1
|
Dong S, Wu S, Hao F, Wu J, Liao Z, Zhong Q, Zhong R, Fang X. Research advancements on theaflavins: Isolation, purification, synthesis, gut microbiota interactions, and applications potentials. Food Res Int 2025; 202:115692. [PMID: 39967149 DOI: 10.1016/j.foodres.2025.115692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/14/2024] [Accepted: 01/04/2025] [Indexed: 02/20/2025]
Abstract
Theaflavins (TFs), specific polyphenolic compounds found in tea, including TF, TF-3-G, TF-3'-G, and TFDG, are renowned for their health-promoting effects. The growing interest in TFs among researchers necessitates a comprehensive review of their properties and impacts. This review systematically examines the chemical and physical properties of TFs, covering their isolation, purification, synthesis, safety, and bioavailability, as well as their implications for health. Special attention is paid to the dynamic interactions between TFs and gut microbiota (GM), exploring how GM metabolizes TFs and the consequent effects on the microbial community. An in-depth understanding of these interactions is crucial for realizing the full health benefits of TFs. Additionally, this review summarizes the well-documented health benefits of TFs, including their roles in ameliorating metabolic diseases, exhibiting anti-inflammatory properties, reducing viral infections, and potential applications in treating cancer and neurological diseases. It also explores the potential industrial applications of TFs, underscoring the need for further research to enhance their benefits for human health and well-being. The primary goal of this review is to support and inspire further detailed investigations into TFs.
Collapse
Affiliation(s)
- Sashuang Dong
- College of Food Science, South China Agricultural University, Guangzhou, PR China.
| | - Sitong Wu
- College of Food Science, South China Agricultural University, Guangzhou, PR China.
| | - Fanyu Hao
- College of Food Science, South China Agricultural University, Guangzhou, PR China.
| | - Jinsong Wu
- College of Food Science, South China Agricultural University, Guangzhou, PR China.
| | - Zhenlin Liao
- College of Food Science, South China Agricultural University, Guangzhou, PR China.
| | - Qingping Zhong
- College of Food Science, South China Agricultural University, Guangzhou, PR China.
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512000, PR China.
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou, PR China.
| |
Collapse
|
2
|
Tian L, You X, Liu J, Li Y, Li S, Jin X, Li S, Pan F, Yu Z, Zhang T, Du Z. Schiff Base Mediated Food-Derived Peptide Supramolecular Self-Assembly as Curcumin Carriers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2471-2482. [PMID: 39644243 DOI: 10.1021/acs.jafc.4c08256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
The fusion assembly strategy of supramolecular chemistry combined with dynamic covalent chemistry has provided novel insights into the design of precision nutrition and intelligent drug delivery carriers. This work involved the development of a supramolecular self-assembly originating from entropy- and enthalpy-driven dynamic covalent bonding on Schiff bases between egg white-derived peptide Gln-Ile-Gly-Leu-Phe (QIGLF) and glutaraldehyde (GA), denoted QIGLF-GA. The assembly exhibited outstanding assembly characteristics and multiwavelength autofluorescence properties. Benefiting from the potent facilitation of the dynamic covalent interaction of Schiff base on the noncovalent assembly force network, QIGLF-GA was afforded an encapsulation capacity of curcumin (Cur) of more than 22% (≫ 10%) and rationally inhibited P-glycoprotein-mediated cellular efflux and markedly elevated the efficacy of Cur in overcoming the intestinal epithelial absorption barrier to the circulation with the help of endocytosis. Furthermore, QIGLF-GA-Cur features responsive release under weakly acidic conditions, which dramatically contributes to the intracellular bioavailability of Cur.
Collapse
Affiliation(s)
- Longjiang Tian
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xinran You
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yajuan Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Shanglin Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xuemin Jin
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shugang Li
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Zhipeng Yu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
3
|
Li M, Li W, Dong Y, Zhan C, Tao T, Kang M, Zhang C, Liu Z. Advances in metabolism pathways of theaflavins: digestion, absorption, distribution and degradation. Crit Rev Food Sci Nutr 2024:1-9. [PMID: 39096025 DOI: 10.1080/10408398.2024.2384647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Theaflavins, a major kind of component in black tea, have been reported to show a variety of biological activities and health effects. However, the unstable chemical properties, low bioavailability and unclear metabolism pathways of theaflavins have left much to be desired in terms of its specific efficacy and applications. This paper provides a comprehensive knowledge on the digestion, absorption, metabolism, distribution and excretion of theaflavins. We find that pH-dependent stability, efflux transport proteins are closely related to the low absorption rate and low bioavailability of theaflavins. When pass through the gastrointestinal tract, TFDG, TF2A and TF2B are gradually degraded to TF1, and release gallic acid. Then, the theaflavins skeleton are degraded into small molecular phenolic substances under the action of enzymes and microorganisms. In addition, theaflavins are widely distributed in the human body including brain, lung, heart, kidney, liver, blood tissue in a low content and can be excreted through feces. However, the influence of digestive enzymes barrier and gut microbial barrier on theaflavins are still unclear. Importantly, most findings are reported by in vitro methods and animal experiments, the metabolites and metabolic pathways of theaflavins in human body are not fully understood and need to be further investigated. We hope to lay a theoretical basis for exploring methods to improve the bioavailability of theaflavins and expanding the application of theaflavins in health foods as well as pharmaceuticals.
Collapse
Affiliation(s)
- Maiquan Li
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Wenlan Li
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yunxia Dong
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Cai Zhan
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Tiantian Tao
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Manjun Kang
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Can Zhang
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, China
| |
Collapse
|
4
|
Xu S, Chen Y, Gong Y. Improvement of Theaflavins on Glucose and Lipid Metabolism in Diabetes Mellitus. Foods 2024; 13:1763. [PMID: 38890991 PMCID: PMC11171799 DOI: 10.3390/foods13111763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
In diabetes mellitus, disordered glucose and lipid metabolisms precipitate diverse complications, including nonalcoholic fatty liver disease, contributing to a rising global mortality rate. Theaflavins (TFs) can improve disorders of glycolipid metabolism in diabetic patients and reduce various types of damage, including glucotoxicity, lipotoxicity, and other associated secondary adverse effects. TFs exert effects to lower blood glucose and lipids levels, partly by regulating digestive enzyme activities, activation of OATP-MCT pathway and increasing secretion of incretins such as GIP. By the Ca2+-CaMKK ꞵ-AMPK and PI3K-AKT pathway, TFs promote glucose utilization and inhibit endogenous glucose production. Along with the regulation of energy metabolism by AMPK-SIRT1 pathway, TFs enhance fatty acids oxidation and reduce de novo lipogenesis. As such, the administration of TFs holds significant promise for both the prevention and amelioration of diabetes mellitus.
Collapse
Affiliation(s)
- Shiyu Xu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China;
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
| | - Ying Chen
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China;
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
| | - Yushun Gong
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
5
|
Li Y, Liu J, Shi X, Zhang H, Zhang L, Xu Z, Zhang T, Yu Y, Du Z. Precursor template-induced egg white-derived peptides self-assembly for the enhancement of curcumin: Structure, environmental stability, and bioavailability. Food Res Int 2023; 172:113120. [PMID: 37689888 DOI: 10.1016/j.foodres.2023.113120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Natural multicomponent peptides with abundant bioactivity, varied sizes, and tunable interaction potential are available for rational designing novel self-assembled delivery carriers. Herein, we exploited zein-hyaluronic acid nanoparticles (Z-HA NPs) with a predetermined ordered structure as precursor templates to induce the self-assembly of egg white-derived peptides (EWDP) to generate stable spherical architectures for the enhancement of curcumin (Cur). The resulting Z-EWDP-HA NPs encapsulated hydrophobic Cur through robust hydrogen bonding and hydrophobic interactions with high encapsulation efficiency (97.38% at pH 7.0). The NPs presented superior Cur aqueous solubility, redispersibility, and photothermal stability. More importantly, the self-assembled EWDP could exert synergistic antioxidant activity with Cur and enhance the bioaccessibility of Cur. Meanwhile, the favorable biocompatibility and membrane affinity of EWDP further prolonged residence and time-controlled release feature of Cur in the small intestine. Precursor template-induced multicomponent peptides' self-assembly provides an efficient and controllable strategy for co-enhanced bioactivity and self-assembly capacity of peptides, which could dramatically broaden the functionalization of multicomponent peptides hydrolyzed from natural food proteins.
Collapse
Affiliation(s)
- Yajuan Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Xiaoxia Shi
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Hui Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Leiyi Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Ziang Xu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Yiding Yu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| |
Collapse
|
6
|
Zhang M, Su Y, Li J, Chang C, Gu L, Yang Y. Fabrication of phosphatidylcholine-EGCG nanoparticles with sustained release in simulated gastrointestinal digestion and their transcellular permeability in a Caco-2 monolayer model. Food Chem 2023; 437:137580. [PMID: 39491254 DOI: 10.1016/j.foodchem.2023.137580] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/24/2023] [Accepted: 09/21/2023] [Indexed: 11/05/2024]
Abstract
In this study, we prepared phosphatidylcholine (PC)-EGCG complex nanoparticles (P-E NPs) by solvent reflux method. The physicochemical properties, in vitro digestion, uptake in Caco-2 cells, and bidirectional permeability of P-E NPs were systematically investigated. The constructed P-E1.5:1 NPs had an average particle size of 118 nm, a ζ-potential of -37.8 mV, and a polymerization dispersion index (PDI) of 0.16. The encapsulation efficiency (EE) of EGCG was 85.0% and the loading capacity (LC) was 24.4%. UV spectra, FTIR, XRD and intermolecular force results indicated that hydrophobic, electrostatic and hydrogen bonding interactions contributed to formate P-E1.5:1 NPs. P-E1.5:1 NPs exhibited first-order kinetics sustained release properties in simulated gastrointestinal digestion. Furthermore, P-E1.5:1 NPs were able to enhance absorptive transport and inhibit efflux transport mediated by MRP2 and P-gp compared to EGCG. These results indicated that P-E1.5:1 NPs may be a potential strategy to ameliorate EGCG bioavailability.
Collapse
Affiliation(s)
- Mengya Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yujie Su
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Junhua Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Luping Gu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
7
|
Chen J, Zheng Y, Gong S, Zheng Z, Hu J, Ma L, Li X, Yu H. Mechanisms of theaflavins against gout and strategies for improving the bioavailability. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154782. [PMID: 36990009 DOI: 10.1016/j.phymed.2023.154782] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/04/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Gout is a crystal related arthropathy caused by monosodium urate deposition. At present, the identification of appropriate treatments and new drugs to reduce serum uric acid levels and gout risk is a major research area. PURPOSE Theaflavins are naturally occurring compounds characterized by a benzodiazepine skeleton. The significant benefits of theaflavins have been well documented. A large number of studies have been carried out and excellent anti-gout results have been achieved in recent years. STUDY DESIGN A comprehensive analysis of the mechanism of the anti-gout effect of theaflavins is presented through a literature review and network pharmacology prediction, and strategies for increasing the bioavailability of theaflavins are summarized. METHODS In this review, the active components and pharmacological mechanisms of theaflavins in the treatment of gout were summarized, and the relationship between theaflavins and gout, the relevant components, and the potential mechanisms of anti-gout action were clarified by reviewing the literature on the anti-gout effects of theaflavins and network pharmacology. RESULTS Theaflavins exert anti-gout effects by down regulating the gene and protein expression of glucose transporter 9 (GLUT9) and uric acid transporter 1 (URAT1), while upregulating the mRNA expression levels of organic anion transporter 1 (OAT1), organic cation transporter N1 (OCTN1), organic cation transporters 1/2 (Oct1/2), and organic anion transporter 2 (OAT2). Network pharmacology prediction indicate that theaflavins can regulate the AGE-RAGE and cancer signaling pathways through ATP-binding cassette subfamily B member 1 (ABCB1), recombinant mitogen activated protein kinase 14 (MAPK14), telomerase reverse tranase (TERT), signal transducer and activator of transcription 1 (STAT1), matrix metalloproteinase 2 (MMP2), B-cell lymphoma-2 (BCL2), and matrix metalloproteinase 14 (MMP14) targets for anti-gout effects. CONCLUSION This review presents the mechanisms of anti-gout action of theaflavins and strategies for improving the bioavailability of theaflavins, as well as providing research strategies for anti-gout treatment measures and the development of novel anti-gout drugs.
Collapse
Affiliation(s)
- Jingzi Chen
- Chinese Medicine Rehabilitation Department, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Yanchao Zheng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Sihan Gong
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Zhigang Zheng
- Wuxi Teaturn Bioengineering Co., Ltd., Wuxi 214000, China
| | - Jing Hu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Lin Ma
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Xiankuan Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China.
| | - Hongjian Yu
- Wuxi Teaturn Bioengineering Co., Ltd., Wuxi 214000, China.
| |
Collapse
|
8
|
Jiang Y, Wang W, Huang Q. Impacts of crosslinking conditions on Pickering emulsions stabilized by genipin-crosslinked chitosan-caseinophosphopeptides nanocomplexes. Int J Biol Macromol 2023:125154. [PMID: 37268081 DOI: 10.1016/j.ijbiomac.2023.125154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023]
Abstract
Polysaccharide-polypeptide nanocomplexes are promising colloidal Pickering stabilizers. The resulting Pickering emulsions, however, are susceptible to pH and ionic strength changes. This phenomenon was also observed in our recently developed Pickering emulsions stabilized by the chitosan (CS)-caseinophosphopeptides (CPPs) nanocomplexes. To improve the stability of these Pickering emulsions, we herein crosslinked the CS-CPPs nanocomplexes with a natural crosslinker genipin. The genipin-crosslinked CS-CPPs nanocomplexes (GCNs) were used to prepare Pickering emulsions. The impacts of genipin concentration, crosslinking temperature, and duration on the characteristics of GCNs and the GCNs-stabilized Pickering emulsions (GPEs) were systemically investigated. GCNs showed crosslinking strength-dependent variations in their physical properties. Crosslinking at a weak or strong condition weakened the emulsification ability of GCNs at low concentrations. A strong crosslinking condition also compromised the capacity of GCNs to stabilize a high fraction of oil. GPEs were oil-in-water type and gel-like. GCNs crosslinked at a lower temperature and for a shorter crosslinking duration stabilized stronger gel-like GPEs. Moreover, GPEs had high pH and ionic strength stabilities. This work provided a feasible way to enhance the stability and regulate the physical properties of Pickering emulsions stabilized by polysaccharide-polypeptide nanocomplexes.
Collapse
Affiliation(s)
- Yike Jiang
- Department of Food Science, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qingrong Huang
- Department of Food Science, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA.
| |
Collapse
|
9
|
Shi M, Lu Y, Wu J, Zheng Z, Lv C, Ye J, Qin S, Zeng C. Beneficial Effects of Theaflavins on Metabolic Syndrome: From Molecular Evidence to Gut Microbiome. Int J Mol Sci 2022; 23:7595. [PMID: 35886943 PMCID: PMC9317877 DOI: 10.3390/ijms23147595] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, many natural foods and herbs rich in phytochemicals have been proposed as health supplements for patients with metabolic syndrome (MetS). Theaflavins (TFs) are a polyphenol hydroxyl substance with the structure of diphenol ketone, and they have the potential to prevent and treat a wide range of MetS. However, the stability and bioavailability of TFs are poor. TFs have the marvelous ability to alleviate MetS through antiobesity and lipid-lowering (AMPK-FoxO3A-MnSOD, PPAR, AMPK, PI3K/Akt), hypoglycemic (IRS-1/Akt/GLUT4, Ca2+/CaMKK2-AMPK, SGLT1), and uric-acid-lowering (XO, GLUT9, OAT) effects, and the modulation of the gut microbiota (increasing beneficial gut microbiota such as Akkermansia and Prevotella). This paper summarizes and updates the bioavailability of TFs, and the available signaling pathways and molecular evidence on the functionalities of TFs against metabolic abnormalities in vitro and in vivo, representing a promising opportunity to prevent MetS in the future with the utilization of TFs.
Collapse
Affiliation(s)
- Meng Shi
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| | - Yuting Lu
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| | - Junling Wu
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| | - Zhibing Zheng
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| | - Chenghao Lv
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| | - Jianhui Ye
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China;
| | - Si Qin
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| | - Chaoxi Zeng
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| |
Collapse
|