1
|
Gianvittorio S, Malferrari M, Pick H, Rapino S, Lesch A. Print-Light-Synthesis of ruthenium oxide thin film electrodes for electrochemical sensing applications. Bioelectrochemistry 2025; 163:108909. [PMID: 39854933 DOI: 10.1016/j.bioelechem.2025.108909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
Print-Light-Synthesis (PLS) combines the inkjet printing of a ruthenium precursor ink with the simultaneous photo-induced generation of ruthenium oxide films. During PLS, inkjet-printing generates on conductive as well as insulating substrates micrometer-thin reaction volumes that contain with high precision defined precursor loadings. Upon direct UV light irradiation, the Ru precursor converts to RuO2 while all other ink components escape in the gas phase. No post PLS processes are required, and the as-obtained RuO2 films can be immediately used as electrochemical devices. Two-dimensional RuO2 patterns with micrometric resolution and highly-controlled ruthenium loadings (few µg/cm2) are realized. Thin RuO2 films are generated on insulating substrates, such as polyimide, as well as individual RuO2 particles on conductive substrates, such as graphene layers. The RuO2 films are characterized by electron microscopy and spectroscopic techniques. The sensoristic applicability of the PLS-RuO2 electrodes is demonstrated by potentiometric pH sensing in cell cultures and amperometric detection of L-cysteine. For pH sensing the RuO2 film electrodes show Nernstian sensitivity. L-cysteine detection of RuO2-modified graphene electrodes showed an electrocatalytical effect and resulted in the possibility of selectively detecting L-Cysteine also in presence of the interfering compound uric acid.
Collapse
Affiliation(s)
- Stefano Gianvittorio
- University of Bologna, Department of Industrial Chemistry "Toso Montanari", Center of Chemical Catalysis-C(3), Via Piero Gobetti 85, 40129 Bologna, Italy
| | - Marco Malferrari
- University of Bologna, Department of Chemistry "Giacomo Ciamician", Via Piero Gobetti 85, 40129 Bologna, Italy
| | - Horst Pick
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Environmental Engineering Institute, GR-LUD, School of Architecture, Civil and Environmental Engineering, EPFL Station 2, 1015 Lausanne, Switzerland
| | - Stefania Rapino
- University of Bologna, Department of Chemistry "Giacomo Ciamician", Via Piero Gobetti 85, 40129 Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Andreas Lesch
- University of Bologna, Department of Industrial Chemistry "Toso Montanari", Center of Chemical Catalysis-C(3), Via Piero Gobetti 85, 40129 Bologna, Italy.
| |
Collapse
|
2
|
Lu MJ, Zhao KH, Zhang SQ, Cai XB, Kandegama W, Chen MX, Sun Y, Li XY. Research Progress of Biosensor Based on Organic Photoelectrochemical Transistor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17746-17761. [PMID: 39079007 DOI: 10.1021/acs.jafc.4c04191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In order to solve the food safety problem better, it is very important to develop a rapid and sensitive technology for detecting food contamination residues. Organic photoelectrochemical transistor (OPECT) biosensor rely on the photovoltage generated by a semiconductor upon excitation by light to regulate the conductivity of the polymer channels and realize biosensor analysis under zero gate bias. This technology integrates the excellent characteristics of photoelectrochemical (PEC) bioanalysis and the high sensitivity and inherent amplification ability of organic electrochemical transistor (OECT). Based on this, OPECT biosensor detection has been proven to be superior to traditional biosensor detection methods. In this review, we summarize the research status of OPECT biosensor in disease markers and food residue analysis, the basic principle, classification, and biosensing mechanism of OPECT biosensor analysis are briefly introduced, and the recent applications of biosensor analysis are discussed according to the signal strategy. We mainly introduced the OPECT biosensor analysis methods applied in different fields, including the detection of disease markers and food hazard residues such as prostate-specific antigen, heart-type fatty acid binding protein, T-2 toxin detection in milk samples, fat mass and objectivity related protein, ciprofloxacin in milk. The OPECT biosensor provides considerable development potential for the construction of safety analysis and detection platforms in many fields, such as agriculture and food, and hopes to provide some reference for the future development of biosensing analysis methods with higher selectivity, faster analysis speed and higher sensitivity.
Collapse
Affiliation(s)
- Meng-Jiao Lu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Kun-Hong Zhao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Shan-Qi Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiao-Bo Cai
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Wishwajith Kandegama
- Department of Horticulture and Landscape Gardening, Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Makandura, Gonawila 60170 Sri Lanka
| | - Mo-Xian Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology Ministry of Education, College of Chemistry Central China Normal University, Wuhan 430079, China
| | - Xiang-Yang Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Wei W, Guo F, Wang C, Wang L, Sheng Z, Wu X, Cai B, Eychmüller A. Strain Effects in Ru-Au Bimetallic Aerogels Boost Electrocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310603. [PMID: 38279621 DOI: 10.1002/smll.202310603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/27/2023] [Indexed: 01/28/2024]
Abstract
To improve the sluggish kinetics of the hydrogen evolution reaction (HER), a key component in water-splitting applications, there is an urgent desire to develop efficient, cost-effective, and stable electrocatalysts. Strain engineering is proving an efficient strategy for increasing the catalytic activity of electrocatalysts. This work presents the development of Ru-Au bimetallic aerogels by a simple one-step in situ reduction-gelation approach, which exhibits strain effects and electron transfer to create a remarkable HER activity and stability in an alkaline environment. The surface strain induced by the bimetallic segregated structure shifts the d-band center downward, enhancing catalysis by balancing the processes of water dissociation, OH* adsorption, and H* adsorption. Specifically, the optimized catalyst shows low overpotentials of only 24.1 mV at a current density of 10 mA cm-2 in alkaline electrolytes, surpassing commercial Pt/C. This study can contribute to the understanding of strain engineering in bimetallic electrocatalysts for HER at the atomic scale.
Collapse
Affiliation(s)
- Wei Wei
- School of Chemistry and Chemical Engineering, Public Experiment and Service Center, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, China
- Physical Chemistry, Technische Universität Dresden, Zellescher Weg 19, 01069, Dresden, Germany
| | - Fei Guo
- School of Chemistry and Chemical Engineering, Public Experiment and Service Center, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, China
| | - Cui Wang
- Physical Chemistry, Technische Universität Dresden, Zellescher Weg 19, 01069, Dresden, Germany
| | - Lingwei Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Zhizhi Sheng
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xiaodong Wu
- College of Materials Science and Engineering, Nanjing Tech University, Puzhu South Road 30, Nanjing, 210009, China
| | - Bin Cai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Alexander Eychmüller
- Physical Chemistry, Technische Universität Dresden, Zellescher Weg 19, 01069, Dresden, Germany
| |
Collapse
|
4
|
Oezau Gomes N, de Campos AM, Calegaro ML, Machado SAS, Oliveira ON, Raymundo-Pereira PA. Core-Shell Nanocables Decorated with Carbon Spherical Shells and Silver Nanoparticles for Sensing Ethinylestradiol Hormone in Water Sources and Pills. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10897-10907. [PMID: 38364212 DOI: 10.1021/acsami.3c16249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The selective, rapid detection of low levels of hormones in drinking water and foodstuffs requires materials suitable for inexpensive sensing platforms. We report on core-shell Ag@C nanocables (NCs) decorated with carbon spherical shells (CSSs) and silver nanoparticles (AgNPs) by using a hydrothermal green approach. Sensors were fabricated with homogeneous, porous films on screen-printed electrodes, which comprised a 115 nm silver core covered by a 122 nm thick carbon layer and CSSs with 168 nm in diameter. NCs and CSSs were also decorated with 10-25 nm AgNPs. The NC/CSS/AgNP sensor was used to detect ethinylestradiol using square wave voltammetry in 0.1 M phosphate buffer (pH 7.0) over the 1.0-10.0 μM linear range with a detection limit of 0.76 μM. The sensor was then applied to detect ethinylestradiol in tap water samples and a contraceptive pill with recovery percentages between 93 and 101%. The high performance in terms of sensitivity and selectivity for hormones is attributed to the synergy between the carbon nanomaterials and AgNPs, which not only increased the sensor surface area and provided sites for electron exchange but also imparted an increased surface area.
Collapse
Affiliation(s)
- Nathalia Oezau Gomes
- São Carlos Institute of Chemistry, University of São Paulo, CEP 13566-590 São Carlos, SP, Brazil
| | - Anderson M de Campos
- Chair of Physical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandstr. 5-13, 81377 Munich, Germany
| | - Marcelo L Calegaro
- São Carlos Institute of Chemistry, University of São Paulo, CEP 13566-590 São Carlos, SP, Brazil
| | - Sergio A S Machado
- São Carlos Institute of Chemistry, University of São Paulo, CEP 13566-590 São Carlos, SP, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, CEP 13560-970 São Carlos, SP, Brazil
| | | |
Collapse
|
5
|
Alterary SS, Mostafa GAE, Alrabiah H, Al-Alshaikh MA, El-Tohamy MF. Charge Transfer Copper Chelating Complex and Biogenically Synthesized Copper Oxide Nanoparticles Using Salvia officinalis Laves Extract in Comparative Spectrofluorimetric Estimation of Anticancer Dabrafenib. J Fluoresc 2024; 34:465-478. [PMID: 37610703 DOI: 10.1007/s10895-023-03388-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
Cancer is a broad category of disease that can affect virtually any organ or tissue in the body when abnormal cells grow uncontrollably, invade surrounding tissue, and/or spread to other organs. Dabrafenib is indicated for the treatment of adult patients with advanced non-small cell lung cancer. In the present study, two newly developed spectrofluorimetric probes for the detection of the anticancer drug Dabrafenib (DRF) in its authentic and pharmaceutical products using an ecologically synthesized copper oxide nanoparticle (CuONPs) from Salvia officinalis leaf extract and a copper chelate complex are presented. The first system is based on the influence of the particular optical properties of CuONPs on the enhancement of fluorescence detection. The second system, on the other hand, acts through the formation of a copper charge transfer complex. Various spectroscopic and microscopic studies were performed to confirm the environmentally synthesized CuONPs. The fluorescence detections in the two systems were measured at λex 350 and λem of 432 nm. The results showed the linear concentration ranges for the DRF-CuONPs-SDS and DRF-Cu-SDS complexes were determined to be 1.0-500 ng mL- 1 and 1.0-200 ng mL- 1, respectively. FI = 1.8088x + 21.418 (r = 0.9997) and FI = 2.7536x + 163.37 (r = 0.9989) were the regression equations. The lower detection and quantification limits for the aforementioned fluorescent systems were determined to be 0.4 and 0.8 ng mL- 1 and 1.0 ng mL- 1, respectively. The results also showed that intra-day DRF assays using DRF-CuONPs-SDS and DRF-Cu(NO3)2-SDS systems yielded 0.17% and 0.54%, respectively. However, the inter-day assay results for the above systems were 0.27% and 0.65%, respectively. The aforementioned two systems were effectively used in the study of DRF with excellent percent recoveries of 99.66 ± 0.42% and 99.42 ± 0.56%, respectively. Excipients such as magnesium stearate, titanium dioxide, red iron oxide, and silicon dioxide used in pharmaceutical formulations, as well as various common cations, amino acids, and sugars, had no effect on the detection of compound.
Collapse
Affiliation(s)
- Seham S Alterary
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Gamal A E Mostafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
| | - Haitham Alrabiah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Monirah A Al-Alshaikh
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Maha F El-Tohamy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| |
Collapse
|
6
|
Palem RR, Bathula C, Shimoga G, Lee SH, Ghfar AA, Sekar S, Kim HS, Seo YS, Rabani I. Fabrication of Ru loaded MgB 2 with guar gum hybrid for photocatalytic degradation of crystal violet. Int J Biol Macromol 2023; 253:126948. [PMID: 37722634 DOI: 10.1016/j.ijbiomac.2023.126948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023]
Abstract
Today, dyes/pigment-based materials are confronting a serious issue in harming marine ecology. Annihilate these serious water pollutants using photoactive 2D nanohybrid catalysts showed promising comparativeness over available photocatalysts. In the present work, a facile route to decorate Ruthenium (Ru) on 2D MgB2 flower-like nanostructures was developed via ecofriendly guar gum biopolymer substantial template (MgB2/GG@Ru NFS) and its photocatalytic performance was reported. Synthesis of MgB2@Ru, MgB2/GG@Ru NFS and commercial MgB2, was studied by FTIR, XRD, FE-SEM, EDX, AFM, TEM, UV-vis spectra, and XPS analysis. From the results, the MgB2/GG@Ru NFS exhibited a superior photocatalytic performance (99.7 %) than its precursors MgB2@Ru (79.7 %), and MgB2 (53.7 %), with the degradation efficiency of the crystal violet (CV) within 100 min under visible light irradiation. The proposed photo-catalyst MgB2/GG@Ru NFS showed negligible loss of photocatalytic activity even after five successive cycles, revealing its reusability and enhanced stability due to the network structure. The photocatalytic mechanism for MgB2/GG@Ru NFS was evaluated by trapping experiment of active species, verifying that superoxide (O2-) and electron (e-) contributed significant role in the dye degradation.
Collapse
Affiliation(s)
- Ramasubba Reddy Palem
- Department of Medical Biotechnology, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi 10326, Republic of Korea
| | - Chinna Bathula
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Ganesh Shimoga
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7034 Trondheim, Norway; Interaction Lab, Future Convergence Engineering, Advanced Technology Research Centre, Korea University of Technology and Education, Cheonan-si 31253, Chungcheongnam-do, Republic of Korea
| | - Soo-Hong Lee
- Department of Medical Biotechnology, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi 10326, Republic of Korea
| | - Ayman A Ghfar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sankar Sekar
- Quantum-functional Semiconductor Research Center, Dongguk University-Seoul, Seoul 04620, Republic of Korea; Division of Physics and Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Young-Soo Seo
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Iqra Rabani
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
7
|
Jayaraman S, Rajarathinam T, Jang HG, Thirumalai D, Lee J, Paik HJ, Chang SC. Ruthenium-Anchored Carbon Sphere-Customized Sensor for the Selective Amperometric Detection of Melatonin. BIOSENSORS 2023; 13:936. [PMID: 37887129 PMCID: PMC10605478 DOI: 10.3390/bios13100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
Melatonin (MT), a pineal gland hormone, regulates the sleep/wake cycle and is a potential biomarker for neurodegenerative disorders, depression, hypertension, and several cancers, including prostate cancer and hepatocarcinoma. The amperometric detection of MT was achieved using a sensor customized with ruthenium-incorporated carbon spheres (Ru-CS), possessing C- and O-rich catalytically active Ru surfaces. The non-covalent interactions and ion-molecule adducts between Ru and CS favor the formation of heterojunctions at the sensor-analyte interface, thus accelerating the reactions towards MT. The Ru-CS/Screen-printed carbon electrode (SPCE) sensor demonstrated the outstanding electrocatalytic oxidation of MT owing to its high surface area and heterogeneous rate constants and afforded a lower detection limit (0.27 μM), high sensitivity (0.85 μA μM -1 cm-2), and excellent selectivity for MT with the co-existence of crucial neurotransmitters, including norepinephrine, epinephrine, dopamine, and serotonin. High concentrations of active biomolecules, such as ascorbic acid and tyrosine, did not interfere with MT detection. The practical feasibility of the sensor for MT detection in pharmaceutical samples was demonstrated, comparable to the data provided on the product labels. The developed amperometric sensor is highly suitable for the quality control of medicines because of its low cost, simplicity, small sample size, speed of analysis, and potential for automation.
Collapse
Affiliation(s)
- Sivaguru Jayaraman
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea; (S.J.); (T.R.); (H.-G.J.)
| | - Thenmozhi Rajarathinam
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea; (S.J.); (T.R.); (H.-G.J.)
| | - Hyeon-Geun Jang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea; (S.J.); (T.R.); (H.-G.J.)
| | - Dinakaran Thirumalai
- BIT Convergence-Based Innovative Drug Development Targeting Metainflammation, Pusan National University, Busan 46241, Republic of Korea; (D.T.); (J.L.)
| | - Jaewon Lee
- BIT Convergence-Based Innovative Drug Development Targeting Metainflammation, Pusan National University, Busan 46241, Republic of Korea; (D.T.); (J.L.)
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Hyun-Jong Paik
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea;
| | - Seung-Cheol Chang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea; (S.J.); (T.R.); (H.-G.J.)
| |
Collapse
|
8
|
Li Y, Yang Y, Huang Y, Li J, Zhao P, Fei J, Xie Y. An ultrasensitive dietary caffeic acid electrochemical sensor based on Pd-Ru bimetal catalyst doped nano sponge-like carbon. Food Chem 2023; 425:136484. [PMID: 37295208 DOI: 10.1016/j.foodchem.2023.136484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/11/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Caffeic acid (CA) is widely present in the human daily diet, and a reliable CA detection method is beneficial to food safety. Herein, we constructed a CA electrochemical sensor employing a glassy carbon electrode (GCE) which was modified by the bimetallic Pd-Ru nanoparticles decorated N-doped spongy porous carbon obtained by pyrolysis of the energetic metal-organic framework (MET). The high-energy bond N-NN in MET explodes to form N-doped sponge-like carbon materials (N-SCs) with porous structures, boosting the adsorptive capacity for CA. The addition of Pd-Ru bimetal improves the electrochemical sensitivity. The linear range of the PdRu/N-SCs/GCE sensor is 1 nM-100 nM and 100 nM-15 μM, with a low detection limit (LOD) of 0.19 nM. It has a high sensitivity (55 μA/μM) and repeatability. The PdRu/N-SCs/GCE sensor has been used to detect CA in actual samples of red wine, strawberries, and blueberries, providing a novel approach for CA detection in food analysis.
Collapse
Affiliation(s)
- Yuhong Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Yaqi Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Yutian Huang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Jiejun Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Pengcheng Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China; Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China; Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, People's Republic of China.
| | - Yixi Xie
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China; Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan 411105, People's Republic of China.
| |
Collapse
|
9
|
Ruthenium and Nickel Molybdate-Decorated 2D Porous Graphitic Carbon Nitrides for Highly Sensitive Cardiac Troponin Biosensor. BIOSENSORS 2022; 12:bios12100783. [PMID: 36290921 PMCID: PMC9599711 DOI: 10.3390/bios12100783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 12/14/2022]
Abstract
Two-dimensional (2D) layered materials functionalized with monometallic or bimetallic dopants are excellent materials to fabricate clinically useful biosensors. Herein, we report the synthesis of ruthenium nanoparticles (RuNPs) and nickel molybdate nanorods (NiMoO4 NRs) functionalized porous graphitic carbon nitrides (PCN) for the fabrication of sensitive and selective biosensors for cardiac troponin I (cTn-I). A wet chemical synthesis route was designed to synthesize PCN-RuNPs and PCN-NiMoO4 NRs. Morphological, elemental, spectroscopic, and electrochemical investigations confirmed the successful formation of these materials. PCN-RuNPs and PCN-NiMoO4 NRs interfaces showed significantly enhanced electrochemically active surface areas, abundant sites for immobilizing bioreceptors, porosity, and excellent aptamer capturing capacity. Both PCN-RuNPs and PCN-NiMoO4 NRs materials were used to develop cTn-I sensitive biosensors, which showed a working range of 0.1–10,000 ng/mL and LODs of 70.0 pg/mL and 50.0 pg/mL, respectively. In addition, the biosensors were highly selective and practically applicable. The functionalized 2D PCN materials are thus potential candidates to develop biosensors for detecting acute myocardial infractions.
Collapse
|