering, School of Traditional Chinese Meteria Medica, Guangzhou University of Chinese Medicine, Ministry of Education, Guangzhou 510006, China
| |
Collapse
|
12
|
Li Y, Sun M, Su S, Qi X, Liu S, Pan T, Zhou L, Li Y. Tuberostemonine alleviates high-fat diet-induced obesity and hepatic steatosis by increasing energy consumption. Chem Biol Interact 2023; 381:110545. [PMID: 37236577 DOI: 10.1016/j.cbi.2023.110545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
Obesity is of public concern worldwide, and it increases the probability of developing a number of comorbid diseases, including NAFLD. Recent research on obesity drugs and health demands have shown the potential of natural plant extracts for preventing and treating obesity and their lack of toxicity and treatment-related side effects. We have demonstrated that tuberostemonine (TS), an alkaloid extracted from the traditional Chinese medicine Stemona tuberosa Lour can inhibit intracellular fat deposition, reduce oxidative stress, increase cellular adenosine triphosphate (ATP), and increase mitochondrial membrane potential. It effectively reduced weight gain and fat accumulation caused by a high-fat diet, and regulated liver function and blood lipid levels. Moreover, it regulate glucose metabolism and improved energy metabolism in mice. TS also decreased high-fat diet-induced obesity and improved lipid and glucose metabolism disorders in mice, with no significant side effects. In conclusion, TS was shown to be a safe alternative for obese patients and might be developed as an antiobesity and anti-nonalcoholic fatty liver drug.
Collapse
Affiliation(s)
- Yu Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Mingjie Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Songtao Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Xinyi Qi
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Siqi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Tingli Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China.
| |
Collapse
|
13
|
Chen H, Ma Y, Qi X, Tian J, Ma Y, Niu T. α-Lactalbumin Peptide Asp-Gln-Trp Ameliorates Hepatic Steatosis and Oxidative Stress in Free Fatty Acids-Treated HepG2 Cells and High-Fat Diet-Induced NAFLD Mice by Activating the PPARα Pathway. Mol Nutr Food Res 2023; 67:e2200499. [PMID: 37354055 DOI: 10.1002/mnfr.202200499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/26/2023] [Indexed: 06/26/2023]
Abstract
SCOPE Dietary intervention has emerged as a promising strategy for the management of nonalcoholic fatty liver disease (NAFLD). The aim of this study is to investigate the ameliorative effects of the α-lactalbumin peptide Asp-Gln-Trp (DQW) against NAFLD and the underlying mechanism. METHODS AND RESULTS The models of lipid metabolism disorders are established both in HepG2 cells and in C57BL/6J mice. The results demonstrate that DQW activates peroxisome proliferator-activated receptor α (PPARα) and subsequently ameliorates lipid deposition and oxidative stress in vitro. Interestingly, GW6471 markedly attenuates the modulatory effects of DQW on the PPARα pathway in HepG2 cells. Moreover, results of in vivo experiments indicate that DQW alleviates body weight gain, dyslipidemia, hepatic steatosis, and oxidative stress in high-fat-diet (HFD)-induced NAFLD mice. At the molecular level, DQW activates PPARα, subsequently enhances fatty acid β-oxidation, and reduces lipogenesis, thereby ameliorating hepatic steatosis. Meanwhile, DQW may ameliorate liver injury and oxidative stress via activating the PPARα/nuclear-factor erythroid 2 (Nrf2)/heme-oxygenase 1 (HO-1) pathway. CONCLUSION Those results indicate that α-lactalbumin peptide DQW may be an effective dietary supplement for alleviating NAFLD by alleviating lipid deposition and oxidative stress.
Collapse
Affiliation(s)
- Haoran Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Yanfeng Ma
- Hainan Mengniu Technology Development Co., Ltd., Haikou, Hainan, 571900, China
- School of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Xiaofen Qi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Jianjun Tian
- School of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Tianjiao Niu
- Hainan Mengniu Technology Development Co., Ltd., Haikou, Hainan, 571900, China
| |
Collapse
|
14
|
Yu H, Yan S, Jin M, Wei Y, Zhao L, Cheng J, Ding L, Feng H. Aescin can alleviate NAFLD through Keap1-Nrf2 by activating antioxidant and autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154746. [PMID: 36905866 DOI: 10.1016/j.phymed.2023.154746] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/11/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a common metabolic liver disease worldwide. It has been proven that aescin (Aes), a bioactive compound derived from the ripe dried fruit of Aesculus chinensis Bunge, has a number of physiologically active properties like anti-inflammatory and anti-edema, however it has not been investigated as a potential solution for NAFLD. PURPOSE This study's major goal was to determine whether Aes can treat NAFLD and the mechanism underlying its therapeutic benefits. METHODS We constructed HepG2 cell models in vitro that were affected by oleic and palmitic acids, as well as in vivo models for acute lipid metabolism disorder caused by tyloxapol and chronic NAFLD caused by high-fat diet. RESULTS We discovered that Aes could promote autophagy, activate the Nrf2 pathway, and ameliorate lipid accumulation and oxidative stress both in vitro and in vivo. Nevertheless, in Autophagy-related proteins 5 (Atg5) and Nrf2 knockout mice, Aes lost its curative impact on NAFLD. Computer simulations show that Aes might interact with Keap1, which might allow Aes to increase Nrf2 transfer into the nucleus and perform its function. Importantly, Aes's stimulation of autophagy in the liver was hampered in Nrf2 knockout mice. This suggested that the impact of Aes in inducing autophagy may be connected to the Nrf2 pathway. CONCLUSION We first discovered Aes's regulating effects on liver autophagy and oxidative stress in NAFLD. And we found Aes may combine the Keap1 and regulate autophagy in the liver by affecting Nrf2 activation to exert its protective effect.
Collapse
Affiliation(s)
- Hao Yu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Siru Yan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Meiyu Jin
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Yunfei Wei
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Lilei Zhao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Jiaqi Cheng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Lu Ding
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Haihua Feng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China.
| |
Collapse
|
15
|
Munteanu C, Schwartz B. The Effect of Bioactive Aliment Compounds and Micronutrients on Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2023; 12:antiox12040903. [PMID: 37107278 PMCID: PMC10136128 DOI: 10.3390/antiox12040903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 03/28/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
In the current review, we focused on identifying aliment compounds and micronutrients, as well as addressed promising bioactive nutrients that may interfere with NAFLD advance and ultimately affect this disease progress. In this regard, we targeted: 1. Potential bioactive nutrients that may interfere with NAFLD, specifically dark chocolate, cocoa butter, and peanut butter which may be involved in decreasing cholesterol concentrations. 2. The role of sweeteners used in coffee and other frequent beverages; in this sense, stevia has proven to be adequate for improving carbohydrate metabolism, liver steatosis, and liver fibrosis. 3. Additional compounds were shown to exert a beneficial action on NAFLD, namely glutathione, soy lecithin, silymarin, Aquamin, and cannabinoids which were shown to lower the serum concentration of triglycerides. 4. The effects of micronutrients, especially vitamins, on NAFLD. Even if most studies demonstrate the beneficial role of vitamins in this pathology, there are exceptions. 5. We provide information regarding the modulation of the activity of some enzymes related to NAFLD and their effect on this disease. We conclude that NAFLD can be prevented or improved by different factors through their involvement in the signaling, genetic, and biochemical pathways that underlie NAFLD. Therefore, exposing this vast knowledge to the public is particularly important.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Betty Schwartz
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
16
|
Fang QL, Qiao X, Yin XQ, Zeng YC, Du CH, Xue YM, Zhao XJ, Hu CY, Huang F, Lin YP. Flavonoids from Scutellaria amoena C. H. Wright alleviate mitochondrial dysfunction and regulate oxidative stress via Keap1/Nrf2/HO-1 axis in rats with high-fat diet-induced nonalcoholic steatohepatitis. Biomed Pharmacother 2023; 158:114160. [PMID: 36571996 DOI: 10.1016/j.biopha.2022.114160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH) is among the most common liver diseases in the world. Flavonoids from Scutellaria amoena (SAF) are used in the treatment of hepatopathy in China. However, the effect and mechanism against NASH remain unclear. We investigated the alleviating effect of SAF on NASH via regulating mitochondrial dysfunction and oxidative stress. METHODS The effects of SAF on NASH were evaluated using in vitro and in vivo methods. L02 cells were induced by fat emulsion to establish an adipocytes model, followed by treatment with SAF for 24 h. NASH rat models were established by the administration of a high-fat diet for 12 weeks and were administered SAF for six weeks. Changes in body weight, organ indexes, lipid levels, inflammatory cytokines, mitochondrial indicators, and fatty acid metabolism were investigated. RESULTS SAF significantly improved body weight, organ indexes, lipid levels, liver injury, and inflammatory infiltration in NASH rats. SAF notably regulated interleukin-6, tumor necrotic factor-alpha, superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), kelch-like ECH-associated protein 1 (Keap1), nuclear factor-erythroid factor 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1). Additionally, SAF improved mitochondrial dysfunction, increased the levels of GSH, SOD, ATP synthase, complex I and II, and decreased the level of MDA in liver mitochondria. SAF regulated the expression of β-oxidation genes, including peroxisome proliferator-activated receptor -gamma coactivator-1alpha (PGC-1α), carnitine palmitoyltransferase-1 (CPT1) A, CPT1B, medium-chain acyl-CoA dehydrogenase, long-chain acyl-CoA dehydrogenase, very long-chain acyl-CoA dehydrogenase, and PPARα. CONCLUSION SAF can alleviate NASH by regulating mitochondrial function and oxidative stress via the Keap1/Nrf2/HO-1 axis.
Collapse
Affiliation(s)
- Qiong-Lian Fang
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Xue Qiao
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Xun-Qing Yin
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Yong-Cheng Zeng
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Cheng-Hong Du
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Yong-Mei Xue
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiu-Juan Zhao
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Chun-Yan Hu
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Feng Huang
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China.
| | - Yu-Ping Lin
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China.
| |
Collapse
|
17
|
Zhang CY, Hu XC, Zhang GZ, Liu MQ, Chen HW, Kang XW. Role of Nrf2 and HO-1 in intervertebral disc degeneration. Connect Tissue Res 2022; 63:559-576. [PMID: 35736364 DOI: 10.1080/03008207.2022.2089565] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Intervertebral disc degeneration (IDD) is a common age-related disease with clinical manifestations of lumbar and leg pain and limited mobility. The pathogenesis of IDD is mainly mediated by the death of intervertebral disc (IVD) cells and the imbalance of extracellular matrix (ECM) synthesis and degradation. Oxidative stress and inflammatory reactions are the important factors causing this pathological change. Therefore, the regulation of reactive oxygen species and production of inflammatory factors may be an effective strategy to delay the progression of IDD. In recent years, nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream regulated protein heme oxygenase-1 (HO-1) have received special attention due to their antioxidant, anti-inflammatory and anti-apoptotic protective effects. Recent studies have elucidated the important role of these two proteins in the treatment of IDD disease. However, Nrf2 and HO-1 have not been systematically reported in IDD-related diseases. Therefore, this review describes the biological characteristics of Nrf2 and HO-1, the relationship between Nrf2- and HO-1-regulated oxidative stress and the inflammatory response and IDD, and the progress in research on some extracts targeting Nrf2 and HO-1 to improve IDD. Understanding the role and mechanism of Nrf2 and HO-1 in IDD may provide novel ideas for the clinical treatment and development of Nrf2- and HO-1-targeted drugs.
Collapse
Affiliation(s)
- Cang-Yu Zhang
- The second clinical medical college, Lanzhou University, Lanzhou, Gansu, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| | - Xu-Chang Hu
- The second clinical medical college, Lanzhou University, Lanzhou, Gansu, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| | - Guang-Zhi Zhang
- The second clinical medical college, Lanzhou University, Lanzhou, Gansu, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| | - Ming-Qiang Liu
- The second clinical medical college, Lanzhou University, Lanzhou, Gansu, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| | - Hai-Wei Chen
- The second clinical medical college, Lanzhou University, Lanzhou, Gansu, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| | - Xue-Wen Kang
- The second clinical medical college, Lanzhou University, Lanzhou, Gansu, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| |
Collapse
|
18
|
Fan Y, Lu J, Yu Z, Qu X, Guan S. 1,3-Dichloro-2-propanol-Induced Renal Tubular Cell Necroptosis through the ROS/RIPK3/MLKL Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10847-10857. [PMID: 36000575 DOI: 10.1021/acs.jafc.2c02619] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
1,3-Dichloro-2-propanol (1,3-DCP), as a food pollutant, exists in a variety of foods. Studies have shown that it has nephrotoxicity. In the study, we found that 1,3-DCP caused renal injury with necroptosis in C57BL/6J mice. The mechanism of 1,3-DCP-caused nephrotoxicity was further explored in NRK-52E cells in vitro. We found that 1,3-DCP caused cell necroptosis with the increase in lactate dehydrogenase (LDH) levels and the expressions of RIPK3 and MLKL. But pretreatment with a ROS inhibitor N-acetyl-l-cysteine (NAC), a RIPK3 inhibitor GSK'872, or RIPK3 gene silencing alleviated 1,3-DCP-induced cell necroptosis. The data indicated that 1,3-DCP induced necroptosis through the ROS/RIPK3/MLKL pathway in NRK-52E cells. In further mechanistic studies, we explored how 1,3-DCP induced ROS production. We found that 1,3-DCP inhibited the expressions of nuclear and cytoplasmic Nrf2. But pretreatment with an Nrf2 activator dimethyl fumarate (DMF) up-regulated the expressions of nuclear and cytoplasmic Nrf2 and down-regulated ROS levels and RIPK3 and MLKL expressions. We also examined the effects of mitophagy on 1,3-DCP-induced ROS. The data manifested that 1,3-DCP suppressed mitophagy in NRK-52E cells by decreasing LC3-II, Pink1, and Parkin levels, increasing p62 levels, and decreasing colocalization of LC3 and Mito-Tracker Red. Pretreatment with an autophagy activator rapamycin (Rapa) decreased 1,3-DCP-induced ROS. Taken together, our data identified that 1,3-DCP caused renal necroptosis through the ROS/RIPK3/MLKL pathway.
Collapse
Affiliation(s)
- Yong Fan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Jing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
- Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Zelin Yu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Xiao Qu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Shuang Guan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
- Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, People's Republic of China
| |
Collapse
|
19
|
Li Y, Liu J, Ye B, Cui Y, Geng R, Liu S, Zhang Y, Guo W, Fu S. Astaxanthin Alleviates Nonalcoholic Fatty Liver Disease by Regulating the Intestinal Flora and Targeting the AMPK/Nrf2 Signal Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10620-10634. [PMID: 35973099 DOI: 10.1021/acs.jafc.2c04476] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is among the most prevalent chronic liver diseases around the globe. The accumulation of lipids in the liver and oxidative stress are important pathological mechanisms of NAFLD. Astaxanthin (AT) is a carotenoid extracted from shrimps and crabs with beneficial biological activities, including anti-oxidative and anti-inflammatory activities. 16S microflora sequencing, H&E staining, and the western blot technique were employed to investigate the impacts of AT on a high-fat diet (HFD)-induced NAFLD. Significant mitigation in lipid metabolism-related disorders and decreased oxidative stress in HFD-induced mice were observed due to AT, and significant changes in the gut flora of the model mice were also observed. The in vitro study showed that AT considerably lowered the protein expression level of fatty acid synthetase (FAS), sterol regulatory element-binding protein-1c (SREBP-1c), and acetyl-COA carboxylase (ACC) and increased the protein expression of nuclear factor-E2 associated factor 2 (Nrf2) and AMP-activated protein kinase (AMPK) in oleic acid (OA) and palmitic acid (PA)-induced HepG2 cells. Additionally, mechanistic studies revealed that compound C (AMPK inhibitor, CC) inhibited the regulatory effect of AT on the SREBP-1c and Nrf2 signaling pathways. In conclusion, AT can inhibit the SREBP-1c, FAS, and ACC signaling pathways, activate the AMPK and Nrf2 signaling pathways, and improve the structure of intestinal flora.
Collapse
Affiliation(s)
- Yuhang Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Juxiong Liu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Bojian Ye
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yueyao Cui
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ruiqi Geng
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shu Liu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yufei Zhang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenjin Guo
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
20
|
Triptolide Induces Liver Injury by Regulating Macrophage Recruitment and Polarization via the Nrf2 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1492239. [PMID: 35770044 PMCID: PMC9236772 DOI: 10.1155/2022/1492239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/28/2022] [Indexed: 12/15/2022]
Abstract
Triptolide (TP) has limited usage in clinical practice due to its side effects and toxicity, especially liver injury. Hepatic macrophages, key player of liver innate immunity, were found to be recruited and activated by TP in our previous study. The nuclear factor-erythroid-2-related factor 2 (Nrf2) pathway exerts a protective role in TP-induced liver damage, but its effect on the functions of hepatic macrophage has not been elucidated. Here, we determined whether TP can regulate the recruitment and polarization of hepatic macrophages by inhibiting Nrf2 signaling cascade. Our results demonstrated that TP inhibited the Nrf2 signaling pathway in hepatic macrophages. The changes in hepatic macrophages were responsible for the increased susceptibility toward inflammatory stimuli, and hence, TP pretreatment could induce severe liver damage upon the stimulation of a nontoxic dose of lipopolysaccharides. In addition, the Nrf2 agonist protected macrophages from TP-induced toxicity and Nrf2 deficiency significantly aggravated liver injury by enhancing the recruitment and M1 polarization of hepatic macrophages. This study suggests that Nrf2 pathway-mediated hepatic macrophage polarization plays an essential role in TP-induced liver damage, which can serve as a potential therapeutic target for preventing hepatotoxicity induced by TP.
Collapse
|