1
|
Li R, Zhu T, Xu Q, Wang R, Chen W, Zhang H. Flexible Synthesis of Highly Substituted Pyridines Bearing 2-Fluoroalkyl Groups. Org Lett 2025. [PMID: 40408262 DOI: 10.1021/acs.orglett.5c01608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
Herein, we report a flexible process for the synthesis of highly functionalized pyridines containing 2-fluoroalkyl groups. Starting from easily accessible tert-butanesulfinamide derivatives, this new synthesis provides pyridine derivatives in good yields. The tandem process leading to pyridines includes a Pummerer-type rearrangement, an amide formation, a Mannich-type cyclization, and an elimination induced aromatization. In this Letter, we also demonstrate the modification of natural products using this protocol.
Collapse
Affiliation(s)
- Rui Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., School of Pharmacy, School of Life Science, Yunnan University, Kunming, Yunnan 650500, P. R. China
| | - Tuo Zhu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., School of Pharmacy, Yunnan University, Kunming, Yunnan 650500, P. R. China
| | - Qinyuan Xu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., School of Pharmacy, Yunnan University, Kunming, Yunnan 650500, P. R. China
| | - Renhong Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., School of Pharmacy, Yunnan University, Kunming, Yunnan 650500, P. R. China
| | - Wen Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., School of Pharmacy, School of Life Science, Yunnan University, Kunming, Yunnan 650500, P. R. China
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., School of Pharmacy, School of Life Science, Yunnan University, Kunming, Yunnan 650500, P. R. China
| |
Collapse
|
2
|
Yi QQ, Sun P, Zhang X, Wang H, Wu J. Thiourea Derivatives in Agrochemical Discovery and Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8756-8774. [PMID: 40190191 DOI: 10.1021/acs.jafc.5c00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Thiourea, represented by the chemical formula (R1R2N)(R3R4N)C═S, is a significant organic sulfur compound characterized by the presence of a sulfur atom and two amino groups. Meanwhile, thiourea and isothiourea are reciprocal isomers. This structure facilitates the formation of a biologically active moiety, which is interconnected through double bonds between the sulfur atom and the nitrogen atoms. As a potent component in pesticide formulations, thiourea demonstrates efficacy in safeguarding crops against a variety of diseases by inhibiting the growth and reproduction of pathogens. This review aims to provide a comprehensive summary of thiourea derivatives exhibiting fungicidal, insecticidal, antiviral, herbicidal, and plant growth regulatory properties, with the objective of offering new perspectives for identifying innovative thiourea-based pesticides and elucidating their mechanisms of action.
Collapse
Affiliation(s)
- Qi-Qi Yi
- State Key Laboratory of Green Pesticide, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Ping Sun
- State Key Laboratory of Green Pesticide, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xinyi Zhang
- State Key Laboratory of Green Pesticide, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Hao Wang
- State Key Laboratory of Green Pesticide, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jian Wu
- State Key Laboratory of Green Pesticide, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
3
|
Song X, Wang H, Zou W, Hong H, Gao Y, Zhao C, Xu H, Yao G. New Isoxazoline Cyclopropyl-Picolinamide Derivatives as Potential Insecticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6589-6598. [PMID: 40053680 DOI: 10.1021/acs.jafc.5c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
Isoxazoline insecticides exhibit broad-spectrum insecticidal activity against insect pests. However, the high toxicity to honeybees limits their application in pest management. To explore reducing the toxicity of isoxazoline derivatives to bees, a series of new isoxazoline cyclopropyl-picolinamide derivatives were designed and synthesized. Bioassays revealed that FSA37 showed excellent insecticidal activity against Plutella xylostella, Spodoptera litura, and Spodoptera exigua, with LC50 values of 0.077, 0.104, and 0.198 mg/L, respectively. These results surpass those of fluxametamide, which displayed LC50 values of 0.605, 0.853, and 1.254 mg/L. Furthermore, FSA37 exhibited notable insecticidal activity against Solenopsis invicta. Importantly, bee toxicity studies indicated that FSA37 possesses significantly lower acute oral toxicity compared to fluralaner and fluxametamide. Quantum chemical calculations and molecular docking studies suggest that the cyclopropyl-picolinamide fragment may be crucial for both biological activity and the safety of nontarget organisms. In conclusion, FSA37 represents a promising candidate for a highly effective and environmentally friendly insecticide.
Collapse
Affiliation(s)
- Xiangmin Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Haojing Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Wei Zou
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, P. R. China
| | - He Hong
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Yongchao Gao
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Chen Zhao
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Hanhong Xu
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Guangkai Yao
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, P. R. China
| |
Collapse
|
4
|
Zeng X, Zhou C, Xu Q, Shao X, Xu X, Cheng J, Yang WL, Li Z. Novel Synthetic Method and Insecticidal Evaluation of CF 3-Containing Polycyclic Neonicotinoid Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5033-5041. [PMID: 39985467 DOI: 10.1021/acs.jafc.4c09937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
The modification of active ingredients with a trifluoromethyl group represents a significant approach for the discovery of highly active pesticides. Herein, we developed a novel [3 + 3] annulation reaction of neonicotinoid precursors and trifluoromethyl-α,β-ynones and synthesized a series of CF3-containing polycyclic neonicotinoid derivatives in high efficiency. The insecticidal activity results indicated that most of the target compounds showed good insecticidal activities against Aphis craccivora and Nilaparvata lugens at a concentration of 100 mg/L. In particular, compounds 3o and 4k had LC50 values of 1.53 and 1.47 mg/L against A. craccivora, respectively, which were comparable to that of imidacloprid (LC50 = 1.30 mg/L). The honeybee toxicity predictive model also indicated the potential low honeybee toxicity of target compounds 3o and 4k. The molecular docking study revealed that the target compounds 3o and 4k exhibited a favorable binding mode with the Lymnaea stagnalis acetylcholine-binding protein and the R55T-mutated resistant model.
Collapse
Affiliation(s)
- Xiaoqin Zeng
- Shanghai Key Laboratory of Chemical Biology and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Cong Zhou
- Shanghai Key Laboratory of Chemical Biology and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Qian Xu
- Shanghai Key Laboratory of Chemical Biology and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Wu-Lin Yang
- Shanghai Key Laboratory of Chemical Biology and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
5
|
Anand V, Rastogi N. Perhaloacylation of α-Carbonyl Sulfoxonium Ylides. J Org Chem 2025. [PMID: 39893681 DOI: 10.1021/acs.joc.4c03067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
A mild and efficient protocol for the perhaloacylation of α-carbonyl sulfoxonium ylides has been developed. The commercially available perfluoro- and perchloroacid anhydrides were used as acylating agents in catalyst- and additive-free reactions to access α-carbonyl-α'-perhaloacyl sulfoxonium ylides in high yields. The reaction offers a simple method to prepare valuable polyfluorinated organosulfur molecules.
Collapse
Affiliation(s)
- Varun Anand
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Namrata Rastogi
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Hou ST, Han L, Li WR, Dai GY, Liu Y, Lu AM, Yang CL, Chen M. Design, synthesis and herbicidal activity of novel cyclohexanedione derivations containing pyrazole and pyridine groups as potential HPPD inhibitors. Mol Divers 2025; 29:103-116. [PMID: 38609691 DOI: 10.1007/s11030-024-10836-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/04/2024] [Indexed: 04/14/2024]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27; HPPD) is one of the important target enzymes in the development of herbicides. To discover novel HPPD inhibitors with unique molecular, 39 cyclohexanedione derivations containing pyrazole and pyridine groups were designed and synthesized. The preliminary herbicidal activity test results showed that some compounds had obvious inhibitory effects on monocotyledon and dicotyledonous weeds. The herbicidal spectrums of the highly active compounds were further determined, and the compound G31 exhibited the best inhibitory rate over 90% against Plantago depressa Willd and Capsella bursa-pastoris at the dosages of 75.0 and 37.5 g ai/ha, which is comparable to the control herbicide mesotrione. Moreover, compound G31 showed excellent crop safety, with less than or equal to 10% injury rates to corn, sorghum, soybean and cotton at a dosage of 225 g ai/ha. Molecular docking and molecular dynamics simulation analysis revealed that the compound G31 could stably bind to Arabidopsis thaliana HPPD (AtHPPD). This study indicated that the compound G31 could be used as a lead molecular structure for the development of novel HPPD inhibitors, which provided an idea for the design of new herbicides with unique molecular scaffold.
Collapse
Affiliation(s)
- Shuai-Tao Hou
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Han
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wen-Rui Li
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guang-Yu Dai
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Liu
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai-Min Lu
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chun-Long Yang
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Min Chen
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
7
|
Wang J, Liao A, Guo RJ, Ma X, Wu J. Thiazole and Isothiazole Chemistry in Crop Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:30-46. [PMID: 39727107 DOI: 10.1021/acs.jafc.4c08185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Thiazole and isothiazole are types of five-membered heterocycles that contain both sulfur and nitrogen atoms. They have gained attention in the field of green pesticide research due to their low toxicity, strong biological activity, and ability to undergo diverse structural modifications. By incorporating thiazole and isothiazole groups into various compounds, researchers have been able to create a wide range of pesticides with broad-spectrum effectiveness. Understanding the relationship between the structure of these compounds and their activities is crucial for the development of new and highly potent pesticides. This review highlights thiazole and isothiazole derivatives with various biological activities and aims to inspire the development of innovative pesticide based on these structures.
Collapse
Affiliation(s)
- Jiaxin Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Anjing Liao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Ren Jiang Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xining Ma
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jian Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
8
|
Ma X, Sun P, Wang J, Huang X, Wu J. Pyridazine and pyridazinone compounds in crops protection: a review. Mol Divers 2024:10.1007/s11030-024-11083-5. [PMID: 39724455 DOI: 10.1007/s11030-024-11083-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Pyridazine and pyridazinone belong to the same group of six-membered heterocyclic compounds, and both structurally feature two adjacent nitrogen atoms. Pyridazine and pyridazinone derivatives are frequently used as core structures in the development of new green agrochemicals due to their high activity and environmental friendliness, attracting significant attention from researchers in recent years. Over the past 20 years, significant developments have occurred in the field of pyridazine and pyridazinone derivatives, which exhibit insecticidal, fungicidal, herbicidal, antiviral, and plant growth regulating activities. Hence, summarizing the process of creating novel molecules with pyridazine and pyridazinone structures through design concepts, understanding structure-activity relationships, and mechanisms of action is an important undertaking. This review aims to provide a comprehensive overview of these advancements, shedding light on the discovery and mechanism of action of novel pesticides in the pyridazine and pyridazinone categories.
Collapse
Affiliation(s)
- Xining Ma
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Ping Sun
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Jiaxin Wang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Xinyu Huang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Jian Wu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
9
|
Wang Y, Zhang R, Guo X, Xu Y, Sun W, Guo S, Wu J. Acyl hydrazone derivatives with trifluoromethylpyridine as potential agrochemical for controlling plant diseases. PEST MANAGEMENT SCIENCE 2024; 80:6322-6333. [PMID: 39114893 DOI: 10.1002/ps.8361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 11/09/2024]
Abstract
BACKGROUND Crops are consistently under siege by a multitude of pathogens. These pathogenic microorganisms, including viruses and bacteria, result in substantial reductions in quality and yield globally by inducing detrimental crop diseases, thus posing a significant challenge to global food security. However, the biological activity sepectrum of commercially available pesticides is limited and the pesticide efficacy is poor, necessitating the urgent development of broad-spectrum and efficient strategies for crop disease prevention and control. RESULTS The bioassay results revealed that certain target compounds demonstrated outstanding in vivo antiviral efficacy against cucumber mosaic virus and tobacco mosaic virus. In particular, compound D6 showed remarkable antiviral activity against CMV, significantly higher than that of the control agent ningnanmycin. Mechanism of action studies have shown that compound D6 could enhance the activity of defense enzymes and upregulate the expression of genes related to disease resistance, thereby enhancing the antiviral effects in plants. In addition, these compounds displayed superior inhibitory activity against plant bacterial diseases. For Xoo, compound D10 showed an excellent inhibitory effect that was better than that of the control agent bismerthiazol. Scanning electron microscopy and fluorescence double-staining experiments revealed that compound D10 effectively inhibited bacterial growth by disrupting the cell membrane. CONCLUSION A series of trifluoromethyl hydrazone derivatives were designed and synthesized, and it was found that they have control effects on plant viruses and bacterial diseases. In addition, this study revealed the mechanism of action of the active compounds and demonstrated their potential as multifunctional crop protectants. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ya Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Renfeng Zhang
- Xingyi Normal University for Nationalities, Xingyi, China
| | - Xiaoqiu Guo
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Ying Xu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Wei Sun
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Shengxin Guo
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Jian Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
10
|
Yang X, Jiang S, Zhang M, Li T, Jin Z, Wu X, Chi YR. Discovery of novel piperidine-containing thymol derivatives as potent antifungal agents for crop protection. PEST MANAGEMENT SCIENCE 2024; 80:4906-4914. [PMID: 38817109 DOI: 10.1002/ps.8203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Plant fungal diseases pose a significant threat to crop production. The extensive use of chemical pesticides has led to growing environmental safety risks and pesticide resistance of various plant pathogens. Therefore, it is an urgent task to explore novel eco-friendly fungicidal agents with high efficacy to combat fungal infection. RESULTS In this study, we rationally designed a series of novel thymol derivatives by incorporation of the sulfonamide moiety and evaluated their biological activities against plant pathogenic fungi. The bioassay results underscored the remarkable in vitro antifungal activity of compounds 5m and 5t against Phytophthora capsici (P. capsici), with EC50 values of 8.420 and 8.414 μg/mL, respectively. Their efficacies were superior to that of widely used commercial fungicides azoxystrobin (AZO, 20.649 μg/mL) and cabendazim (CAB, 251.625 μg/mL). Furthermore, compound 5v exhibited excellent in vitro antifungal activity against Sclerotinia sclerotiorum (S. sclerotiorum), with an EC50 value of 12.829 μg/mL, significantly outperforming AZO (63.629 μg/mL). In vivo bioassays demonstrated the impactful activity of compound 5v against S. sclerotiorum, achieving over 98% curative and protective efficacies at the concentration of 200 μg/mL. Further mechanistic investigations unveiled that compound 5v induced mycelial shrinkage and collapse in S. sclerotiorum, resulting in organelle damage and the accumulation of antioxidant enzyme activity. CONCLUSION The significant antifungal efficacy of the prepared thymol derivatives shall encourage further exploration of compound 5v as a promising candidate to develop novel fungicides for crop protection. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoqun Yang
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Shichun Jiang
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Meng Zhang
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Tingting Li
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zhichao Jin
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xingxing Wu
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Yonggui Robin Chi
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
11
|
Ru Y, Fu W, Guo S, Li X, Zhou C, Xu Z, Cheng J, Li Z, Shao X. Discovery of Novel Nicotinamide Derivatives by a Two-Step Strategy of Azo-Incorporating and Bioisosteric Replacement. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20794-20804. [PMID: 39276343 DOI: 10.1021/acs.jafc.4c02999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Azobenzene moieties can serve as active fragments in antimicrobials and exert trans/cis conversions of molecules. Herein, a series of novel nicotinamide derivatives (NTMs) were developed by employing a two-step strategy, including azo-incorporating and bioisosteric replacement. Azo-incorporation can conveniently provide compounds that can be easily optically interconverted between trans/cis isomers, enhancing the structural diversity of azo compounds. It is noteworthy that the replacement of the azo bond with a 1,2,4-oxadiazole motif through further bioisosteric replacement led to the discovery of a novel compound, NTM18, which made a breakthrough in preventing rice sheath blight disease. A control effect value of 94.44% against Rhizoctonia solani could be observed on NTM18, while only 11.11% was determined for boscalid at 200 mg·L-1. Further mechanism validations were conducted, and the molecular docking analysis demonstrated that compound NTM18 might have a tight binding with SDH via an extra π-π interaction between the oxadiazole ring and residue of D_Y586. This work sets up a typical case for the united applications of azo-incorporating and bioisosteric replacement in fungicide design, posing an innovative approach in structural diversity-based development of pesticides.
Collapse
Affiliation(s)
- Yifan Ru
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wen Fu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- National Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, Guizhou China
| | - Sifan Guo
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyan Li
- College of Humanities and Economic Management, Yantai Institute of China Agricultural University, Yantai 264670, Shandong China
| | - Cong Zhou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
12
|
Shu L, Lv Y, Chen Z, Huang Y, Zhang M, Jin Z, Li T, Chi YR. Design, synthesis and Anti-PVY activity of planar chiral thiourea derivatives incorporated with [2.2]Paracyclophane. PEST MANAGEMENT SCIENCE 2024; 80:4450-4458. [PMID: 38662600 DOI: 10.1002/ps.8149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/26/2024] [Accepted: 04/25/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND Potato virus Y (PVY) is a prominent representative of plant viruses. It can inflict severe damage upon Solanaceae plants, leading to global dissemination and substantial economic losses. To discover new antiviral agents, a class of planar chiral thiourea molecules through the key step of N-heterocyclic carbene-catalyzed nitrile formation reaction was synthesized with excellent optical purities for antiviral evaluations against plant virus PVY. RESULTS The absolute configurations of the planar chiral compounds exhibited obvious distinctions in the anti-PVY activities. Notability, compound (S)-4u exhibited remarkable curative activities against PVY, with a half maximal effective concentration (EC50) of 349.3 μg mL-1, which was lower than that of the ningnanmycin (NNM) (EC50 = 400.8 μg mL-1). Additionally, The EC50 value for the protective effects of (S)-4u was 146.2 μg mL-1, which was superior to that of NNM (276.4 μg mL-1). Furthermore, the mechanism-of-action of enantiomers of planar chiral compound 4u was investigated through molecular docking, defensive enzyme activity tests and chlorophyll content tests. CONCLUSION Biological mechanism studies have demonstrated that the configuration of planar chiral target compounds plays a crucial role in the molecular interaction with PVY-CP, enhancing the activity of defense enzymes and affecting chlorophyll content. The current study has provided significant insights into the roles played by planar chiralities in plant protection against viruses. This paves the way for the development of novel green pesticides bearing planar chiralities with excellent optical purities. © 2024 Society of Chemical Industry.
Collapse
Grants
- RG7/20 Ministry of Education, Singapore, under its MOE AcRF Tier 1 Award, MOE AcRF Tier 2, and MOE AcRF Tier 3 Award
- RG70/21 Ministry of Education, Singapore, under its MOE AcRF Tier 1 Award, MOE AcRF Tier 2, and MOE AcRF Tier 3 Award
- MOE2019-T2-2-117 Ministry of Education, Singapore, under its MOE AcRF Tier 1 Award, MOE AcRF Tier 2, and MOE AcRF Tier 3 Award
- MOE2018-T3-1-003 Ministry of Education, Singapore, under its MOE AcRF Tier 1 Award, MOE AcRF Tier 2, and MOE AcRF Tier 3 Award
- NRF-NRFI2016-06 Singapore National Research Foundation under its NRF Investigatorship and Competitive Research Program
- NRF-CRP22-2019-0002 Singapore National Research Foundation under its NRF Investigatorship and Competitive Research Program
- QianjiaoheKY(2020)004 Frontiers Science Center for Asymmetric Synthesis and Medicinal Molecules, Department of Education, Guizhou Province
- 2022YFD1700300 National Key Research and Development Program of China
- 111Program, D20023 the Program of Introducing Talents of Discipline to Universities of China
- GuidaTegangHezi(2023)23 Natural Science Foundation of Guizhou University
- [2019]1020 the Science and Technology Department of Guizhou Province
- Qiankehejichu-ZK[2021]Key033 the Science and Technology Department of Guizhou Province
- 32172459 National Natural Science Foundation of China
- 21961006 National Natural Science Foundation of China
- 22371057 National Natural Science Foundation of China
- 22071036 National Natural Science Foundation of China
Collapse
Affiliation(s)
- Liangzhen Shu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Ya Lv
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Zhongyin Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yixian Huang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Meng Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Zhichao Jin
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Tingting Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yonggui Robin Chi
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
13
|
Li X, Zhang F, Zheng L, Guo J. Advancing ecotoxicity assessment: Leveraging pre-trained model for bee toxicity and compound degradability prediction. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134828. [PMID: 38876015 DOI: 10.1016/j.jhazmat.2024.134828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/09/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
The prediction of ecological toxicity plays an increasingly important role in modern society. However, the existing models often suffer from poor performance and limited predictive capabilities. In this study, we propose a novel approach for ecological toxicity assessment based on pre-trained models. By leveraging pre-training techniques and graph neural network models, we establish a highperformance predictive model. Furthermore, we incorporate a variational autoencoder to optimize the model, enabling simultaneous discrimination of toxicity to bees and molecular degradability. Additionally, despite the low similarity between the endogenous hormones in bees and the compounds in our dataset, our model confidently predicts that these hormones are non-toxic to bees, which further strengthens the credibility and accuracy of our model. We also discovered the negative correlation between the degradation and bee toxicity of compounds. In summary, this study presents an ecological toxicity assessment model with outstanding performance. The proposed model accurately predicts the toxicity of chemicals to bees and their degradability capabilities, offering valuable technical support to relevant fields.
Collapse
Affiliation(s)
- Xinkang Li
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, 999078, Macao
| | - Feng Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Liangzhen Zheng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China; Zelixir Biotech Company Ltd. Shanghai, China.
| | - Jingjing Guo
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, 999078, Macao.
| |
Collapse
|
14
|
Jeschke P. Recent developments in fluorine-containing pesticides. PEST MANAGEMENT SCIENCE 2024; 80:3065-3087. [PMID: 38073050 DOI: 10.1002/ps.7921] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024]
Abstract
To ensure ongoing sustainability, the modern agrochemical industry is faced with enormous challenges. These arise from provision of high-quality food to increasing water use and environmental impact as well as a growing world population. The loss of previous agrochemicals due to consumer perception, changing grower needs and ever-changing regulatory requirements is higher than the number of active ingredients that are being introduced into the crop protection market. Therefore, the development of novel agrochemicals is essential to provide improved efficacy and environmental profiles. In this context, the introduction of fluorine atoms and fluorine-containing motifs into a molecule is an important method to influence its physicochemical properties. These include, for example, small difluoro- and trifluoromethyl, or trifluoromethoxy groups at aryl or heterocyclic aryl moieties but also fragments like 2,2,2-trifluoroethoxycarbonyl, trifluoromethylsulfonyl, trifluoroacetyl, as well as the so far unusal rest like heptafluoro-iso-propyl. This review gives an overview of recent developments of fluorine-containing pesticides launched over the past 7 years and describes a selection of current fluorine-containing development candidates. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Peter Jeschke
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
15
|
Khatamidoost Z, Darehkordi A, Saremi H, Heydari R. A Novel Bis-Trifluoromethylated Compound Demonstrates High Efficacy as a Nematicide Against Root-Knot Nematodes on Pistachio, Supported by Docking Studies. PHYTOPATHOLOGY 2024; 114:1244-1252. [PMID: 38916562 DOI: 10.1094/phyto-08-23-0274-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Three novel trifluoromethylated compounds were designed and synthesized by reacting trifluoroacetimidoyl chloride derivatives with acetamidine hydrochloride or thiourea in the presence of potassium carbonate or sodium hydrogen carbonate as a base. In vitro and in vivo assays demonstrated the efficacy of the tested compounds in controlling root-knot nematode disease on pistachio rootstocks caused by Meloidogyne incognita. Bis-trifluoromethylated derivatives, namely N,N''-thiocarbonylbis(N'-(3,4-dimethylphenyl)-2,2,2-trifluoroacetimidamide) (compound A1), showed high efficacy as novel and promising nematicides, achieving up to 78.28% control at a concentration of 0.042 mg/liter. This effect is attributed to four methyl and two trifluoromethyl groups. In the pre-inoculation application of compound A1, all three concentrations (0.033, 0.037, and 0.042 mg/liter, and Velum) exhibited a higher level of control, with 83.79, 87.46, and 80.73% control, respectively. In the microplot trials, compound A1 effectively reduced population levels of M. incognita and enhanced plant growth at a concentration of 0.037 mg/liter. This suggests that compound A1 has the potential to inhibit hedgehog protein and could be utilized to prevent the progression of root-knot disease. Furthermore, the molecular docking results revealed that compounds A1 and A3 interact with specific amino acid residues (Gln60, Asp530, Glu70, Arg520, and Thr510) located in the active site of hedgehog protein. Based on the experimental findings of this study, compound A1 shows promise as a lead compound for future investigations.
Collapse
Affiliation(s)
- Zeynab Khatamidoost
- Department of Plant Protection, Faculty of Agricultural Science, University of Tehran, Karaj, 4111, Iran
| | - Ali Darehkordi
- Department of Chemistry, Faculty of Science, Vali-E-Asr University of Rafsanjan, Rafsanjan, 77176, Iran
| | - Hossein Saremi
- Department of Plant Protection, Faculty of Agricultural Science, University of Tehran, Karaj, 4111, Iran
| | - Ramin Heydari
- Department of Plant Protection, Faculty of Agricultural Science, University of Tehran, Karaj, 4111, Iran
| |
Collapse
|
16
|
Deng Y, Cai H, Jin J, Song C, Lv X, Jin Z, Chi YR. Synthesis of Planar Chiral Compounds Containing α-Amino Phosphonates for Antiplant Virus Applications against Potato Virus Y. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11917-11927. [PMID: 38743609 DOI: 10.1021/acs.jafc.3c08686] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
An unprecedented study of the application of planar chiral compounds in antiviral pesticide development is reported. A class of multifunctional planar chiral ferrocene derivatives bearing α-amino phosphonate moieties was synthesized. These compounds, exhibiting superior optical purities, were subsequently subjected to antiviral evaluations against the notable plant pathogen potato virus Y (PVY). The influence of the absolute configurations of the planar chiral compounds on their antiviral bioactivities was significant. A number of these enantiomerically enriched planar chiral molecules demonstrated superior anti-PVY activities. Specifically, compound (Sp, R)-9n displayed extraordinary curative activities against PVY, with a 50% maximal effective concentration (EC50) of 216.11 μg/mL, surpassing the efficacy of ningnanmycin (NNM, 272.74 μg/mL). The protective activities of compound (Sp, R)-9n had an EC50 value of 152.78 μg/mL, which was better than that of NNM (413.22 μg/mL). The molecular docking and defense enzyme activity tests were carried out using the planar chiral molecules bearing different absolute configurations to investigate the mechanism of their antiviral activities against PVY. (Sp, R)-9n, (Sp, R)-9o, and NMM all showed stronger affinities to the PVY-CP than the (Rp, S)-9n. Investigations into the mechanisms revealed that the planar chiral configurations of the compounds played pivotal roles in the interactions between the PVY-CP molecules and could augment the activities of the defense enzymes. This study contributes substantial insights into the role of planar chirality in defending plants against viral infections.
Collapse
Affiliation(s)
- Youlin Deng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Hui Cai
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jiamiao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Chaoyang Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xiaokang Lv
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
17
|
Chen J, Zhang M, Yuan C, Zhang T, Wu Z, Li T, Chi YR. Design, Synthesis, and Antifungal Activity of Acrylamide Derivatives Containing Trifluoromethylpyridine and Piperazine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11360-11368. [PMID: 38720533 DOI: 10.1021/acs.jafc.3c09770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
In this study, a series of acrylamide derivatives containing trifluoromethylpyridine or piperazine fragments were rationally designed and synthesized. Subsequently, the in vitro antifungal activities of all of the synthesized compounds were evaluated. The findings revealed that compounds 6b, 6c, and 7e exhibited >80% antifungal activity against Phomopsis sp. (Ps) at the concentration of 50 μg/mL. Furthermore, the EC50 values for compounds 6b, 6c, and 7e against Ps were determined to be 4.49, 6.47, and 8.68 μg/mL, respectively, which were better than the positive control with azoxystrobin (24.83 μg/mL). At the concentration of 200 μg/mL, the protective activity of compound 6b against Ps reached 65%, which was comparable to that of azoxystrobin (60.9%). Comprehensive mechanistic studies, including morphological studies with fluorescence microscopy (FM), cytoplasmic leakage, and enzyme activity assays, indicated that compound 6b disrupts cell membrane integrity and induces the accumulation of defense enzyme activity, thereby inhibiting mycelial growth. Therefore, compound 6b serves as a valuable candidate for the development of novel fungicides for plant protection.
Collapse
Affiliation(s)
- Jinli Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Meng Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Chunmei Yuan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Tao Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Zhibing Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Tingting Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Yonggui Robin Chi
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
18
|
Dongxu Z. Trifluoromethylated hydrazones and acylhydrazones as potent nitrogen-containing fluorinated building blocks. Beilstein J Org Chem 2023; 19:1741-1754. [PMID: 38025086 PMCID: PMC10667715 DOI: 10.3762/bjoc.19.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
Nitrogen-containing organofluorine derivatives, which are prepared using fluorinated building blocks, are among the most important active fragments in various pharmaceutical and agrochemical products. This review focuses on the reactivity, synthesis, and applications of fluoromethylated hydrazones and acylhydrazones. It summarizes recent methodologies that have been used for the synthesis of various nitrogen-containing organofluorine compounds.
Collapse
Affiliation(s)
- Zhang Dongxu
- Department of Fire Protection Engineering, China Fire and Rescue Institute, Beijing 102202, P. R. of China
| |
Collapse
|
19
|
Jiang S, Wang W, Mou C, Zou J, Jin Z, Hao G, Chi YR. Facile access to benzofuran derivatives through radical reactions with heteroatom-centered super-electron-donors. Nat Commun 2023; 14:7381. [PMID: 37968279 PMCID: PMC10651860 DOI: 10.1038/s41467-023-43198-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 11/03/2023] [Indexed: 11/17/2023] Open
Abstract
The development of suitable electron donors is critical to single-electron-transfer (SET) processes. The use of heteroatom-centered anions as super-electron-donors (SEDs) for direct SET reactions has rarely been studied. Here we show that heteroatom anions can be applied as SEDs to initiate radical reactions for facile synthesis of 3-substituted benzofurans. Phosphines, thiols and anilines bearing different substitution patterns work well in this inter-molecular radical coupling reaction and the 3-functionalized benzofuran products bearing heteroatomic functionalities are given in moderate to excellent yields. The reaction mechanism is elucidated via control experiments and computational methods. The afforded products show promising applications in both organic synthesis and pesticide development.
Collapse
Affiliation(s)
- Shichun Jiang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Wei Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Chengli Mou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Juan Zou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| | - Gefei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore.
| |
Collapse
|
20
|
Zhong L, Wu C, Li M, Wu J, Chen Y, Ju Z, Tan C. 1,2,4-Oxadiazole as a potential scaffold in agrochemistry: a review. Org Biomol Chem 2023; 21:7511-7524. [PMID: 37671568 DOI: 10.1039/d3ob00934c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
N,O-containing heterocycles have been incorporated into various approved pesticides and pesticide candidates. The persistent challenge in contemporary crop protection lies in the continuous pursuit of novel N,O-heterocycle-containing compounds with pesticidal properties. Among them, the 1,2,4-oxadiazole scaffold is one of the most extensively explored heterocycles in new pesticide discovery and development. This review focuses on elucidating the molecular design strategy employed along with highlighting the bioactivity of 1,2,4-oxadiazole derivatives since 2012. Throughout this time frame, tioxazafen and flufenoxadiazam have emerged as prominent examples in which 1,2,4-oxadiazole derivatives were utilized as the core active structure within numerous applications. Additionally, the preparation methods for substituted 1,2,4-oxadiazole derivatives are elaborated upon, and their potential value within agrochemistry is discussed.
Collapse
Affiliation(s)
- Liangkun Zhong
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Changyuan Wu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Mimi Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Junhui Wu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yang Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Zhiran Ju
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Chengxia Tan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
21
|
Mkrtchyan S, Shkoor M, Sarfaraz S, Ayub K, Iaroshenko VO. Mechanochemical arylative detrifluoromethylation of trifluoromethylarenes. Org Biomol Chem 2023; 21:6549-6555. [PMID: 37523214 DOI: 10.1039/d3ob00787a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The stoichiometric defluorinative functionalization of ArCF3 is a conceptually appealing research target. It enables the challenging late-stage functionalization of CF3-containing aromatic molecules and contributes to the remedy of environmental risks resulting from the accumulation of relatively inert ArCF3-containing molecules. Similarly, Ar-CN bond features limit their utilization in cross-coupling reactions. Thus, the employment of benzonitriles in decyanative Suzuki-Miyaura type coupling remains in high demand in the field of C-C bond formation. Herein, we report mechanochemically induced and ytterbium oxide (Yb2O3)-mediated defluorinative cyanation of trifluoromethylarenes. In addition, we describe a facile mechanochemically facilitated and nickel-catalyzed decyanative arylation of benzonitriles to access biphenyls. Combining both processes in a one-pot multicomponent protocol to achieve a concise direct arylative detrifluoromethylation of ArCF3 is described herein. This work is the first hitherto realization of C-C coupling with CF3 as a formal leaving group.
Collapse
Affiliation(s)
- Satenik Mkrtchyan
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 97401, Banska Bystrica, Slovakia.
| | - Mohanad Shkoor
- Department of Chemistry and Earth Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Sehrish Sarfaraz
- Department of Chemistry, COMSATS University, Abbottabad Campus, Abbottabad, KPK, 22060, Pakistan
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University, Abbottabad Campus, Abbottabad, KPK, 22060, Pakistan
| | - Viktor O Iaroshenko
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 97401, Banska Bystrica, Slovakia.
| |
Collapse
|
22
|
Zhang W, Guo S, Wang Y, Wu Y, Yu L, Wu J. Trifluoromethylpyridine piperazine derivatives: synthesis and anti-plant virus activity. PEST MANAGEMENT SCIENCE 2023; 79:2571-2580. [PMID: 36866809 DOI: 10.1002/ps.7429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/15/2023] [Accepted: 03/04/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND The cucumber mosaic virus (CMV) is well-known for its expansive host range and distribution, resulting in a detrimental effect on agricultural production, thus making it imperative to implement measures for its control. RESULTS Novel compounds S1-S28 were synthesized by connecting trifluoromethyl pyridine, amide and piperazine scaffolds. Bioassays indicated that most of the synthesized compounds exhibited good curative effects against CMV, with half maximal effective concentration (EC50 ) values of compounds S1, S2, S7, S8, S10, S11, S15, and S28 being 119.6, 168.9, 197.6, 169.1, 97.9, 73.9, 224.4, and 125.2 μg mL-1 , respectively, which were lower than the EC50 of ningnanmycin (314.7 μg mL-1 ). Compounds S5 and S8 exhibited protective activities with EC50 of 170.8 and 95.0 μg mL-1 , respectively, which were lower than ningnanmycin at 171.4 μg mL-1 . The inactivation activities of S6 and S8 at 500 μg mL-1 were remarkably high at 66.1% and 78.3%, respectively, surpassing that of ningnanmycin (63.5%). Additionally, their EC50 values were more favorable at 22.2 and 18.1 μg mL-1 , respectively, than ningnanmycin (38.4 μg mL-1 ). And molecular docking and molecular dynamics simulation showed compound S8 had better binding with CMV-coat protein, providing a possible explanation for the anti-CMV activity of compound S8. CONCLUSIONS Compound S8 showed a strong binding affinity to CMV-coat protein and impacted the self-assemble of CMV particles. Compound S8 could be a potential lead compound for discovering a new anti-plant virus candidate. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Zhang
- National Key Laboratory of Green Pesticides; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Shengxin Guo
- National Key Laboratory of Green Pesticides; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Ya Wang
- National Key Laboratory of Green Pesticides; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yikun Wu
- National Key Laboratory of Green Pesticides; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Lijiao Yu
- National Key Laboratory of Green Pesticides; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Jian Wu
- National Key Laboratory of Green Pesticides; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
23
|
Jin J, Mou C, Zou J, Xie X, Wang C, Shen T, Deng Y, Li B, Jin Z, Li X, Chi YR. Development of axially chiral urazole scaffolds for antiplant virus applications against potato virus Y. PEST MANAGEMENT SCIENCE 2023; 79:2527-2538. [PMID: 36864730 DOI: 10.1002/ps.7428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/16/2023] [Accepted: 03/02/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Potato virus Y (PVY) was first discovered by Smith in 1931 and is currently ranked as the fifth most significant plant virus. It can cause severe damage to plants from the family Solanaceae, which results in billions of dollars of economic loss worldwide every year. To discover new antiviral drugs, a class of multifunctional urazole derivatives bearing a stereogenic CN axis were synthesized with excellent optical purities for antiviral evaluations against PVY. RESULTS The absolute configurations of the axially chiral compounds exhibited obvious distinctions in antiviral bioactivities, with several of these enantio-enriched axially chiral molecules showing excellent anti-PVY activities. In particular, compound (R)-9f exhibited remarkable curative activities against PVY with a 50% maximal effective concentration (EC50 ) of 224.9 μg mL-1 , which was better than that of ningnanmycin (NNM), which had an EC50 of 234.0 μg mL-1 . And the EC50 value of the protective activities of compound (R)-9f was 462.2 μg mL-1 , which was comparable to that of NNM (442.0 μg mL-1 ). The mechanisms of two enantiomer of the axially chiral compounds 9f were studied by both molecule docking and defensive enzyme activity tests. CONCLUSION Mechanistic studies demonstrated that the axially chiral configurations of the compounds played significant roles in the molecule PVY-CP (PVY Coat Protein) interactions and could enhance the activities of the defense enzymes. The (S)-9f showed only one carbon-hydrogen bond and one π-cation interaction between the chiral molecule and the PVY-CP amino acid sites. In contrast, the (R)-enantiomer of 9f exhibited three hydrogen bonding interactions between the carbonyl groups and the PVY-CP active sites of ARG157 and GLN158. The current study provides significant information on the roles that axial chiralities play in plant protection against viruses, which will facilitate the development of novel green pesticides bearing axial chiralities with excellent optical purities. © 2023 Society of Chemical Industry.
Collapse
Grants
- Frontiers Science Center for Asymmetric Synthesis and Medicinal Molecules, Department of Education, Guizhou Province [Qianjiaohe KY number (2020)004]
- The 10 Talent Plan (Shicengci) of Guizhou Province ([2016]5649)
- Ministry of Education, Singapore, under its MOE AcRF Tier 1 Award (RG7/20, RG5/19), MOE AcRF Tier 2 (MOE2019-T2-2-117), and MOE AcRF Tier 3 Award (MOE2018-T3-1-003)
- National Natural Science Foundation of China (32172459, 21961006, 22071036)
- Program of Introducing Talents of Discipline to Universities of China (111 Program, D20023) at Guizhou University
- Science and Technology Department of Guizhou Province ([2018]2802, [2019]1020, Qiankehejichu-ZK[2021]Key033)
- Singapore National Research Foundation under its NRF Investigatorship (NRF-NRFI2016-06) and Competitive Research Program (NRF-CRP22-2019-0002)
Collapse
Affiliation(s)
- Jiamiao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Chengli Mou
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Juan Zou
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xin Xie
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - Chen Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Tingwei Shen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Youlin Deng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Benpeng Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
24
|
Sparks TC, Lorsbach BA. Insecticide discovery-"Chance favors the prepared mind". PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105412. [PMID: 37105622 DOI: 10.1016/j.pestbp.2023.105412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
New options for pest insect control, including new insecticides, are needed to ensure a plentiful food supply for an expanding global population. Any new insecticides must meet the increasingly stringent regulatory requirements for mammalian and environmental safety, and also address the need for new chemistries and modes of action to deal with resistance to available insecticides. As underscored by a paraphrase of a quote from Louis Pasteur "Chance favors the prepared mind", the agrochemical industry uses a variety of approaches that attempt to improve on "chance" for the discovery of new insecticides. Although there are a number of approaches to the discovery of new insecticidal active ingredients (AIs), historically most insecticides are based on a pre-existing molecule or product either from a competitor or from an internal company source. As such the first examples of a new insecticide representing a new type or class of AI (First-in-Class: FIC) are important as prototypes for other AIs stimulating further spectrum, efficacy, physicochemical, and environmental safety refinements. FIC insecticides also represent a measure of innovation. Understanding the origins of these FIC compounds and the approaches used in their discovery can provide insights into successful strategies for future new classes of insecticides. This perspective will focus on an analysis of the approaches that have been used for discovery of FIC insecticides highlighting those approaches that have been the most successful and providing a reference point for current and future directions.
Collapse
Affiliation(s)
| | - Beth A Lorsbach
- Nufarm, 4020 Aerial Center Parkway Morrisville, NC 27560, USA
| |
Collapse
|
25
|
Channapur M, Hall RG, Kessabi J, Montgomery MG, Shyadligeri A. Synthesis of 2‐Chloro‐6‐(trifluoromethyl)pyridine‐3,5‐dicarbonitrile: A Versatile Building Block for the Synthesis of Substituted Trifluoro Methyl Pyridine Derivatives. ChemistrySelect 2023. [DOI: 10.1002/slct.202300390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Manjunath Channapur
- Syngenta Biosciences Pvt. Ltd. Santa Monica Works, Corlim, Ilhas Goa 403110 India
| | - Roger G. Hall
- Syngenta Crop Protection AG Schaffhauserstrasse CH-4332 Stein. Switzerland
| | - Jilali Kessabi
- Syngenta Crop Protection AG Schaffhauserstrasse CH-4332 Stein. Switzerland
| | - Mark G. Montgomery
- Syngenta, Jealott's Hill International Research Centre Bracknell, Berkshire RG42 6EY United Kingdom
| | - Ashok Shyadligeri
- Syngenta Biosciences Pvt. Ltd. Santa Monica Works, Corlim, Ilhas Goa 403110 India
| |
Collapse
|
26
|
Guo S, He F, Zhang W, Wang Y, Yu L, Wu J. Fluorinated or brominated meta‐diamides as the new scaffolds for the treatment of rice bacterial leaf blight. Food Energy Secur 2023. [DOI: 10.1002/fes3.449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Affiliation(s)
- Shengxin Guo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education Guizhou University Guiyang China
| | - Feng He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education Guizhou University Guiyang China
| | - Wei Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education Guizhou University Guiyang China
| | - Ya Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education Guizhou University Guiyang China
| | - Lijiao Yu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education Guizhou University Guiyang China
| | - Jian Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education Guizhou University Guiyang China
| |
Collapse
|
27
|
Electrochemical synthesis of 5-trifluoroethyl dihydrobenzimidazo[2,1-a] isoquinolines from pendent unactivated alkenes via radical relay. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
28
|
Zhang W, Guo S, Yu L, Wang Y, Chi YR, Wu J. Piperazine: Its role in the discovery of pesticides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
Zhang W, Guo S, Wang Y, Tu H, Yu L, Zhao Z, Wang Z, Wu J. Novel trifluoromethylpyridine piperazine derivatives as potential plant activators. FRONTIERS IN PLANT SCIENCE 2022; 13:1086057. [PMID: 36518503 PMCID: PMC9742420 DOI: 10.3389/fpls.2022.1086057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 06/02/2023]
Abstract
Plant virus diseases seriously affect crop yield, especially tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV). The development of plant immune activators has been an important direction in the innovation of new pesticides. Therefore, we designed and synthesized a series of trifluoromethyl pyridine piperazine derivatives (A1-A27), and explored the action mechanism of active compound. The antiviral activity test showed that compounds A1, A2, A3, A9, A10, A16, A17 and A21 possessed higher activities than commercialized ningnanmycin. Particularly, the in vivo antiviral activity indicated that compound A16 showed the most potent protective activity toward TMV (EC50 = 18.4 μg/mL) and CMV (EC50 = 347.8 μg/mL), compared to ningnanmycin (50.2 μg /mL for TMV, 359.6 μg/mL for CMV). The activities of defense enzyme, label -free proteomic and qRT-PCR analysis showed that compound A16 could enhance the defensive enzyme activities of superoxide dismutase (SOD),polyphenol oxidase (PPO) and phenylalanine ammonialyase (PAL), and activate the phenylpropanoid biosynthesis pathway to strenthen the antiviral activities of tobacco. This study provides reliable support for the development of new antiviral pesticides and potential antiviral mechanism.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Shengxin Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Ya Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Hong Tu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Lijiao Yu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Zhichao Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Zhenchao Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Jian Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|