1
|
Holcomb M, Marshall AG, Flinn H, Lozano-Cavazos M, Soriano S, Gomez-Pinilla F, Treangen TJ, Villapol S. Probiotic treatment induces sex-dependent neuroprotection and gut microbiome shifts after traumatic brain injury. J Neuroinflammation 2025; 22:114. [PMID: 40254574 PMCID: PMC12010691 DOI: 10.1186/s12974-025-03419-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 03/16/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND Recent studies have highlighted the potential influence of gut dysbiosis on traumatic brain injury (TBI) outcomes. Alterations in the abundance and diversity of Lactobacillus species may affect immune dysregulation, neuroinflammatory responses, anxiety- and depressive-like behaviors, and neuroprotective mechanisms activated in response to TBI. OBJECTIVE This study aims to evaluate the protective and preventive effects of Pan-probiotic (PP) treatment on the inflammatory response during both the acute and chronic phases of TBI. METHODS Males and female mice underwent controlled cortical impact (CCI) injury or sham. They received a PP mixture in drinking water containing strains of Lactobacillus plantarum, L. reuteri, L. helveticas, L. fermentum, L. rhamnosus, L. gasseri, and L. casei. In the acute group, mice received PP or vehicle (VH) treatment for 7 weeks before TBI, continuing until 3 days post-injury (dpi). In the chronic group, treatment began 2 weeks before TBI and was extended through 35 dpi. The taxonomic microbiome profiles of fecal samples were evaluated using 16S rRNA V1-V3 sequencing analysis, and Short-chain fatty acids (SCFAs) were measured. Immunohistochemical, in situ hybridization, and histological analyses were performed to assess neuroinflammation post-TBI, while behavioral assessments were conducted to evaluate sensorimotor and cognitive functions. RESULTS Our findings suggest that a 7-week PP administration induces specific microbial changes, including increased abundance of beneficial bacteria such as Lactobacillaceae, Limosilactobacillus, and Lactiplantibacillus. PP treatment reduces lesion volume and cell death at 3 dpi, elevates SCFA levels at 35 dpi, and decreases microglial activation at both time points, particularly in males. Additionally, PP treatment improved motor recovery in males and alleviated depressive-like behaviors in females. CONCLUSION Our findings indicate that PP administration modulates microbiome composition, reduces neuroinflammation, and improves motor deficits following TBI, with these effects being particularly pronounced in male mice.
Collapse
Affiliation(s)
- Morgan Holcomb
- Department of Neurosurgery and Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Austin G Marshall
- Department of Neurosurgery and Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Hannah Flinn
- Department of Neurosurgery and Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Mariana Lozano-Cavazos
- Department of Neurosurgery and Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Sirena Soriano
- Department of Neurosurgery and Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Fernando Gomez-Pinilla
- Departments of Neurosurgery and Integrative Biology and Physiology, Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Todd J Treangen
- Department of Computer Science, Rice University, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
- Ken Kennedy Institute, Rice University, Houston, TX, USA
| | - Sonia Villapol
- Department of Neurosurgery and Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Neuroscience in Neurological Surgery, Weill Cornell Medical College, New York City, NY, USA.
| |
Collapse
|
2
|
Zhang J, Duan X, Chen X, Qian S, Ma J, Jiang Z, Hou J. Lactobacillus rhamnosus 1.0320 Postbiotics Ameliorate Dextran Sodium Sulfate-Induced Colonic Inflammation and Oxidative Stress by Regulating the Intestinal Barrier and Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25078-25093. [PMID: 39485947 DOI: 10.1021/acs.jafc.4c06303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Probiotics are increasingly being used as an adjunctive therapy for ulcerative colitis. However, some safety issues have been found in the clinical use of probiotics. Postbiotics have attracted much attention due to their storage stability, safety, and potential functions, but the dose required to exert a significant protective effect is unknown. Therefore, this study evaluated the potential mechanisms of different doses (200, 400, 600 mg/kg) of Lactobacillus rhamnosus 1.0320 postbiotics (1.0320P) in alleviating dextran sodium sulfate (DSS)-induced colitis. The study revealed that 1.0320P could mitigate DSS-induced colitis with signs of reductions in the disease activity index, amelioration of colon tissue damage, decreased secretion of proinflammatory cytokines, reduced oxidative stress levels, and lower bone marrow peroxidase activity. Furthermore, high dose of 1.0320P could upregulated the expression of key proteins in the Nrf2/ARE pathway (NQO1, Nrf2, and HO-1) and downregulated the expression of key proteins in the TLR4/NF-κB signaling pathway (TLR4, MyD88, and NF-κB p65). In addition, high dose of 1.0320P could upregulate the expression of tight junction (TJ) proteins including ZO-1, Occludin, and Claudin-1, contributing to the restoration of the intestinal mucosal barrier function. Additionally, 1.0320P was found to effectively correct imbalances in the intestinal microbiota and enhance the synthesis of short-chain fatty acids (SCFAs), thereby regulating homeostasis in the intestinal internal environment. Overall, our findings suggest that postbiotics could ameliorate colonic inflammation while being somewhat dose-dependent. This study provides new insights into postbiotics as a next-generation biotherapeutic agent for the treatment of ulcerative colitis and even other diseases.
Collapse
Affiliation(s)
- Jing Zhang
- Ministry of Education, College of Food Science, Key Laboratory of Dairy Science (Northeast Agricultural University), Harbin 150030, China
| | - Xiaolei Duan
- Ministry of Education, College of Food Science, Key Laboratory of Dairy Science (Northeast Agricultural University), Harbin 150030, China
| | - Xianhui Chen
- Ministry of Education, College of Food Science, Key Laboratory of Dairy Science (Northeast Agricultural University), Harbin 150030, China
| | - Shanshan Qian
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China
| | - Jiage Ma
- Ministry of Education, College of Food Science, Key Laboratory of Dairy Science (Northeast Agricultural University), Harbin 150030, China
| | - Zhanmei Jiang
- Ministry of Education, College of Food Science, Key Laboratory of Dairy Science (Northeast Agricultural University), Harbin 150030, China
| | - Juncai Hou
- Ministry of Education, College of Food Science, Key Laboratory of Dairy Science (Northeast Agricultural University), Harbin 150030, China
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China
| |
Collapse
|
3
|
Wang W, Chang J, Zhang Z, Liu H, He L, Liu Y, Kang J, Goff HD, Li Z, Guo Q. The galactomannan-EGCG physical complex: Effect of branching degree and molecular weight on structural and physiological properties. Carbohydr Polym 2024; 343:122447. [PMID: 39174126 DOI: 10.1016/j.carbpol.2024.122447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/09/2024] [Accepted: 06/27/2024] [Indexed: 08/24/2024]
Abstract
Polysaccharides and polyphenols are bioactive components that co-exist in many plant foods. Their binary interaction in terms of the structure-function relationships, however, has not been well clarified. This study elucidated the correlation between the structural and physiological properties of galactomannan (GM) -catechin monomer complexes and GM with different branching or molecular weight (Mw). Results indicated that locus bean gum with lower branching degree (Gal/Man is 0.259) bound more readily to EGCG with adsorption rate of 19.42 %. EGCG and ECG containing galloyl groups were more inclined to form hydrogen bonds with GMs, significantly improving the adsorption by GMs. The introduction of EGCG could enhance the antioxidant activity and starch digestion inhibition of GM, which positively correlated with the adsorption capacity of EGCG. The guar gum (GG) with higher Mw (7384.3 kDa) could transport 71.51 % EGCG into the colon, while the retention rate of EGCG reaching the colon alone was only 46.33 %. Conversely, GM-EGCG complex with lower Mw (6.9 kDa) could be readily utilized by gut microbiota, and increased production of short-chain fatty acids (SCFAs). This study elucidated the structure-properties relationship of GM-EGCG complexes, and provide a new idea for the development and precision nutrition of polysaccharides-polyphenol complexes fortified functional foods.
Collapse
Affiliation(s)
- Wan Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Junhui Chang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Zhihui Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Haijing Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Li He
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yan Liu
- College of Food and Health, Zhejiang Agriculture and Forestry University, No. 666, Wusu Road, Linan District, 311300 Hangzhou, Zhejiang Province, China
| | - Ji Kang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - H Douglas Goff
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Zhenjing Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
4
|
Duan W, Liu F, Ren Y, Zhang X, Shi JS, Xue Y, Xu ZH, Geng Y. Differences in the Ability of Lactic Acid Bacteria To Prevent Acute Alcohol-Induced Liver Injury via the Gut Microbiota-Bile Acid-Liver Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15265-15275. [PMID: 38918075 DOI: 10.1021/acs.jafc.4c01353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Probiotics can regulate gut microbiota and protect against acute alcohol-induced liver injury through the gut-liver axis. However, efficacy is strain-dependent, and their mechanism remains unclear. This study investigated the effect of lactic acid bacteria (LAB), including Lacticaseibacillus paracasei E10 (E10), Lactiplantibacillus plantarum M (M), Lacticaseibacillus rhamnosus LGG (LGG), Lacticaseibacillus paracasei JN-1 (JN-1), and Lacticaseibacillus paracasei JN-8 (JN-8), on the prevention of acute alcoholic liver injury in mice. We found that LAB pretreatment reduced serum alanine transaminase (ALT) and aspartate transaminase (AST) and reduced hepatic total cholesterol (TC) and triglyceride (TG). JN-8 pretreatment exhibited superior efficacy in improving hepatic antioxidation. LGG and JN-8 pretreatment significantly attenuated hepatic and colonic inflammation by decreasing the expression of interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) and increasing the expression of interleukin 10 (IL-10). JN-1 and JN-8 pretreatments have better preventive effects than other LAB pretreatment on intestinal barrier dysfunction. In addition, the LAB pretreatment improved gut microbial dysbiosis and bile acid (BA) metabolic abnormality. All of the strains were confirmed to have bile salt deconjugation capacities in vitro, where M and JN-8 displayed higher activities. This study provides new insights into the prevention and mechanism of LAB strains in preventing acute alcoholic liver injury.
Collapse
Affiliation(s)
- Wenhui Duan
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Fei Liu
- Wuxi Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yilin Ren
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiaojuan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jin-Song Shi
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yuzheng Xue
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zheng-Hong Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Advanced Brewing Technology Innovation Center, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Yan Geng
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
5
|
Yu J, Wang J, Cao C, Gong J, Cao J, Yin J, Wu S, Huang P, Tan B, Fan Z. Maternal intervention with a combination of galacto-oligosaccharides and hyocholic acids during late gestation and lactation increased the reproductive performance, colostrum composition, antioxidant and altered intestinal microflora in sows. Front Microbiol 2024; 15:1367877. [PMID: 38933026 PMCID: PMC11199897 DOI: 10.3389/fmicb.2024.1367877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction This study was conducted to evaluate the effects of dietary galacto-oligosaccharides (GOS) and hyocholic acids (HCA) during late gestation and lactation on reproductive performance, colostrum quality, antioxidant capacity and gut microbiota in multiparous sows. Methods A total of 60 healthy multiparous cross-bred sows (Landrace × Yorkshire) were randomly fed 4 groups diets as follows: the basal diets (CTRL group), or the basal diets containing only 600 mg/kg GOS (GOS group), 600 mg/kg GOS + 100 mg/kg HCA (GOS + Low HCA group), and 600 mg/kg + 200 mg/kg HCA (GOS + High HCA group) from d 85 of gestation to weaning. Multiple parameters of sows were determined. Results There was a trend of shortening the labor process of sows (p = 0.07) in the GOS group and GOS + Low/High HCA group. Compared with the CTRL group, the GOS + Low/High HCA group increased the average piglets weight at birth (p < 0.05), and increased the IgA concentration of colostrum (p < 0.05). In addition, serum triglyceride (TG) concentration was lower (p < 0.05), and serum total antioxidant capacity (T-AOC) was higher (p < 0.05) in the GOS and GOS + Low/High HCA groups than in the CTRL group at farrowing. Serum catalase (CAT) activities was higher in the GOS and GOS + High HCA groups than in the CTRL group at farrowing. The 16S rRNA analysis showed that GOS combination with high-dose HCA shaped the composition of gut microbiota in different reproductive stages (d 107 of gestation, G107; d 0 of lactation, L0; d 7 of lactation, L7). At the phylum level, the relative abundance of Bacteroidota and Desulfobacterota in G107, Bacteroidota, and Proteobacteria in L0, and Planctomycetota in L7 was increased in GOS + High HCA group (p < 0.05). Spearman correlation analysis showed that Streptococcus was positively correlated with the serum TG but negatively correlated with the average piglets weight at birth (p < 0.05). Conclusion This investigation demonstrated that the administration of galacto-oligosaccharides (GOS) in conjunction with hyocholic acids (HCA), to sows with nutrient restrictions during late gestation and lactation, further improved their antioxidant capacity and milk quality. The observed beneficial effects of GOS + HCA supplementation could potentially be linked to an improvement in gut microbiota disorders of the sows.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Bi’e Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhiyong Fan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
6
|
Wang K, Duan F, Sun T, Zhang Y, Lu L. Galactooligosaccharides: Synthesis, metabolism, bioactivities and food applications. Crit Rev Food Sci Nutr 2024; 64:6160-6176. [PMID: 36632761 DOI: 10.1080/10408398.2022.2164244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Prebiotics are non-digestible ingredients that exert significant health-promoting effects on hosts. Galactooligosaccharides (GOS) have remarkable prebiotic effects and structural similarity to human milk oligosaccharides. They generally comprise two to eight sugar units, including galactose and glucose, which are synthesized from substrate lactose by microbial β-galactosidase. Enzyme sources from probiotics have received particular interest because of their safety and potential to synthesize specific structures that are particularly metabolized by intestinal probiotics. Owing to advancements in modern analytical techniques, many GOS structures have been identified, which vary in degree of polymerization, glycosidic linkage, and branch location. After intake, GOS adjust gut microbiota which produce short chain fatty acids, and exhibit excellent biological activities. They selectively stimulate the proliferation of probiotics, inhibit the growth and adhesion of pathogenic bacteria, alleviate gastrointestinal, neurological, metabolic and allergic diseases, modulate metabolites production, and adjust ion storage and absorption. Additionally, GOS are safe and stable, with high solubility and clean taste, and thus are widely used as food additives. GOS can improve the appearance, flavor, taste, texture, viscosity, rheological properties, shelf life, and health benefits of food products. This review systemically covers GOS synthesis, structure identifications, metabolism mechanisms, prebiotic bioactivities and wide applications, focusing on recent advances.
Collapse
Affiliation(s)
- Ke Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feiyu Duan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tong Sun
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Lu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Soomro MA, Khan S, Majid A, Bhatti S, Perveen S, Phull AR. Pectin as a biofunctional food: comprehensive overview of its therapeutic effects and antidiabetic-associated mechanisms. DISCOVER APPLIED SCIENCES 2024; 6:298. [DOI: 10.1007/s42452-024-05968-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/15/2024] [Indexed: 07/06/2024]
Abstract
AbstractPectin is a complex polysaccharide found in a variety of fruits and vegetables. It has been shown to have potential antidiabetic activity along with other biological activities, including cholesterol-lowering properties, antioxidant activity, anti-inflammatory and immune-modulatory effects, augmented healing of diabetic foot ulcers and other health benefits. There are several pectin-associated antidiabetic mechanisms, such as the regulation of glucose metabolism, reduction of oxidative stress, increased insulin sensitivity, appetite suppression and modulation of the gut microbiome. Studies have shown that pectin supplementation has antidiabetic effects in different animal models and in vitro. In human studies, pectin has been found to have a positive effect on blood glucose control, particularly in individuals with type 2 diabetes. Pectin also shows synergistic effects by enhancing the potency and efficacy of antidiabetic drugs when taken together. In conclusion, pectin has the potential to be an effective antidiabetic agent. However, further research is needed to fully understand its detailed molecular mechanisms in various animal models, functional food formulations and safety profiles for the treatment and management of diabetes and associated complications in humans. The current study was carried out to provide the critical approach towards therapeutical potential, anti-diabetic potential and underlying molecular mechanisms on the basis of existing knowledge.
Collapse
|
8
|
Holcomb M, Marshall A, Flinn H, Lozano M, Soriano S, Gomez-Pinilla F, Treangen TJ, Villapol S. Probiotic treatment causes sex-specific neuroprotection after traumatic brain injury in mice. RESEARCH SQUARE 2024:rs.3.rs-4196801. [PMID: 38645104 PMCID: PMC11030542 DOI: 10.21203/rs.3.rs-4196801/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background Recent studies have shed light on the potential role of gut dysbiosis in shaping traumatic brain injury (TBI) outcomes. Changes in the levels and types of Lactobacillus bacteria present might impact the immune system disturbances, neuroinflammatory responses, anxiety and depressive-like behaviors, and compromised neuroprotection mechanisms triggered by TBI. Objective This study aimed to investigate the effects of a daily pan-probiotic (PP) mixture in drinking water containing strains of Lactobacillus plantarum, L. reuteri, L. helveticus, L. fermentum, L. rhamnosus, L. gasseri, and L. casei, administered for either two or seven weeks before inducing TBI on both male and female mice. Methods Mice were subjected to controlled cortical impact (CCI) injury. Short-chain fatty acids (SCFAs) analysis was performed for metabolite measurements. The taxonomic profiles of murine fecal samples were evaluated using 16S rRNA V1-V3 sequencing analysis. Histological analyses were used to assess neuroinflammation and gut changes post-TBI, while behavioral tests were conducted to evaluate sensorimotor and cognitive functions. Results Our findings suggest that PP administration modulates the diversity and composition of the microbiome and increases the levels of SCFAs in a sex-dependent manner. We also observed a reduction of lesion volume, cell death, and microglial and macrophage activation after PP treatment following TBI in male mice. Furthermore, PP-treated mice show motor function improvements and decreases in anxiety and depressive-like behaviors. Conclusion Our findings suggest that PP administration can mitigate neuroinflammation and ameliorate motor and anxiety and depressive-like behavior deficits following TBI. These results underscore the potential of probiotic interventions as a viable therapeutic strategy to address TBI-induced impairments, emphasizing the need for gender-specific treatment approaches.
Collapse
|
9
|
Chen F, Pan J, Yu L, Wang S, Zhang C, Zhao J, Narbad A, Zhai Q, Tian F. Lactiplantibacillus plantarum CCFM8661 alleviates D-galactose-induced brain aging in mice by the regulation of the gut microbiota. Food Funct 2023; 14:10135-10150. [PMID: 37901912 DOI: 10.1039/d3fo03377e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Aging is characterized by a decline in biological functions, leading to various health issues. There is significant interest in mitigating age and age-related health issues. Gut microbiota has emerged as a crucial target for combating aging and influencing host health. This study evaluated the anti-aging effects of Lactiplantibacillus plantarum CCFM8661 in mice and the role of the gut microbiota in mediating its effects. Aging was induced in mice using D-galactose, and L. plantarum CCFM8661 was orally administered for 8 weeks to evaluate its effects on age-related decline and the gut microbiota. The results demonstrated that supplementation with L. plantarum CCFM8661 effectively alleviated cognitive impairment and oxidative stress in the aging brain, as well as liver oxidation and bone damage, and impaired intestinal barrier function in aging mice. Furthermore, L. plantarum CCFM8661 modulated the gut microbiota of aging mice, increasing the abundance of beneficial bacteria, such as Ruminococcaceae, and influenced the functionality of the gut microbiota to promote the production of active metabolites. These findings suggest that L. plantarum CCFM8661 has a mitigating effect on organismal aging, especially brain aging.
Collapse
Affiliation(s)
- Feng Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiani Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Shunhe Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China
- Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, 16 NR4 7UQ, UK
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
10
|
Gao K, Chen C, Ke X, Fan Q, Wang H, Li Y, Chen S. Improvements of Age-Related Cognitive Decline in Mice by Lactobacillus helveticus WHH1889, a Novel Strain with Psychobiotic Properties. Nutrients 2023; 15:3852. [PMID: 37686884 PMCID: PMC10489973 DOI: 10.3390/nu15173852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
A gradual decline in cognitive function occurs with age. Accumulating evidence suggests that certain probiotic strains exert beneficial effects on age-related cognitive decline. Our previous study revealed that Lactobacillus helveticus WHH1889 attenuated symptoms of anxiety and depression in depressed mice via shaping the 5-hydroxytryptamine (5-HT) and 5-hydroxytryptophan (5-HTP) metabolism and gut microbial community, indicating the psychobiotic potential of WHH1889. In the present study, the effects of WHH1889 on age-related cognitive decline were investigated. WHH1889 was orally administrated (1 × 109 CFU/day) for twelve weeks in aged mice, and their cognitive behaviors, neurochemical factors, cognitive-related gene expressions, neuroinflammation, and serum tryptophan pathway-targeted metabolic profiling, as well as gut microbiome composition were assessed. WHH1889 demonstrated improvement of the cognitive behaviors via the novel object recognition test (NORT), the active shuttle avoidance test (ASAT), the Y-maze test, and the passive avoidance test (PAT). The hippocampal neuronal loss; the declined concentrations of BDNF, 5-HT, and 5-HTP; the decreased gene expressions of neurodegeneration biomarkers; and the increased production of hippocampal inflammatory cytokines in aged mice were restored by WHH1889. In addition, WHH1889 increased the 5-HT/5HTP levels and decreased the serum levels of tryptophan-derived metabolites (e.g., kynurenine, xanthurenic acid, 3-hydroxykynurenine, and 3-hydroxyanthranilic acid). Furthermore, WHH1889 was revealed to shape the gut microbiota community by reversing the relative abundances of Bacteroidota and Firmicutes. The present findings suggest that L. helveticus WHH1889 exerted cognitive improving effects on aged mice, which was associated with the modulation of 5-HT and 5-HTP metabolism and gut microbial composition. The supplementation of WHH1889 may therefore be a promising therapeutic agent for age-related cognitive deficits.
Collapse
Affiliation(s)
- Kan Gao
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou 310018, China; (K.G.); (C.C.); (X.K.); (Q.F.); (Y.L.)
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou 310018, China
- MOE Key Laboratory of Molecular Animal Nutrition, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Cailing Chen
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou 310018, China; (K.G.); (C.C.); (X.K.); (Q.F.); (Y.L.)
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou 310018, China
| | - Xueqin Ke
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou 310018, China; (K.G.); (C.C.); (X.K.); (Q.F.); (Y.L.)
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou 310018, China
| | - Qiuling Fan
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou 310018, China; (K.G.); (C.C.); (X.K.); (Q.F.); (Y.L.)
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou 310018, China
| | - Haifeng Wang
- MOE Key Laboratory of Molecular Animal Nutrition, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Yanjun Li
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou 310018, China; (K.G.); (C.C.); (X.K.); (Q.F.); (Y.L.)
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou 310018, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Su Chen
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou 310018, China; (K.G.); (C.C.); (X.K.); (Q.F.); (Y.L.)
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou 310018, China
| |
Collapse
|
11
|
Yang L, Wang Y, Li Z, Wu X, Mei J, Zheng G. Brain targeted peptide-functionalized chitosan nanoparticles for resveratrol delivery: Impact on insulin resistance and gut microbiota in obesity-related Alzheimer's disease. Carbohydr Polym 2023; 310:120714. [PMID: 36925241 DOI: 10.1016/j.carbpol.2023.120714] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
The pathology of Alzheimer's disease (AD) is highly correlated with obesity-induced insulin resistance. Resveratrol (Res) is a natural phenol that demonstrates a neuroprotective effect, but the bioactivity of Res is low in vivo. Here, chitosan (CS) was cross-linked with sodium tripolyphosphate (TPP) to encapsulate low water solubility Res. Next, a brain-targeted peptide (TG: TGNYKALHPHNG) was modified on the surface of Res-loaded CS/TPP nanoparticles (TG-Res-CS/TPP-NPs) to specifically deliver Res to the brain. Morris water maze results indicated that cognitive impairments were ameliorated by TG-Res-CS/TPP-NPs in obesity-related AD mice. Obesity-related insulin resistance promotes Tau phosphorylation and Aβ aggregation in the brain. Administration of TG-Res-CS/TPP-NPs alleviated lipid deposition-induced insulin resistance and decreased the level of phosphorylated Tau and Aβ aggregation via the JNK/AKT/GSK3β pathway. Additionally, TG-Res-CS/TPP-NPs transported across blood-brain barrier which in turn increased glucose transporter expression levels, antioxidant enzyme activity and inhibited microglial cell activation. Thus, TG-Res-CS/TPP-NPs were more effective than Res-CS/TPP-NPs at regulating glucose homeostasis, oxidative stress and neuroinflammation in the brain. Moreover, inflammatory, lipid metabolism and oxidative stress-related gut microbiota including Helicobacter, Colidextribacter, Anaerotruncus, Parasutterella, Allobaculum, Alloprevotella, Alistipes, Bifidobacterium and Candidatus_Saccharimonas were also regulated by TG-Res-CS/TPP-NPs. This work indicates the potential use of TG-Res-CS/TPP-NPs for the delivery of Res.
Collapse
Affiliation(s)
- Licong Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Yabin Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhiwei Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaohua Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jingtao Mei
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
12
|
Martinez-Vega MV, Galván-Menéndez-Conde S, Freyre-Fonseca V. Possible Signaling Pathways in the Gut Microbiota-Brain Axis for the Development of Parkinson's Disease Caused by Chronic Consumption of Food Additives. ACS Chem Neurosci 2023. [PMID: 37171224 DOI: 10.1021/acschemneuro.3c00170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
It is well-known that consumption of synthetic and natural food additives has both positive and negative effects in the human body. However, it is not clear yet how food additives are related to the development of Parkinson's disease. Therefore, in this review work, the food additive effects related to the gut microbiota-brain axis and the processes that are carried out to develop Parkinson's disease are studied. To this end, a systematic literature analysis is performed with the selected keywords and the food additive effects are studied to draw possible routes of action. This analysis leads to the proposition of a model that explains the pathways that relate the ingestion of food additives to the development of Parkinson's disease. This work motivates further research that ponders the safety of food additives by measuring their impacts over the gut microbiota-brain axis.
Collapse
Affiliation(s)
- Melanie Verónica Martinez-Vega
- Facultad de Ciencias de la Salud, Universidad Anahuac Mexico, Av. Universidad Anahuac 46, Naucalpan de Juarez 52786, Mexico
| | | | - Verónica Freyre-Fonseca
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México, Campus Norte, Huixquilucan, Estado de México 52786, Mexico
| |
Collapse
|
13
|
Wang W, Xu C, Wang Q, Hussain MA, Wang C, Hou J, Jiang Z. Protective Effect of Polyphenols, Protein, Peptides, and Polysaccharides on Alcoholic Liver Disease: A Review of Research Status and Molecular Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37001022 DOI: 10.1021/acs.jafc.2c07081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Alcoholic liver disease (ALD) has emerged as an important public health problem in the world. The polyphenols, protein, peptides, and polysaccharides have attracted attention for prevention or treatment of ALD. Therefore, this paper reviews the pathogenesis of ALD, the relationship between polyphenols, peptides, polysaccharides, and ALD, and expounds the mechanism of gut microbiota on protecting ALD. It is mainly found that the hydroxyl group of polyphenols endows it with antioxidation to protect ALD. The ALD protection of bioactive peptides is related to amino acid composition. The ALD protection of polysaccharides is related to the primary structure. Meanwhile, polyphenols, protein, peptides, and polysaccharides prevent or treat ALD by antioxidation, anti-inflammatory, antiapoptosis, lipid metabolism, and gut microbiota regulation. This contribution provides updated information on polyphenols, protein, peptides, and polysaccharides in response to ALD, which will not only facilitate the development of novel bioactive components but also the future application of functional food raw materials will be promoted.
Collapse
Affiliation(s)
- Wan Wang
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Cong Xu
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qingyun Wang
- Beidahuang Wondersun Dairy Co., Ltd., Harbin 150090, China
| | - Muhammad Altaf Hussain
- Lasbela University of Agriculture, Water and Marine Science Uthal, Balochistan 90150, Pakistan
| | - Changyuan Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Juncai Hou
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
14
|
Wang W, Zhao X, Ma Y, Zhang J, Xu C, Ma J, Hussain MA, Hou J, Qian S. Alleviating Effect of Lacticaseibacillus rhamnosus 1.0320 Combined with Dihydromyricetin on Acute Alcohol Exposure-Induced Hepatic Impairment: Based on Short-Chain Fatty Acids and Adenosine 5'-Monophosphate-Activated Protein Kinase-Mediated Lipid Metabolism Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4837-4850. [PMID: 36930948 DOI: 10.1021/acs.jafc.2c08523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Excessive drinking has been listed by the World Health Organization as the fifth major risk factor; especially the liver, as the core organ of alcohol metabolism, is prone to organic lesions. Probiotics have received attention due to their bioactivity for liver protection. The beneficial effects of probiotics on hosts are related to their physiological functions. Therefore, based on the concept of second-generation synbiotes, this study explored the protective effects of four dietary polyphenols on the stress tolerance, hydrophobicity, adhesion, and digestive characteristics of L. rhamnosus 1.0320. L. rhamnosus 1.0320 had the best synergistic effect with dihydromyricetin (DMY). Therefore, this combination was selected as a synbiotic supplement to explore the protective effect on acute alcohol exposure-induced hepatic impairment. The results showed that L. rhamnosus 1.0320 combined with DMY restored the intestinal barrier by upregulating short-chain fatty acid levels and activated the adenosine 5'-monophosphate-activated protein kinase-mediated lipid metabolism pathway to inhibit oxidative stress, inflammation, and lipid accumulation in the liver. Furthermore, 109 CFU/mouse/d L. rhamnosus 1.0320 and 50 mg/kg/d DMY by gavage were identified as the optimal doses for protection against acute alcohol expose-induced hepatic impairment. This study provides new insights into alleviating acute alcoholic hepatic impairment by targeting intestinal metabolites through the gut-liver axis.
Collapse
Affiliation(s)
- Wan Wang
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xu Zhao
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Ma
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jing Zhang
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Cong Xu
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiage Ma
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Muhammad Altaf Hussain
- Lasbela University of Agriculture, Water and Marine Science, Uthal 90150, Balochistan, Pakistan
| | - Juncai Hou
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Shanshan Qian
- Analysis and Testing Sharing Center of the State-Owned Asset Management Office, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
15
|
Wang W, Shang H, Li J, Ma Y, Xu C, Ma J, Hou J, Jiang Z. Four Different Structural Dietary Polyphenols, Especially Dihydromyricetin, Possess Superior Protective Effect on Ethanol-Induced ICE-6 and AML-12 Cytotoxicity: The Role of CYP2E1 and Keap1-Nrf2 Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1518-1530. [PMID: 36637065 DOI: 10.1021/acs.jafc.2c06478] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Polyphenols have received attention as dietary supplements for the relief of alcoholic liver disease (ALD) due to various bioactivities. Ethanol-induced rat small intestinal epithelial cell 6 (IEC-6) and alpha mouse liver 12 (AML-12) cell models were pretreated with four dietary polyphenols with different structures to explore their effects on cytotoxicity and potential protective mechanisms. The results showed that polyphenols had potential functions to inhibit ethanol-induced AML-12 and IEC-6 cell damage and oxidative stress, and restore ethanol-induced IEC-6 permeability and tight junction gene expression. Especially, dihydromyricetin (DMY) had the best protective effect on ethanol-induced cytotoxicity, followed by apigenin (API). Western blot results showed that DMY and API had the best ability to inhibit CYP2E1 and Keap1, and promote nuclear translocation of Nrf2, which might be the potential mechanism by which DMY and API attenuate ethanol-induced cytotoxicity. Moreover, the molecular docking results predicted that DMY and API could bind more tightly to the amino acid residues of CYP2E1 and Keap1, which might be one of the inhibitory modes of dietary polyphenols on CYP2E1 and Keap1. This study provided a rationale for the subsequent protective effect of dietary polyphenols on alcohol-induced liver injury in animal models and provided new clues on bioactive components for ALD-protection based on the gut-liver axis.
Collapse
Affiliation(s)
- Wan Wang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Hang Shang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Jinzhe Li
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Yue Ma
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Cong Xu
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Jiage Ma
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Juncai Hou
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| |
Collapse
|
16
|
Chen Q, Liu C, Zhang Y, Wang S, Li F. Effect of Lactobacillus plantarum KSFY01 on the exercise capacity of D-galactose-induced oxidative stress-aged mice. Front Microbiol 2022; 13:1030833. [PMID: 36620024 PMCID: PMC9812958 DOI: 10.3389/fmicb.2022.1030833] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Objectives Aging is a process that involves comprehensive physiological changes throughout the body, and improvements in the exercise capacity of individuals may delay aging and relieve fatigue. Probiotics are subject to ongoing research to investigate their antioxidant properties. The purpose of this study was to investigate the effect of the probiotic Lactobacillus plantarum KSFY01 (L. plantarum KSFY01) on exercise tolerance in mice induced into a state of accelerated physiological aging by oxidative stress. Methods A mouse model of accelerated aging was established using D-galactose to induce oxidative stress. The bacteria L. plantarum KSFY01 was isolated from fermented yak yogurt. The effect of L. plantarum KSFY01 on the improvement of exercise capacity in aging-accelerated mice was evaluated by measuring their running time until exhaustion, histopathological sections, related biochemical indicators, and underlying gene expression. Results The oral administration of L. plantarum KSFY01 prolonged the running time of mice and reduced their creatine kinase (CK), alanine aminotransferase (ALT), and aspartate aminotransferasem (AST) levels. From this study, we observed that L. plantarum KSFY01 significantly improved the exercise capacity of mice and alleviated liver damage. Treatment with L. plantarum KSFY01 reduced the blood urea nitrogen (BUN), lactic acid (LD) accumulation, and lactate dehydrogenase (LDH) elevations produced by the accelerated aging state, and also reversed the changes in muscle glycogen (MG). Overall, L. plantarum KSFY01 could effectively improve metabolite accumulation, thereby relieving fatigue in exercised mice. The results of the antioxidant indices in vivo showed that L. plantarum KSFY01 intervention increased the activity of antioxidant enzymes, decreased the level of malondialdehyde (MDA), and restored the balance between the oxidative and antioxidant systems in fatigued mice. By investigating the underlying molecular mechanism, our results showed that L. plantarum KSFY01 intervention significantly reversed the decline in the expression levels of nuclear factor-erythroid 2 related factor 2 (Nrf2) signaling pathway-related factors and improved the body's antioxidant capacity. We determined that the underlying molecular mechanism responsible for the antioxidant effect of L. plantarum KSFY01 mainly involves the activation of the Nrf2 pathway. The effect of L. plantarum KSFY01 was dose-dependent, and the expression level of Nrf2 increased with increasing dosage of the probiotic. Conclusion This study demonstrated that the probiotic L. plantarum KSFY01 exerts antioxidant effects and improved the athletic ability of mice. These findings are of significance to the development and utilization of probiotic resources.
Collapse
Affiliation(s)
- Qiuping Chen
- Department of Education Management, Our Lady of Fatima University, Valenzuela, Philippines
| | - Chuannan Liu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Yinglong Zhang
- School of Physical Education, Yan’an University, Yan’an, China
| | - Shuai Wang
- The First Middle School of Tongliao City, Tongliao, China
| | - Fang Li
- Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food Chongqing University of Education, Chongqing, China,*Correspondence: Fang Li, ✉
| |
Collapse
|
17
|
Zeng Y, Song J, Zhang Y, Huang Y, Zhang F, Suo H. Promoting Effect and Potential Mechanism of Lactobacillus pentosus LPQ1-Produced Active Compounds on the Secretion of 5-Hydroxytryptophan. Foods 2022; 11:foods11233895. [PMID: 36496703 PMCID: PMC9740157 DOI: 10.3390/foods11233895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
5-hydroxytryptophan (5-HTP) is an important substance thought to improve depression. It has been shown that Lactobacillus can promote the secretion of 5-HTP in the body and thus ameliorate depression-like behavior in mice. However, the mechanism by which Lactobacillus promotes the secretion of 5-HTP is unclear. In this study, we investigated the promoting effect and mechanism of Lactobacillus, isolated from Chinese fermented foods, on the secretion of 5-HTP. The results showed that Lactobacillus (L.) pentosus LPQ1 exhibited the strongest 5-HTP secretion-promoting effect ((9.44 ± 0.69)-fold), which was dependent on the mixture of compounds secreted by L. pentosus LPQ1 (termed SLPQ1). In addition, the results of the RNA sequencing (RNA-seq) and quantitative real-time polymerase chain reaction (qRT-PCR) analyses indicated that SLPQ1 alters the TNF and oxidative phosphorylation signaling pathways. Moreover, the SLPQ1 ultrafiltration fraction (>10 kDa) showed a similar 5-HTP promoting effect as SLPQ1. Furthermore, reverse-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) identified 29 compounds of >10 kDa in SLPQ1, including DUF488 domain-containing protein, BspA family leucine-rich repeat surface protein, and 30S ribosomal protein S5, which together accounted for up to 62.51%. This study reports new findings on the mechanism by which L. pentosus LPQ1 promotes 5-HTP production in some cell lines in vitro.
Collapse
Affiliation(s)
- Yixiu Zeng
- College of Food Science, Southwest University, Chongqing 400715, China
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuhong Zhang
- Institute of Food Sciences and Technology, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Yechuan Huang
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, China
| | - Feng Zhang
- Chongqing Tianyou Dairy Co., Ltd., Chongqing 401120, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China
- Correspondence:
| |
Collapse
|
18
|
Yao D, Yu Q, Xu L, Su T, Ma L, Wang X, Wu M, Li Z, Zhang D, Wang C. Wheat supplement with buckwheat affect gut microbiome composition and circulate short-chain fatty acids. Front Nutr 2022; 9:952738. [PMID: 36147303 PMCID: PMC9486400 DOI: 10.3389/fnut.2022.952738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/08/2022] [Indexed: 12/23/2022] Open
Abstract
Buckwheat has beneficial effects on human intestinal health, which is often compounded with wheat to make food. Therefore, the effect of cereals mixture via in vitro fermentation on gut microbes and short-chain fatty acids (SCFAs) were investigated in this study. The mixture of wheat and tartary buckwheat (WT) produced more lactate and acetate, and the mixture of wheat and sweet buckwheat (WE) produced more propionate and butyrate. Compared with wheat (WA), the relative abundance of some beneficial bacteria significantly increased, such as Sutterella in WT and Faecalibacterium in WE. Cereals mixture also affected the expression of functional genes, involved in metabolic pathways and carbohydrate-active enzymes (CAZymes) that modulated SCFAs generation. This study provides new insights into the effects of sweet and tartary buckwheat on intestinal function, which is beneficial to applying both types of buckwheat in practical.
Collapse
Affiliation(s)
- Di Yao
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
- *Correspondence: Di Yao,
| | - Qiaoru Yu
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Lei Xu
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Tingting Su
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Lixue Ma
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xiaoyu Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Mengna Wu
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhijiang Li
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety, Daqing, China
- Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dongjie Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety, Daqing, China
- Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing, China
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
19
|
Wang W, Hu C, Sun H, Zhao J, Xu C, Ma Y, Ma J, Jiang L, Hou J, Jiang Z. Low-cholesterol-low-fat mayonnaise prepared from soybean oil body as a substitute for egg yolk: The effect of substitution ratio on physicochemical properties and sensory evaluation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
20
|
Wang W, Xu C, Liu Z, Gu L, Ma J, Hou J, Jiang Z. Physicochemical properties and bioactivity of polysaccharides from Isaria cicadae Miquel with different extraction processes: effects on gut microbiota and immune response in mice. Food Funct 2022; 13:9268-9284. [PMID: 35993148 DOI: 10.1039/d2fo01646j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The effect of different extraction processes on the physicochemical characterization, digestibility, antioxidant activity and prebiotic activity of Isaria cicadae Miquel (ICM) fruiting body polysaccharides was studied. Furthermore, the effect of ultrasound-assisted extraction of ICM (U-ICM) on gut microbiota, the intestinal barrier and immune response was deeply explored. This study found that ICMs showed high indigestibility in both α-amylase and artificial gastric juice, indicating that ICMs have the potential as dietary fiber. In contrast, U-ICM had the best antioxidant activity and prebiotic potential. Meanwhile, there was a structure-activity relationship between the antioxidant activity of ICMs and the content of uronic acid, arabinose and galactose. When healthy mice were fed U-ICM for 42 days, the relative abundances of Lactobacillus, Akkermansia, and Bacteroides were found to increase significantly, while that of Clostridium decreased significantly. Meanwhile, U-ICM significantly promotes the expression of tight junction protein and the production of cytokines, indicating that U-ICM had the function of enhancing the intestinal barrier and regulating the host immune response. In conclusion, U-ICM as dietary fiber has the potential to be developed as a gut health-promoting prebiotic component or functional food. This research provided a valuable resource for further exploring the structure-activity relationship and prebiotic activity of ICMs.
Collapse
Affiliation(s)
- Wan Wang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Cong Xu
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Zhijing Liu
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Liya Gu
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Jiage Ma
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Juncai Hou
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| |
Collapse
|
21
|
Wang W, Hu C, Sun H, Zhao J, Xu C, Ma Y, Ma J, Jiang L, Hou J. Physicochemical Properties, Stability and Texture of Soybean-Oil-Body-Substituted Low-Fat Mayonnaise: Effects of Thickeners and Storage Temperatures. Foods 2022; 11:foods11152201. [PMID: 35892786 PMCID: PMC9332731 DOI: 10.3390/foods11152201] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 12/23/2022] Open
Abstract
With the increasing consumer demand for low-fat and low-cholesterol foods, low-fat mayonnaise prepared from soybean oil body (SOB) substitute for egg yolk has great consumption potential. However, based on previous studies, it was found that the stability and sensory properties of mayonnaise substituted with SOB were affected due to there being less lecithin and SOB containing more water. Therefore, this study investigated the effects of different ratios of xanthan gum, pectin and modified starch as stabilizers on the apparent viscosity, stability, texture and microstructure of SOB-substituted mayonnaise. It was found that the apparent viscosity and stability of SOB-substituted mayonnaise increased significantly when xanthan gum, pectin and modified starch were added in a ratio of 2:1:1. Meanwhile, the emulsified oil droplets of SOB-substituted mayonnaise were similar in size and uniformly dispersed in the emulsion system with different thickener formulations. In addition, the storage stability of SOB-substituted mayonnaise was explored. Compared with full egg yolk mayonnaise, SOB-substituted mayonnaise had better oxidative stability and bacteriostatic, which is important for the storage of mayonnaise. This study provided a theoretical basis for the food industry application of SOB. Meanwhile, this study provided new ideas for the development and storage of low-fat mayonnaise.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juncai Hou
- Correspondence: ; Tel.: +86-451-55190710
| |
Collapse
|