1
|
Zhang R, Huangfu B, Xu T, Opatola VO, Ban Q, Huang K, He X. Zearalenone enhances TSST-1 production by intestinal Staphylococcus and increases uterine immune stress in rats. Food Chem Toxicol 2025; 196:115140. [PMID: 39586525 DOI: 10.1016/j.fct.2024.115140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/08/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
Zearalenone (ZEA), a mycotoxin prevalent in food crops, poses significant health risks, particularly through its impact on the gut-uterus axis. This study assessed the effects of a 5 mg/kg body weight ZEA dosage in female SD rats, focusing on gut microbiota alterations, inflammatory responses, and uterine changes. Our findings revealed substantial shifts in microbial composition, including significant reductions in beneficial genera such as Akkermansia and Ruminococcaceae and marked increases in pathogenic staphylococci, which correlated with elevated levels of toxic shock syndrome toxin-1 (TSST-1) in serum and uterine tissue. RNA sequencing of uterine samples indicated activation of the extracellular matrix (ECM) pathway, along with significant upregulation of MMP-2 and TIMP-2, enzymes associated with ECM remodelling. Correlation analysis showed a strong link between staphylococcal proliferation and ECM pathway activation, suggesting that ZEA-induced gut dysbiosis contributes to uterine inflammation and structural alterations. These results reveal how ZEA disrupts gut and uterine health, highlighting critical pathways that could serve as targets for future preventive and therapeutic strategies against mycotoxin exposure.
Collapse
Affiliation(s)
- Ruiqi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Bingxin Huangfu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Tongxiao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Victor Olusola Opatola
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Qiushi Ban
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China.
| |
Collapse
|
2
|
Wang L, Zhai B, Wang C, Elsheikha HM, Guo H, Zheng XN, Zhou CX, Zhu XQ. Glabridin exhibits potent inhibitory effects against Toxoplasma gondii in vitro and in vivo. Parasit Vectors 2024; 17:522. [PMID: 39695816 DOI: 10.1186/s13071-024-06610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Toxoplasma gondii is an obligate protozoan parasite capable of infecting a wide range of warm-blooded animals and humans. Current treatment options, primarily pyrimethamine and sulfadiazine, have limitations, such as high recurrence rates, long treatment durations, and limited effectiveness against T. gondii. There is an unmet need for novel, safe, low-toxicity, and highly effective treatments. This study aimed to evaluate the anti-T. gondii effects of glabridin, a natural compound derived from the roots of a widely used medicinal plant. METHODS The cytotoxicity of glabridin in Vero cells was assessed using a CCK-8 cell viability assay. Quantitative polymerase chain reaction (qPCR) targeting the Tg-529 gene was developed to quantify T. gondii and assess the inhibitory effects of glabridin on parasite proliferation. Ultrastructural changes in T. gondii after treatment were examined using electron microscopy. The levels of reactive oxygen species (ROS) and mitochondrial membrane potential (ΔΨm) were examined to assess the effects of glabridin on ROS levels and ΔΨm in T. gondii tachyzoites. Additionally, metabolomics and transcriptomics analyses were conducted to investigate the mechanisms underlying glabridin's anti-T. gondii effects. RESULTS Glabridin exhibited low toxicity to host cells and effectively inhibited T. gondii invasion and proliferation in vitro in a time-dependent manner. Glabridin-treated tachyzoites exhibited significant structural alterations, along with increased ROS production and a reduction in ΔΨm. Metabolomic analysis indicated that glabridin significantly affected amino acid metabolism pathways in T. gondii. In vivo, glabridin treatment significantly improved survival rates in T. gondii-infected BALB/c mice at a dosage of 100 mg/kg. CONCLUSIONS This study demonstrates that glabridin has potent anti-T. gondii effects in vitro and in vivo, likely through disruption of amino acid metabolism in the parasite. These findings highlight glabridin's potential as a promising therapeutic agent for toxoplasmosis.
Collapse
Affiliation(s)
- Lu Wang
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, 030801, People's Republic of China
| | - Bintao Zhai
- Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu Province, 730050, People's Republic of China
| | - Chen Wang
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, 030801, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Haiting Guo
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, 030801, People's Republic of China
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, College of Basic Medicine, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, 541199, People's Republic of China
| | - Xiao-Nan Zheng
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, 030801, People's Republic of China
| | - Chun-Xue Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, 250012, People's Republic of China.
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, 030801, People's Republic of China.
| |
Collapse
|
3
|
Gu S, Lu F, Gao Z, Zhou Y, Xiao Y, Bao W, Wang H. Transcriptomics and metabolomics analyses of graphene oxide toxicity on porcine alveolar macrophages. Toxicology 2024; 509:153953. [PMID: 39265697 DOI: 10.1016/j.tox.2024.153953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/14/2024]
Abstract
Graphene oxide (GO) is a type of nanomaterial widely used in tissue engineering, photocatalysis, and biomedicine. GO has been found to produce adverse effects on a broad range of cells and tissues. However, the molecular mechanisms underlying GO toxicity still remain to be explored. In this study, using porcine alveolar macrophages as a study model, we explored the toxic effects of GO and performed genome-wide detection of genes and metabolites associated with GO exposure using RNA-seq and liquid chromatograph mass spectrometer techniques. GO exposure significantly inhibited cell viability and induced apoptosis and oxidative stress in porcine alveolar macrophages. Further, GO exposure promoted cellular inflammation by upregulating the expression of pro-inflammatory cytokines (IL-6, IL-8, and IL-12). Transcriptomic analysis of GO-exposed cells revealed 424 differentially expressed genes. Functional enrichment analysis showed that the differentially expressed genes were significantly enriched in the pathways of Ribosome and oxidative phosphorylation (OXPHOS). In addition, metabolic analysis identified 203 differential metabolites, and these metabolites were significantly enriched in biosynthesis of cofactors, purine metabolism, and nucleotide metabolism. Integrative analyses of transcriptome and metabolome showed that OXPHOS was the most significantly enriched pathway and the involved genes were downregulated. This study revealed the toxic effects of GO on porcine alveolar macrophages and provided global insights to the metabolomic and transcriptomic alterations related to GO exposure. The results contributed to our understanding of the molecular mechanism of GO, and may further promote the detection of biomarkers for the prediction and control of GO toxicity.
Collapse
Affiliation(s)
- Shanshen Gu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Fan Lu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhongcheng Gao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yajing Zhou
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yeyi Xiao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
4
|
Zhou Y, Xu C, Gu S, Xiao Y, Wu S, Wang H, Bao W. Integrated Metabolomic and transcriptomic analyses reveal deoxycholic acid promotes transmissible gastroenteritis virus infection by inhibiting phosphorylation of NF-κB and STAT3. BMC Genomics 2024; 25:239. [PMID: 38438836 PMCID: PMC10913532 DOI: 10.1186/s12864-024-10167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/28/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Acute diarrhea, dehydration and death in piglets are all symptoms of transmissible gastroenteritis virus (TGEV), which results in significant financial losses in the pig industry. It is important to understand the pathogenesis and identify new antiviral targets by revealing the metabolic interactions between TGEV and host cells. RESULTS We performed metabolomic and transcriptomic analyses of swine testicular cells infected with TGEV. A total of 1339 differential metabolites and 206 differentially expressed genes were detected post TEGV infection. The differentially expressed genes were significantly enriched in the HIF-1 signaling pathway and PI3K-Akt signaling. Integrated analysis of differentially expressed genes and differential metabolites indicated that they were significantly enriched in the metabolic processes such as nucleotide metabolism, biosynthesis of cofactors and purine metabolism. In addition, the results showed that most of the detected metabolites involved in the bile secretion was downregulated during TGEV infection. Furthermore, exogenous addition of key metabolite deoxycholic acid (DCA) significantly enhanced TGEV replication by NF-κB and STAT3 signal pathways. CONCLUSIONS We identified a significant metabolite, DCA, related to TGEV replication. It added TGEV replication in host cells by inhibiting phosphorylation of NF-κB and STAT3. This study provided novel insights into the metabolomic and transcriptomic alterations related to TGEV infection and revealed potential molecular and metabolic targets for the regulation of TGEV infection.
Collapse
Affiliation(s)
- Yajing Zhou
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, China
| | - Chao Xu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, China
| | - Shanshen Gu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, China
| | - Yeyi Xiao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, China
| | - Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, China.
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, 225009, Yangzhou, China.
| |
Collapse
|
5
|
Ruan H, Zhang J, Wang Y, Huang Y, Wu J, He C, Ke T, Luo J, Yang M. 27-Hydroxycholesterol/liver X receptor/apolipoprotein E mediates zearalenone-induced intestinal immunosuppression: A key target potentially linking zearalenone and cancer. J Pharm Anal 2024; 14:371-388. [PMID: 38618245 PMCID: PMC11010457 DOI: 10.1016/j.jpha.2023.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/07/2023] [Accepted: 08/07/2023] [Indexed: 04/16/2024] Open
Abstract
Zearalenone (ZEN) is a mycotoxin that extensively contaminates food and feed, posing a significant threat to public health. However, the mechanisms behind ZEN-induced intestinal immunotoxicity remain unclear. In this study, Sprague-Dawley (SD) rats were exposed to ZEN at a dosage of 5 mg/kg/day b.w. for a duration of 14 days. The results demonstrated that ZEN exposure led to notable pathological alterations and immunosuppression within the intestine. Furthermore, ZEN exposure caused a significant reduction in the levels of apolipoprotein E (ApoE) and liver X receptor (LXR) (P < 0.05). Conversely, it upregulated the levels of myeloid-derived suppressor cells (MDSCs) markers (P < 0.05) and decreased the presence of 27-hydroxycholesterol (27-HC) in the intestine (P < 0.05). It was observed that ApoE or LXR agonists were able to mitigate the immunosuppressive effects induced by ZEN. Additionally, a bioinformatics analysis highlighted that the downregulation of ApoE might elevate the susceptibility to colorectal, breast, and lung cancers. These findings underscore the crucial role of the 27-HC/LXR/ApoE axis disruption in ZEN-induced MDSCs proliferation and subsequent inhibition of T lymphocyte activation within the rat intestine. Notably, ApoE may emerge as a pivotal target linking ZEN exposure to cancer development.
Collapse
Affiliation(s)
- Haonan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jing Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Yunyun Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Ying Huang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jiashuo Wu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Chunjiao He
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Tongwei Ke
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| |
Collapse
|
6
|
Hui P, Zheng X, Dong J, Lu F, Xu C, Qu H, Zhu X, Uemoto Y, Lv X, Yin Z, Sun W, Bao W, Wang H. Metabolomics and Transcriptomics Analyses of Curcumin Alleviation of Ochratoxin A-Induced Hepatotoxicity. Int J Mol Sci 2023; 25:168. [PMID: 38203339 PMCID: PMC10779172 DOI: 10.3390/ijms25010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Ochratoxin A (OTA) is one of the mycotoxins that poses a serious threat to human and animal health. Curcumin (CUR) is a major bioactive component of turmeric that provides multiple health benefits. CUR can reduce the toxicities induced by mycotoxins, but the underlying molecular mechanisms remain largely unknown. To explore the effects of CUR on OTA toxicity and identify the key regulators and metabolites involved in the biological processes, we performed metabolomic and transcriptomic analyses of livers from OTA-exposed mice. We found that CUR can alleviate the toxic effects of OTA on body growth and liver functions. In addition, CUR supplementation significantly affects the expressions of 1584 genes and 97 metabolites. Integrated analyses of transcriptomic and metabolomic data showed that the pathways including Arachidonic acid metabolism, Purine metabolism, and Cholesterol metabolism were significantly enriched. Pantothenic acid (PA) was identified as a key metabolite, the exogenous supplementation of which was observed to significantly alleviate the OTA-induced accumulation of reactive oxygen species and cell apoptosis. Further mechanistical analyses revealed that PA can downregulate the expression level of proapoptotic protein BAX, enhance the expression level of apoptosis inhibitory protein BCL2, and decrease the level of phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2). This study demonstrated that CUR can alleviate the adverse effects of OTA by influencing the transcriptomic and metabolomic profiles of livers, which may contribute to the application of CUR in food and feed products for the prevention of OTA toxicity.
Collapse
Affiliation(s)
- Peng Hui
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xianrui Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jiao Dong
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Fan Lu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Chao Xu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Huan Qu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyang Zhu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yoshinobu Uemoto
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Xiaoyang Lv
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Wei Sun
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
Fang M, Hu W, Liu B. Effects of nano-selenium on cecum microbial community and metabolomics in chickens challenged with Ochratoxin A. Front Vet Sci 2023; 10:1228360. [PMID: 37732141 PMCID: PMC10507861 DOI: 10.3389/fvets.2023.1228360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Ochratoxin A (OTA) is a widely distributed mycotoxin. Nano-selenium (Nano-Se) is an emerging form of selenium known for its superior bioavailability, remarkable catalytic efficiency, and robust adsorbing capacity. Despite these characteristics, its impact on the microbial community and metabolomics in the cecum of chickens exposed to OTA has been infrequently investigated. This research examined the microbiota and metabolomic alterations linked to OTA in chickens, with or without Nano-Se present. Methods A cohort of 80 healthy chickens at the age of 1 day was randomly distributed into four groups of equal numbers, namely the Se cohort (1 mg/kg Nano-Se), the OTA cohort (50 μg/kg OTA), the OTA-Se cohort (50 μg/kg OTA + 1 mg/kg Nano-Se), and the control group. Each chicken group's caecal microbiome and metabolome were characterized using 16S rRNA sequencing and Liquid chromatography coupled with mass spectrometry (LC-MS) analyses. Results and discussion Our results showed that the on day 21, the final body weight was significantly reduced in response to OTA treatments (p < 0.05), the average daily gain in the OTA group was found to be inferior to the other groups (p < 0.01). In addition, Nano-Se supplementation could reduce the jejunum and liver pathological injuries caused by OTA exposure. The 16S rRNA sequencing suggest that Nano-Se supplementation in OTA-exposed chickens mitigated gut microbiota imbalances by promoting beneficial microbiota and suppressing detrimental bacteria. Moreover, untargeted metabolomics revealed a significant difference in caecal metabolites by Nano-Se pretreatment. Collectively, the dataset outcomes highlighted that Nano-Se augmentation regulates intestinal microbiota and associated metabolite profiles, thus influencing critical metabolic pathways, and points to a possible food-additive product.
Collapse
Affiliation(s)
- Manxin Fang
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| | - Wei Hu
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| | - Ben Liu
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| |
Collapse
|