1
|
Dong H, Qi X. Biosynthesis of triterpenoids in plants: Pathways, regulation, and biological functions. CURRENT OPINION IN PLANT BIOLOGY 2025; 85:102701. [PMID: 40112428 DOI: 10.1016/j.pbi.2025.102701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 03/22/2025]
Abstract
Plant triterpenoids, a vast and diverse group of natural compounds derived from six isoprene units, exhibit an extensive array of structural diversity and remarkable biological activities. In this review, we update the recent research progress in the catalytic mechanisms underlying triterpene synthesis and summarize the current insights into the biosynthetic pathways and regulatory mechanisms of triterpenoids. We emphasize the biosynthesis of pharmacologically active triterpenoids and the role of triterpenoid synthesis in plant growth, development, defense mechanisms, and plant-microbe interactions. This insight review offers a comprehensive perspective on the applications and future avenues of triterpenoid research.
Collapse
Affiliation(s)
- Huan Dong
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaoquan Qi
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
2
|
Srivastava P, Ghosh S. Insights into functional divergence, catalytic versatility and specificity of small molecule glycosyltransferases. Int J Biol Macromol 2025; 292:138821. [PMID: 39708858 DOI: 10.1016/j.ijbiomac.2024.138821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Glycosylation is one of the most fundamental biochemical processes in cells. It plays crucial roles in diversifying plant natural products for structures, bioavailability and bioactivity, and thus, renders the glycosylated compounds valuable as food additives, nutraceuticals and pharmaceuticals. Moreover, glycosylated compounds impact plant growth, development and stress response. Therefore, understanding the biochemical function of the glycosyltransferases (GTs) is crucial to the elucidation of natural product biosynthetic pathways, improving plant traits and development of processes for industrially-important compounds. UDP-dependent glycosyltransferases (UGTs) that belong to the glycosyltransferase family-1 (GT1) and catalyze the transfer of glycosyl moieties from UDP-sugars to various small molecules, are the key players in natural product glycosylation. Recent studies also found the involvement of non-canonical cellulose synthase-like (CesAs) and glycosyl hydrolase (GH) family enzymes in the glycosylation of plant specialized metabolites. Decades of research on GTs provided critical insights into catalytic mechanism, substrate/product specificity and catalytic promiscuity, but biochemical function and physiological roles of GTs in majority of the natural product biosynthetic pathways remain to be understood. It is also important to redefine high-throughput strategies of GT mining to uncover novel biochemical function, considering that GTs are the large superfamily members in plants and other organisms. This review underscores the roles of GTs in small molecule glycosylation, plant development and stress responses, highlighting the catalytic versatility and substrate/product specificity of GTs in shaping plant metabolic diversity, and discusses the emerging strategies for mining of uncharacterized GTs to unravel biochemical and physiological functions and to elucidate natural product biosynthetic pathways.
Collapse
Affiliation(s)
- Payal Srivastava
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India; Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824, USA(1)
| | - Sumit Ghosh
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
3
|
Wang M, Zhang Z, Liu X, Liu Z, Liu R. Biosynthesis of Edible Terpenoids: Hosts and Applications. Foods 2025; 14:673. [PMID: 40002116 PMCID: PMC11854313 DOI: 10.3390/foods14040673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Microbial foods include microbial biomass, naturally fermented foods, and heterologously synthesized food ingredients derived from microbial fermentation. Terpenoids, using isoprene as the basic structure, possess various skeletons and functional groups. They exhibit diverse physicochemical properties and physiological activities, such as unique flavor, anti-bacterial, anti-oxidant, anti-cancer, and hypolipemic, making them extensively used in the food industry, such as flavor, fragrance, preservatives, dietary supplements, and medicinal health food. Compared to traditional strategies like direct extraction from natural species and chemical synthesis, microbial cell factories for edible terpenoids have higher titers and yields. They can utilize low-cost raw materials and are easily scaling-up, representing a novel green and sustainable production mode. In this review, we briefly introduce the synthetic pathway of terpenoids and the applications of microbial cell factories producing edible terpenoids. Secondly, we highlight several typical and non-typical microbial chassis in edible terpenoid-producing cell factories. In addition, we reviewed the recent advances of representative terpenoid microbial cell factories with a gram-scale titer in food flavor, food preservation, nutritional enhancers, and medicinal health foods. Finally, we predict the future directions of microbial cell factories for edible terpenoids and their commercialization process.
Collapse
Affiliation(s)
- Mengyu Wang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (Z.Z.); (X.L.); (Z.L.); (R.L.)
| | | | | | | | | |
Collapse
|
4
|
Hassan AS, O’Donovan LA, Cowley JM, Akomeah B, Phillips RJ, Pettolino F, Schultz CJ, Burton RA. In planta ectopic expression of two subtypes of tomato cellulose synthase-like M genes affects cell wall integrity and supports a role in arabinogalactan and/or rhamnogalacturonan-I biosynthesis. PLANT & CELL PHYSIOLOGY 2025; 66:101-119. [PMID: 39658008 PMCID: PMC11775392 DOI: 10.1093/pcp/pcae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/01/2024] [Accepted: 12/09/2024] [Indexed: 12/12/2024]
Abstract
Diversification of the cellulose synthase superfamily of glycosyltransferases has provided plants with the ability to synthesize varied cell wall polysaccharides such as xyloglucan, mannans, and the mixed-linkage glucans of cereals. Surprisingly, some but not all members of the cellulose synthase-like M (CslM) gene family have recently been shown to be involved in the glycosylation of the aglycone core of a range of triterpenoid saponins. However, no cell wall activity has yet been attributed to any of the CslM gene family members. Here, evolution of the CslM gene family in eudicots is explored to better understand the differences between the two metabolically distinct classes of CslMs (CslM1 and CslM2) and the very closely related CslGs. To achieve this, a robust tBLASTn approach was developed to identify CslM1, CslM2, and CslG sequences using diagnostic peptides, suitable for complex genomes using unannotated and short-read datasets. To ascertain whether both CslM1 and CslM2 proteins have cell wall functions, in addition to the 'saponin' role of CslM2, tomato CslM1 and CslM2 genes were ectopically expressed in Arabidopsis thaliana by stable transformation and in the transient Nicotiana benthamiana system. Transformed plants were analysed with immunofluorescence, immunogold transmission electron microscopy, and cell wall polysaccharides were extracted for monosaccharide linkage analysis. Our results support a role for both CslM1 and CslM2 in the biosynthesis of type II arabinogalactan linkages, generating new insight into how the diverse functions of CslMs can coexist and providing clear targets for future research.
Collapse
Affiliation(s)
- Ali S Hassan
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Lisa A O’Donovan
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia 5064, Australia
| | - James M Cowley
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Belinda Akomeah
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Renee J Phillips
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Filomena Pettolino
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, Australian Capital Territory 2601, Australia
| | - Carolyn J Schultz
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Rachel A Burton
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
5
|
Zhang F, Hao X, Liu J, Hou H, Chen S, Wang C. Herbal Multiomics Provide Insights into Gene Discovery and Bioproduction of Triterpenoids by Engineered Microbes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:47-65. [PMID: 39666531 DOI: 10.1021/acs.jafc.4c08372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Triterpenoids are natural products found in plants that exhibit industrial and agricultural importance. Triterpenoids are typically synthesized through two main pathways: the mevalonate (MVA) and methylerythritol 4-phosphate (MEP) pathways. They then undergo structural diversification with the help of squalene cyclases (OSCs), cytochrome P450 monooxygenases (P450s), UDP glycosyltransferases (UGTs), and acyltransferases (ATs). Advances in multiomics technologies for herbal plants have led to the identification of novel triterpenoid biosynthetic pathways. The application of various analytical techniques facilitates the qualitative and quantitative analysis of triterpenoids. Progress in synthetic biology and metabolic engineering has also facilitated the heterologous production of triterpenoids in microorganisms, such as Escherichia coli and Saccharomyces cerevisiae. This review summarizes recent advances in biotechnological approaches aimed at elucidating the complex pathway of triterpenoid biosynthesis. It also discusses the metabolic engineering strategies employed to increase the level of triterpenoid production in chassis cells.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xuemi Hao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jia Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongping Hou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shilin Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137 Chengdu, Sichuan China
| | - Caixia Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
6
|
Wang H, Hong L, Yang F, Zhao Y, Jing Q, Wang W, Zhang M, Yang Y, Chen Q, Hu Y, Zou Y, Li X, Yang W. Desorption Electrospray Ionization-Mass Spectrometry Imaging-Based Spatial Metabolomics for Visualizing and Comparing Ginsenosides and Lipids among Multiple Parts and Positions of the Panax ginseng Root. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27549-27560. [PMID: 39620636 DOI: 10.1021/acs.jafc.4c07461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Ginsenosides and lipids are both bioactive ingredients for ginseng. Targeting these two categories of components, this study was designed to develop desorption electrospray ionization-mass spectrometry imaging approaches and spatial metabolomics strategies, achieving the visualization and differentiation among different parts of Panax ginseng root (e.g., rhizome, main root, lateral root, fibrous root, and adventitious root). Potential chemical markers were identified by searching an in-house ginsenoside library and online Lipid Maps database, together with high-resolution MS2 data analysis. Six ginsenosides and 11 lipids were diagnostic to differentiate five different parts of the P. ginseng root. Additionally, three ginsenosides and 20 lipids were identified as differential markers among the six positions of the main root of P. ginseng. High-abundance malonyl- and oleanolic acid-ginsenosides were observed in the rhizome. These results assist in understanding the accumulation of bioactive molecules all through the root of P. ginseng, which can benefit its quality control and rational use.
Collapse
Affiliation(s)
- Hongda Wang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Lili Hong
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Feifei Yang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yuying Zhao
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Qi Jing
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Wei Wang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Min Zhang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yang Yang
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen 518101, China
| | - Qinhua Chen
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen 518101, China
| | - Ying Hu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yadan Zou
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xue Li
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Wenzhi Yang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| |
Collapse
|
7
|
Tang HP, Zhu EL, Bai QX, Wang S, Wang ZB, Wang M, Kuang HX. Polygala japonica Houtt.: A comprehensive review on its botany, traditional uses, phytochemistry, pharmacology, and pharmacokinetics. Fitoterapia 2024; 179:106233. [PMID: 39326795 DOI: 10.1016/j.fitote.2024.106233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Polygala japonica Houtt. (P. japonica), a member of the Polygala genus in the Polygalaceae family, has been historically utilized in traditional folk medicine as an expectorant, anti-inflammatory, anti-bacterial, and anti-depressant agent. This paper systematically reviews the latest research in botany, traditional uses, phytochemistry, pharmacology, and pharmacokinetics, aiming to provide a scientific foundation for the future development and application of P. japonica and to explore its potential value comprehensively. Approximately 86 compounds have been isolated from P. japonica, with triterpenoid saponins being the most prevalent and bioactive components. Extensive pharmacological activities of P. japonica extracts or compounds have been confirmed in vivo and in vitro, including anti-inflammatory, anti-depressant, neuroprotective, anti-obesity, anti-apoptotic, and skin-protective effects. Additionally, P. japonica has demonstrated significant curative effects and relatively clear pharmacological mechanisms in treating inflammatory and nervous system diseases. Specific components of its primary triterpenoid saponins are rapidly absorbed in the body. This review advocates for deeper scientific research on P. japonica, noting that most current research remains in its early stages and many reported biological activities require further clinical validation. Despite this, the traditional medical use of P. japonica across various cultures attests to its broad application value. Presently, the pharmacological activities of P. japonica extracts and compounds provide a scientific basis for its traditional uses. Future research must ensure the safety and effectiveness of P. japonica through in-depth pharmacokinetic studies, and the establishment of a refined and standardized quality evaluation system is essential for its clinical development and application.
Collapse
Affiliation(s)
- Hai-Peng Tang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - En-Lin Zhu
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Qian-Xiang Bai
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Shuang Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Zhi-Bin Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150000, China.
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150000, China.
| |
Collapse
|
8
|
Qiu S, Gilani MDS, Müller C, Zarazua-Navarro RM, Liebal U, Eerlings R, Blank LM. Cultivation optimization promotes ginsenoside and universal triterpenoid production by engineered yeast. N Biotechnol 2024; 83:219-230. [PMID: 39181198 DOI: 10.1016/j.nbt.2024.08.505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Ginseng, a cornerstone of traditional herbal medicine in Asia, garnered significant attention for its therapeutic potential. Central to its pharmacological effects are ginsenosides, the primary active metabolites, many of which fall within the dammarane-type and share protopanaxadiol as a common precursor. Challenges in extracting protopanaxadiol and ginsenosides from ginseng arise due to their low concentrations in the roots. Emerging solutions involve leveraging microbial cell factories employing genetically engineered yeasts. Here, we optimized the fermentation conditions via the Design of Experiment, realizing 1.2 g/L protopanaxadiol in simple shake flask cultivations. Extrapolating the optimized setup to complex ginsenosides, like compound K, achieved 7.3-fold (0.22 g/L) titer improvements. Our adaptable fermentation conditions enable the production of high-value products, such as sustainable triterpenoids synthesis. Through synthetic biology, microbial engineering, and formulation studies, we pave the way for a scalable and sustainable production of bioactive compounds from ginseng.
Collapse
Affiliation(s)
- Shangkun Qiu
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Mariam Dianat Sabet Gilani
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Conrad Müller
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | | | - Ulf Liebal
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Roy Eerlings
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany.
| | - Lars M Blank
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
9
|
Yu X, Yu J, Wang D, Liu S, Wang K, Zhao M, Chen P, Wang Y, Wang Y, Zhang M. A Novel Biosynthetic Strategy for Ginsenoside Ro: Construction of a Metabolically Engineered Saccharomyces cerevisiae Strain Using a Newly Identified UGAT Gene from Panax ginseng as the Key Enzyme Gene and Optimization of Fermentation Conditions. Int J Mol Sci 2024; 25:11331. [PMID: 39457113 PMCID: PMC11509030 DOI: 10.3390/ijms252011331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Ginsenoside Ro, as one of the few oleanane-type ginsenosides, is well known for its unique molecular structure and biological activities. Currently, research on the biosynthesis of ginsenoside Ro is still in its early stages. Therefore, the establishment of a new ginsenoside Ro cell factory is of great significance for the in-depth development and utilization of genes related to ginsenoside Ro synthesis, as well as for the exploration of pathways to obtain ginsenoside Ro. In this study, we cloned endogenous constitutive promoters, terminators, and other genetic elements from S. cerevisiae BY4741. These elements were then sequentially assembled with the uridine diphosphate glucuronic acid transferase gene identified in our previously study (PgUGAT252645) and several other reported key enzyme genes, to construct DNA fragments used for integration into the genome of S. cerevisiae BY4741. By sequentially transferring these DNA fragments into chemically competent cells of engineering strains and conducting screening and target product detection, we successfully constructed an engineered S. cerevisiae strain (BY-Ro) for ginsenoside Ro biosynthesis using S. cerevisiae BY4741 as the host cell. Strain BY-Ro produced 253.32 μg/L of ginsenoside Ro under optimal fermentation conditions. According to subsequent measurements and calculations, this equates to 0.033 mg/g DCW, corresponding to approximately 31% of the ginsenoside Ro content found in plant samples. This study not only included a deeper investigation into the function of PgUGAT252645 but also provides a novel engineering platform for ginsenoside Ro biosynthesis.
Collapse
Affiliation(s)
- Xiaochen Yu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (J.Y.); (D.W.); (S.L.); (K.W.); (M.Z.); (P.C.)
| | - Jinghui Yu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (J.Y.); (D.W.); (S.L.); (K.W.); (M.Z.); (P.C.)
| | - Dinghui Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (J.Y.); (D.W.); (S.L.); (K.W.); (M.Z.); (P.C.)
| | - Sizhang Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (J.Y.); (D.W.); (S.L.); (K.W.); (M.Z.); (P.C.)
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (J.Y.); (D.W.); (S.L.); (K.W.); (M.Z.); (P.C.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (J.Y.); (D.W.); (S.L.); (K.W.); (M.Z.); (P.C.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Ping Chen
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (J.Y.); (D.W.); (S.L.); (K.W.); (M.Z.); (P.C.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Yanfang Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China;
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (J.Y.); (D.W.); (S.L.); (K.W.); (M.Z.); (P.C.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (J.Y.); (D.W.); (S.L.); (K.W.); (M.Z.); (P.C.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
10
|
Yuan A, Liu J, Guo J, Chen F, Xu J, Chen H, Wang C, Le Y, Lu D. Calenduloside E Ameliorates Inflammatory Responses in Adipose Tissue via Sirtuin 2-NLRP3 Inflammasome Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20959-20973. [PMID: 39282743 DOI: 10.1021/acs.jafc.4c03917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Obesity-related metabolic diseases are associated with a chronic inflammatory state. Calenduloside E (CE) is a triterpene saponin from sugar beet. In mouse models, CE reduced pro-inflammatory cytokines in white adipose tissue (WAT) and decreased macrophage infiltration of WAT. And CE inhibited pyroptosis in J774A.1 cells and WAT by inhibiting the activation of the nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome. Moreover, CE could trigger the activation of Sirtuin 2 (SIRT2), leading to a decrease in the acetylation of NLRP3, particularly at the K24 site. In addition, it has been shown that CE can reduce inflammation in adipocytes that have been induced by macrophage-conditioned medium. However, the selective SIRT2 inhibitor AGK2 hindered the beneficial effects of CE. In summary, CE has the capacity to impede NLRP3-mediated pyroptosis by triggering SIRT2 activity, thus positioning CE as a promising therapeutic avenue for combating obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Aini Yuan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jing Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jianan Guo
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Fangming Chen
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jingyi Xu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hang Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Department of Medical Research Center, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing 312000, China
| | - Cui Wang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yifei Le
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Dezhao Lu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
11
|
Yuan X, Li R, He W, Xu W, Xu W, Yan G, Xu S, Chen L, Feng Y, Li H. Progress in Identification of UDP-Glycosyltransferases for Ginsenoside Biosynthesis. JOURNAL OF NATURAL PRODUCTS 2024; 87:1246-1267. [PMID: 38449105 DOI: 10.1021/acs.jnatprod.3c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Ginsenosides, the primary pharmacologically active constituents of the Panax genus, have demonstrated a variety of medicinal properties, including anticardiovascular disease, cytotoxic, antiaging, and antidiabetes effects. However, the low concentration of ginsenosides in plants and the challenges associated with their extraction impede the advancement and application of ginsenosides. Heterologous biosynthesis represents a promising strategy for the targeted production of these natural active compounds. As representative triterpenoids, the biosynthetic pathway of the aglycone skeletons of ginsenosides has been successfully decoded. While the sugar moiety is vital for the structural diversity and pharmacological activity of ginsenosides, the mining of uridine diphosphate-dependent glycosyltransferases (UGTs) involved in ginsenoside biosynthesis has attracted a lot of attention and made great progress in recent years. In this paper, we summarize the identification and functional study of UGTs responsible for ginsenoside synthesis in both plants, such as Panax ginseng and Gynostemma pentaphyllum, and microorganisms including Bacillus subtilis and Saccharomyces cerevisiae. The UGT-related microbial cell factories for large-scale ginsenoside production are also mentioned. Additionally, we delve into strategies for UGT mining, particularly potential rapid screening or identification methods, providing insights and prospects. This review provides insights into the study of other unknown glycosyltransferases as candidate genetic elements for the heterologous biosynthesis of rare ginsenosides.
Collapse
Affiliation(s)
- Xiaoxuan Yuan
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Ruiqiong Li
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Weishen He
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Wei Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Wen Xu
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Guohong Yan
- Pharmacy Department, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, China
| | - Shaohua Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Lixia Chen
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yaqian Feng
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Hua Li
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| |
Collapse
|
12
|
Yu X, Yu J, Liu S, Liu M, Wang K, Zhao M, Wang Y, Chen P, Lei J, Wang Y, Zhang M. Transcriptome-Wide Identification and Integrated Analysis of a UGT Gene Involved in Ginsenoside Ro Biosynthesis in Panax ginseng. PLANTS (BASEL, SWITZERLAND) 2024; 13:604. [PMID: 38475452 DOI: 10.3390/plants13050604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Panax ginseng as a traditional medicinal plant with a long history of medicinal use. Ginsenoside Ro is the only oleanane-type ginsenoside in ginseng, and has various pharmacological activities, including anti-inflammatory, detoxification, and antithrombotic activities. UDP-dependent glycosyltransferase (UGT) plays a key role in the synthesis of ginsenoside, and the excavation of UGT genes involved in the biosynthesis of ginsenoside Ro has great significance in enriching ginsenoside genetic resources and further revealing the synthesis mechanism of ginsenoside. In this work, ginsenoside-Ro-synthesis-related genes were mined using the P. ginseng reference-free transcriptome database. Fourteen hub transcripts were identified by differential expression analysis and weighted gene co-expression network analysis. Phylogenetic and synteny block analyses of PgUGAT252645, a UGT transcript among the hub transcripts, showed that PgUGAT252645 belonged to the UGT73 subfamily and was relatively conserved in ginseng plants. Functional analysis showed that PgUGAT252645 encodes a glucuronosyltransferase that catalyzes the glucuronide modification of the C3 position of oleanolic acid using uridine diphosphate glucuronide as the substrate. Furthermore, the mutation at 622 bp of its open reading frame resulted in amino acid substitutions that may significantly affect the catalytic activity of the enzyme, and, as a consequence, affect the biosynthesis of ginsenoside Ro. Results of the in vitro enzyme activity assay of the heterologous expression product in E. coli of PgUGAT252645 verified the above analyses. The function of PgUGAT252645 was further verified by the result that its overexpression in ginseng adventitious roots significantly increased the content of ginsenoside Ro. The present work identified a new UGT gene involved in the biosynthesis of ginsenoside Ro, which not only enriches the functional genes in the ginsenoside synthesis pathway, but also provides the technical basis and theoretical basis for the in-depth excavation of ginsenoside-synthesis-related genes.
Collapse
Affiliation(s)
- Xiaochen Yu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Jinghui Yu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Sizhang Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Mingming Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Yanfang Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ping Chen
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Jun Lei
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| |
Collapse
|
13
|
Dinday S, Ghosh S. Recent advances in triterpenoid pathway elucidation and engineering. Biotechnol Adv 2023; 68:108214. [PMID: 37478981 DOI: 10.1016/j.biotechadv.2023.108214] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Triterpenoids are among the most assorted class of specialized metabolites found in all the taxa of living organisms. Triterpenoids are the leading active ingredients sourced from plant species and are utilized in pharmaceutical and cosmetic industries. The triterpenoid precursor 2,3-oxidosqualene, which is biosynthesized via the mevalonate (MVA) pathway is structurally diversified by the oxidosqualene cyclases (OSCs) and other scaffold-decorating enzymes such as cytochrome P450 monooxygenases (P450s), UDP-glycosyltransferases (UGTs) and acyltransferases (ATs). A majority of the bioactive triterpenoids are harvested from the native hosts using the traditional methods of extraction and occasionally semi-synthesized. These methods of supply are time-consuming and do not often align with sustainability goals. Recent advancements in metabolic engineering and synthetic biology have shown prospects for the green routes of triterpenoid pathway reconstruction in heterologous hosts such as Escherichia coli, Saccharomyces cerevisiae and Nicotiana benthamiana, which appear to be quite promising and might lead to the development of alternative source of triterpenoids. The present review describes the biotechnological strategies used to elucidate complex biosynthetic pathways and to understand their regulation and also discusses how the advances in triterpenoid pathway engineering might aid in the scale-up of triterpenoid production in engineered hosts.
Collapse
Affiliation(s)
- Sandeep Dinday
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141004, Punjab, India
| | - Sumit Ghosh
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
14
|
Li Y, Wang J, Li L, Song W, Li M, Hua X, Wang Y, Yuan J, Xue Z. Natural products of pentacyclic triterpenoids: from discovery to heterologous biosynthesis. Nat Prod Rep 2023; 40:1303-1353. [PMID: 36454108 DOI: 10.1039/d2np00063f] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Covering: up to 2022Pentacyclic triterpenoids are important natural bioactive substances that are widely present in plants and fungi. They have significant medicinal efficacy, play an important role in reducing blood glucose and protecting the liver, and have anti-inflammatory, anti-oxidation, anti-fatigue, anti-viral, and anti-cancer activities. Pentacyclic triterpenoids are derived from the isoprenoid biosynthetic pathway, which generates common precursors of triterpenes and steroids, followed by cyclization with oxidosqualene cyclases (OSCs) and decoration via cytochrome P450 monooxygenases (CYP450s) and glycosyltransferases (GTs). Many biosynthetic pathways of triterpenoid saponins have been elucidated by studying their metabolic regulation network through the use of multiomics and identifying their functional genes. Unfortunately, natural resources of pentacyclic triterpenoids are limited due to their low content in plant tissues and the long growth cycle of plants. Based on the understanding of their biosynthetic pathway and transcriptional regulation, plant bioreactors and microbial cell factories are emerging as alternative means for the synthesis of desired triterpenoid saponins. The rapid development of synthetic biology, metabolic engineering, and fermentation technology has broadened channels for the accumulation of pentacyclic triterpenoid saponins. In this review, we summarize the classification, distribution, structural characteristics, and bioactivity of pentacyclic triterpenoids. We further discuss the biosynthetic pathways of pentacyclic triterpenoids and involved transcriptional regulation. Moreover, the recent progress and characteristics of heterologous biosynthesis in plants and microbial cell factories are discussed comparatively. Finally, we propose potential strategies to improve the accumulation of triterpenoid saponins, thereby providing a guide for their future biomanufacturing.
Collapse
Affiliation(s)
- Yanlin Li
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Jing Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, PR China
| | - Linyong Li
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Wenhui Song
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Min Li
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Xin Hua
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Yu Wang
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, PR China.
| | - Zheyong Xue
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| |
Collapse
|
15
|
Liu Y, Jiang L, Song W, Wang C, Yu S, Qiao J, Wang X, Jin C, Zhao D, Bai X, Zhang P, Wang S, Liu M. Ginsenosides on stem cells fate specification-a novel perspective. Front Cell Dev Biol 2023; 11:1190266. [PMID: 37476154 PMCID: PMC10354371 DOI: 10.3389/fcell.2023.1190266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023] Open
Abstract
Recent studies have demonstrated that stem cells have attracted much attention due to their special abilities of proliferation, differentiation and self-renewal, and are of great significance in regenerative medicine and anti-aging research. Hence, finding natural medicines that intervene the fate specification of stem cells has become a priority. Ginsenosides, the key components of natural botanical ginseng, have been extensively studied for versatile effects, such as regulating stem cells function and resisting aging. This review aims to summarize recent progression regarding the impact of ginsenosides on the behavior of adult stem cells, particularly from the perspective of proliferation, differentiation and self-renewal.
Collapse
Affiliation(s)
- Ying Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Leilei Jiang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Wenbo Song
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chenxi Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shiting Yu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Juhui Qiao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xinran Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chenrong Jin
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xueyuan Bai
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Peiguang Zhang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun, Changchun, Jilin, China
| | - Siming Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Meichen Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
16
|
Li M, Ma M, Wu Z, Liang X, Zheng Q, Li D, An T, Wang G. Advances in the biosynthesis and metabolic engineering of rare ginsenosides. Appl Microbiol Biotechnol 2023; 107:3391-3404. [PMID: 37126085 DOI: 10.1007/s00253-023-12549-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Abstract
Rare ginsenosides are the deglycosylated secondary metabolic derivatives of major ginsenosides, and they are more readily absorbed into the bloodstream and function as active substances. The traditional preparation methods hindered the potential application of these effective components. The continuous elucidation of ginsenoside biosynthesis pathways has rendered the production of rare ginsenosides using synthetic biology techniques effective for their large-scale production. Previously, only the progress in the biosynthesis and biotechnological production of major ginsenosides was highlighted. In this review, we summarized the recent advances in the identification of key enzymes involved in the biosynthetic pathways of rare ginsenosides, especially the glycosyltransferases (GTs). Then the construction of microbial chassis for the production of rare ginsenosides, mainly in Saccharomyces cerevisiae, was presented. In the future, discovery of more GTs and improving their catalytic efficiencies are essential for the metabolic engineering of rare ginsenosides. This review will give more clues and be helpful for the characterization of the biosynthesis and metabolic engineering of rare ginsenosides. KEY POINTS: • The key enzymes involved in the biosynthetic pathways of rare ginsenosides are summarized. • The recent progress in metabolic engineering of rare ginsenosides is presented. • The discovery of glycosyltransferases is essential for the microbial production of rare ginsenosides in the future.
Collapse
Affiliation(s)
- Mingkai Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Mengyu Ma
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Zhenke Wu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Xiqin Liang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
17
|
Zhang Y, Wang W, Wei W, Xia L, Gao S, Zeng W, Liu S, Zhou J. Regulation of Ethanol Assimilation for Efficient Accumulation of Squalene in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6389-6397. [PMID: 37052370 DOI: 10.1021/acs.jafc.3c00515] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Squalene is a triterpene that can be obtained from fish and plant oils. It is important in cosmetics and vaccines and is a precursor for many high-value terpenes and steroids. In order to increase squalene accumulation, the mevalonate pathway was systematically enhanced. Accumulation of squalene tended to increase when ethanol was added as a carbon source during fermentation, but a high concentration of ethanol affected both the strain growth and accumulation of products. By overexpressing the key trehalose synthesis gene TPS1 and the heat shock protein gene HSP104, the content of trehalose by Saccharomyces cerevisiae (S. cerevisiae) was enhanced, and stress caused by ethanol was relieved. The OD600 value of the modified S. cerevisiae strain was increased by 80.2%, its ethanol tolerance was increased to 30 g/L, and it retained excellent activity with 50 g/L ethanol. After optimizing the fermentation conditions, the squalene titer in a 5 L bioreactor reached 27.3 g/L and the squalene content was 650 mg/g dry cell weight, the highest squalene production parameters reported to date for a microorganism.
Collapse
Affiliation(s)
- Yunliang Zhang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi 214122, Jiangsu, China
| | - Weigao Wang
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
| | - Wenqian Wei
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi 214122, Jiangsu, China
| | - Lu Xia
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi 214122, Jiangsu, China
| | - Song Gao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi 214122, Jiangsu, China
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi 214122, Jiangsu, China
| | - Song Liu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi 214122, Jiangsu, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| |
Collapse
|
18
|
Jiao H, Hua Z, Zhou J, Hu J, Zhao Y, Wang Y, Yuan Y, Huang L. Genome-wide analysis of Panax MADS-box genes reveals role of PgMADS41 and PgMADS44 in modulation of root development and ginsenoside synthesis. Int J Biol Macromol 2023; 233:123648. [PMID: 36780966 DOI: 10.1016/j.ijbiomac.2023.123648] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/10/2023] [Accepted: 02/04/2023] [Indexed: 02/13/2023]
Abstract
Panax root is an important material used in food and medicine. Its cultivation and production usually depend on root shape and ginsenoside content. There is limited understanding about the synergistic regulatory mechanisms underlying root development and ginsenoside accumulation in Panax. MADS-box transcription factors possibly play a significant role in regulation of root growth and secondary metabolites. In this study, we identified MADS-box transcription factors of Panax, and found high expression levels of SVP, ANR1 and SOC1-like clade genes in its roots. We confirmed that two SOC1-like genes, PgMADS41 and PgMADS44, bind to expansion gene promoters (PgEXLB5 and PgEXPA13), which contribute to root growth, and to SE-4, CYP716A52v2-4, and β-AS-13 promoters, which participate in ginsenoside Ro biosynthesis. These two genes were found to increase lateral root number and main root length in transgenic Arabidopsis thaliana by improving AtEXLA1, AtEXLA3, AtEXPA5, and AtEXPA6 gene expression. As a non-phytohormone regulatory tool, Ro can stimulate adventitious root growth by influencing their expression and ginsenoside accumulation. Our study provides new insights into the coordinated regulatory function of SOC1-like clade genes in Panax root development and triterpenoid accumulation, paving the way towards understanding root formation and genetic improvement in Panax.
Collapse
Affiliation(s)
- Honghong Jiao
- State Key Laboratory of Grassland Agro-ecosystems, Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Centre of Western China Grassland Industry, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zhongyi Hua
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junhui Zhou
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jin Hu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuyang Zhao
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yingping Wang
- Jilin Agricultural University, Changchun 130118, China
| | - Yuan Yuan
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Luqi Huang
- State Key Laboratory of Grassland Agro-ecosystems, Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Centre of Western China Grassland Industry, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
19
|
Yin X, Liu J, Kou C, Lu J, Zhang H, Song W, Li Y, Xue Z, Hua X. Deciphering the network of cholesterol biosynthesis in Paris polyphylla laid a base for efficient diosgenin production in plant chassis. Metab Eng 2023; 76:232-246. [PMID: 36849090 DOI: 10.1016/j.ymben.2023.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/20/2023] [Accepted: 02/19/2023] [Indexed: 02/27/2023]
Abstract
Cholesterol serves as a key precursor for many high-value chemicals such as plant-derived steroidal saponins and steroidal alkaloids, but a plant chassis for effective biosynthesis of high levels of cholesterol has not been established. Plant chassis have significant advantages over microbial chassis in terms of membrane protein expression, precursor supply, product tolerance, and regionalization synthesis. Here, using Agrobacterium tumefaciens-mediated transient expression technology, Nicotiana benthamiana, and a step-by-step screening approach, we identified nine enzymes (SSR1-3, SMO1-3, CPI-5, CYP51G, SMO2-2, C14-R-2, 8,7SI-4, C5-SD1, and 7-DR1-1) from the medicinal plant Paris polyphylla and established detailed biosynthetic routes from cycloartenol to cholesterol. Specfically, we optimized HMGR, a key gene of the mevalonate pathway, and co-expressed it with the PpOSC1 gene to achieve a high level of cycloartenol (28.79 mg/g dry weight, which is a sufficient amount of precursor for cholesterol biosynthesis) synthesis in the leaves of N. benthamiana. Subsequently, using a one-by-one elimination method we found that six of these enzymes (SSR1-3, SMO1-3, CPI-5, CYP51G, SMO2-2, and C5-SD1) were crucial for cholesterol production in N. benthamiana, and we establihed a high-efficiency cholesterol synthesis system with a yield of 5.63 mg/g dry weight. Using this strategy, we also discovered the biosynthetic metabolic network responsible for the synthesis of a common aglycon of steroidal saponin, diosgenin, using cholesterol as a substrate, obtaining a yield of 2.12 mg/g dry weight in N. benthamiana. Our study provides an effective strategy to characterize the metabolic pathways of medicinal plants that lack a system for in vivo functional verification, and also lays a foundation for the synthesis of active steroid saponins in plant chassis.
Collapse
Affiliation(s)
- Xue Yin
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Jia Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Chengxi Kou
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Jiaojiao Lu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - He Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Wei Song
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China.
| | - Yuhua Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China.
| | - Zheyong Xue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China.
| | - Xin Hua
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China.
| |
Collapse
|
20
|
Qiu S, Blank LM. Recent Advances in Yeast Recombinant Biosynthesis of the Triterpenoid Protopanaxadiol and Glycosylated Derivatives Thereof. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2197-2210. [PMID: 36696911 DOI: 10.1021/acs.jafc.2c06888] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plant natural products are a seemingly endless resource for novel chemical structures. However, their extraction often results in high prices, fluctuation in both quantity and quality, and negative environmental impact. The latter might result from the extraction procedure but more often from the high amount of plant biomass required. With the advent of synthetic biology, producing natural plant products in large quantities using yeasts as hosts has become possible. Here, we focus on the recent advances in metabolic engineering of the yeasts species Saccharomyces cerevisiae and Yarrowia lipolytica for the synthesis of ginsenoside triterpenoids, namely, dammarenediol-II, protopanaxadiol, protopanaxatriol, compound K, ginsenoside Rh1, ginsenoside Rh2, ginsenoside Rg3, and ginsenoside F1. A discussion is provided on advanced synthetic biology, bioprocess strategies, and current challenges for the biosynthesis of ginsenoside triterpenoids. Finally, future directions in metabolic and process engineering are summarized and may help reify sustainable ginsenoside production.
Collapse
Affiliation(s)
- Shangkun Qiu
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52074 Aachen, Germany
| | - Lars M Blank
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
21
|
Wang Y, Zhang H, Ri HC, An Z, Wang X, Zhou JN, Zheng D, Wu H, Wang P, Yang J, Liu DK, Zhang D, Tsai WC, Xue Z, Xu Z, Zhang P, Liu ZJ, Shen H, Li Y. Deletion and tandem duplications of biosynthetic genes drive the diversity of triterpenoids in Aralia elata. Nat Commun 2022; 13:2224. [PMID: 35468919 PMCID: PMC9038795 DOI: 10.1038/s41467-022-29908-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Araliaceae species produce various classes of triterpene and triterpenoid saponins, such as the oleanane-type triterpenoids in Aralia species and dammarane-type saponins in Panax, valued for their medicinal properties. The lack of genome sequences of Panax relatives has hindered mechanistic insight into the divergence of triterpene saponins in Araliaceae. Here, we report a chromosome-level genome of Aralia elata with a total length of 1.05 Gb. The loss of 12 exons in the dammarenediol synthase (DDS)-encoding gene in A. elata after divergence from Panax might have caused the lack of dammarane-type saponin production, and a complementation assay shows that overexpression of the PgDDS gene from Panax ginseng in callus of A. elata recovers the accumulation of dammarane-type saponins. Tandem duplication events of triterpene biosynthetic genes are common in the A. elata genome, especially for AeCYP72As, AeCSLMs, and AeUGT73s, which function as tailoring enzymes of oleanane-type saponins and aralosides. More than 13 aralosides are de novo synthesized in Saccharomyces cerevisiae by overexpression of these genes in combination. This study sheds light on the diversity of saponins biosynthetic pathway in Araliaceae and will facilitate heterologous bioproduction of aralosides.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - He Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
| | - Hyok Chol Ri
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- Biochemistry Institute, University of Science, Pyongyang, 999093, Democratic People's Republic of Korea
| | - Zeyu An
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Xin Wang
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jia-Nan Zhou
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Dongran Zheng
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Hao Wu
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Pengchao Wang
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jianfei Yang
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Ding-Kun Liu
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Diyang Zhang
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wen-Chieh Tsai
- Orchid Research and Development Center, National Cheng Kung University, Tainan, 701, Taiwan, China
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan, China
| | - Zheyong Xue
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Zhichao Xu
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Peng Zhang
- School of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Zhong-Jian Liu
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Hailong Shen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
- School of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Yuhua Li
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China.
| |
Collapse
|