1
|
Yuan H, Qu Y, Liu Y, Zhang X, Zhang W, Xie R, Xu X, Feng J, Gao Y, Liu X, Ma Z, Wang Y, Lei P. Design, synthesis and antifungal evaluation of low bee-toxicity coumarin oxime derivatives. PEST MANAGEMENT SCIENCE 2025. [PMID: 40391545 DOI: 10.1002/ps.8910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/21/2025]
Abstract
BACKGROUND Structural modification of natural products is one of the most effective approaches for discovering new agrochemical compounds. Coumarin, a natural product, is widely found in higher plants from the Brassicaceae, Umbelliferae, Leguminosae, and Orchidaceae families. Coumarin and its derivatives exhibit a wide range of biological activities. Based on our previous research, a series of novel coumarin oxime derivatives were designed and synthesized. The preliminary mechanism of action and bee toxicity of the highly active compound were also investigated. RESULTS Most of the target compounds exhibited good antifungal activities. Compound 5k demonstrated moderate to strong broad-spectrum antifungal activities against all seven tested pathogenic fungi. Notably, it showed satisfactory antifungal activity against Rhizoctonia solani (median effective concentration = 3.29 μg/mL), surpassing the performance of the commercial coumarin fungicide osthole. In addition, the protective and curative effects of compound 5k against rice sheath blight at 200 μg/mL were 82.1% and 91.4% on detached rice leaves, and 82.5% and 72.5% on potted rice plants, respectively, outperforming osthole. Preliminary mechanistic studies suggested that compound 5k could alter mycelial morphology and increase catalase activity, promoting antioxidant and free radical scavenging functions to activate the plant's defense system. Furthermore, the median lethal dose of compound 5k was found to exceed 200 μg/bee based on an acute contact toxicity test conducted on honeybees. CONCLUSION This study demonstrates that coumarin oxime derivatives, with their novel structures, simple synthesis, excellent activity, and low bee toxicity, have the potential to become practical fungicides for plant protection, offering broad application prospects. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hanxiao Yuan
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yanyan Qu
- Institute of Plant Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Yining Liu
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xinru Zhang
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wenguang Zhang
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Renzhuang Xie
- Institute of Plant Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, China
| | - Xilian Xu
- Institute of Plant Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Juntao Feng
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, China
| | - Yanqing Gao
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, China
| | - Xili Liu
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Zhiqing Ma
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, China
| | - Yong Wang
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, China
| | - Peng Lei
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Chen H, Jiang Z, Tong H, Mai Z, Kong R, Zhang W, Zhang MZ, Chen K, Zhu Y. Discovery of Novel Acethydrazide-Containing Flavonol Derivatives as Potential Antifungal Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17229-17239. [PMID: 39052285 DOI: 10.1021/acs.jafc.4c02654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
In this study, a series of novel hydrazide-containing flavonol derivatives was designed, synthesized, and evaluated for antifungal activity. In the in vitro antifungal assay, most of the target compounds exhibited potent antifungal activity against seven tested phytopathogenic fungi. In particular, compound C32 showed the best antifungal activity against Rhizoctonia solani (EC50 = 0.170 μg/mL), outperforming carbendazim (EC50 = 0.360 μg/mL) and boscalid (EC50 = 1.36 μg/mL). Compound C24 exhibited excellent antifungal activity against Valsa mali, Botrytis cinerea, and Alternaria alternata with EC50 values of 0.590, 0.870, and 1.71 μg/mL, respectively. The in vivo experiments revealed that compounds C32 and C24 were potential novel agricultural antifungals. 3D quantitative structure-activity relationship (3D-QSAR) models were used to analyze the structure-activity relationships of these compounds. The analysis results indicated that introducing appropriate electronegative groups at position 4 of a benzene ring could effectively improve the anti-R. solani activity. In the antifungal mechanism study, scanning electron microscopy and transmission electron microscopy analyses revealed that C32 disrupted the normal growth of hyphae by affecting the structural integrity of the cell membrane and cellular respiration. Furthermore, compound C32 exhibited potent succinate dehydrogenase (SDH) inhibitory activity (IC50 = 8.42 μM), surpassing that of the SDH fungicide boscalid (IC50 = 15.6 μM). The molecular dynamics simulations and docking experiments suggested that compound C32 can occupy the active site and form strong interactions with the key residues of SDH. Our findings have great potential for aiding future research on plant disease control in agriculture.
Collapse
Affiliation(s)
- Hongyi Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zunyun Jiang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - He Tong
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziyun Mai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Weihua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming-Zhi Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Wen F, Liu Z, Zheng Y, Song D, Chen K, Wu Z. Repairing Host Damage Caused by Tobacco Mosaic Virus Stress: Design, Synthesis, and Mechanism Study of Novel Oxadiazole and Arylhydrazone Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11351-11359. [PMID: 38720167 DOI: 10.1021/acs.jafc.3c09463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Tobacco mosaic virus (TMV), as one of the most traditional and extensive biological stresses, poses a serious threat to plant growth and development. In this work, a series of 1-phenyl/tertbutyl-5-amino-4-pyrazole oxadiazole and arylhydrazone derivatives was synthesized. Bioassay evaluation demonstrated that the title compounds (P1-P18) without a "thioether bond" lost their anti-TMV activity, while some of the ring-opening arylhydrazone compounds exhibited superior in vivo activity against TMV in tobacco. The EC50 value of title compound T8 for curative activity was 139 μg/mL, similar to that of ningnanmycin (NNM) (EC50 = 152 μg/mL). Safety analysis revealed that compound T8 had no adverse effects on plant growth or seed germination at a concentration of 250 μg/mL. Morphological observation revealed that compound T8 could restore the leaf tissue of a TMV-stressed host and the leaf stomatal aperture to normal. A mechanism study further revealed that compound T8 not only restored the photosynthetic and growth ability of the damaged host to normal levels but also enhanced catalase (CAT) activity and reduced the content of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in the damaged host, thereby reducing the oxidation damage to the host. TMV-green fluorescent protein (GFP) experiments further demonstrated that compound T8 not only slowed the transmission speed of TMV in the host but also inhibited its reproduction. All of the experimental results demonstrated that compound T8 could reduce the oxidative damage caused by TMV stress and regulate the photosynthetic ability of the host, achieving the ability to repair damage, to make the plant grow normally.
Collapse
Affiliation(s)
- Fanglin Wen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Zixia Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Ya Zheng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Dandan Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Kuai Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Zhibing Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| |
Collapse
|
4
|
Liu H, Cai C, Zhang X, Li W, Ma Z, Feng J, Liu X, Lei P. Discovery of Novel Cinnamic Acid Derivatives as Fungicide Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2492-2500. [PMID: 38271672 DOI: 10.1021/acs.jafc.3c05655] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Structural diversity derivatization from natural products is an important and effective method of discovering novel green pesticides. Cinnamic acids are abundant in plants, and their unparalleled structures endow them with various excellent biological activities. A series of novel cinnamic oxime esters were designed and synthesized to develop high antifungal agrochemicals. The antifungal activity, structure-activity relationship, and action mechanism were systematically studied. Compounds 7i, 7u, 7v, and 7x exhibited satisfactory activity against Gaeumannomyces graminis var. tritici, with inhibition rates of ≥90% at 50 μg/mL. Compounds 7z and 7n demonstrated excellent activities against Valsa mali and Botrytis cinerea, with median effective concentration (EC50) values of 0.71 and 1.41 μg/mL, respectively. Compound 7z exhibited 100% protective and curative activities against apple Valsa canker at 200 μg/mL. The control effects of 7n against gray mold on tomato fruits and leaves were all >96%, exhibiting superior or similar effects to those of the commercial fungicide boscalid. Furthermore, the quantitative structure-activity relationship was established to guide the further design of higher-activity compounds. The preliminary results on the action mechanism revealed that 7n treatment could disrupt the function of the nucleus and mitochondria, leading to reactive oxygen species accumulation and cell membrane damage. Its primary biochemical mechanism may be inhibiting fungal ergosterol biosynthesis. The novel structure, simple synthesis, and excellent activity of cinnamic oxime esters render them promising potential fungicides.
Collapse
Affiliation(s)
- Hanru Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chonglin Cai
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xingjia Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenkui Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiqing Ma
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juntao Feng
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xili Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Lei
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
5
|
Tan Q, Zhu J, Ju Y, Chi X, Cao T, Zheng L, Chen Q. Antiviral Activity of Ailanthone from Ailanthus altissima on the Rice Stripe Virus. Viruses 2023; 16:73. [PMID: 38257773 PMCID: PMC10820994 DOI: 10.3390/v16010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/24/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Rice stripe disease caused by the rice stripe virus (RSV), which infects many Poaceae species in nature, is one of the most devastating plant viruses in rice that causes enormous losses in production. Ailanthone is one of the typical C20 quassinoids synthesized by the secondary metabolism of Ailanthus altissima, which has been proven to be a biologically active natural product with promising prospects and great potential for use as a lead structure for pesticide development. Based on the achievement of the systemic infection and replication of RSV in Nicotiana benthamiana plants and rice protoplasts, the antiviral properties of Ailanthone were investigated by determining its effects on viral-coding RNA gene expression using reverse transcription polymerase chain reaction, and Western blot analysis. Ailanthone exhibited a dose-dependent inhibitory effect on RSV NSvc3 expression in the assay in both virus-infected tobacco plants and rice protoplasts. Further efforts revealed a potent inhibitory effect of Ailanthone on the expression of seven RSV protein-encoding genes, among which NS3, NSvc3, NS4, and NSvc4 are the most affected genes. These facts promoted an extended and greater depth of understanding of the antiviral nature of Ailanthone against plant viruses, in addition to the limited knowledge of its anti-tobacco mosaic virus properties. Moreover, the leaf disc method introduced and developed in the study for the detection of the antiviral activity of Ailanthone facilitates an available and convenient screening method for anti-RSV natural products or synthetic chemicals.
Collapse
Affiliation(s)
- Qingwei Tan
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (Y.J.); (X.C.); (T.C.); (L.Z.)
- Institute of Plant Virus Research, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianxuan Zhu
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (Y.J.); (X.C.); (T.C.); (L.Z.)
| | - Yuanyuan Ju
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (Y.J.); (X.C.); (T.C.); (L.Z.)
| | - Xinlin Chi
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (Y.J.); (X.C.); (T.C.); (L.Z.)
| | - Tangdan Cao
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (Y.J.); (X.C.); (T.C.); (L.Z.)
| | - Luping Zheng
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (Y.J.); (X.C.); (T.C.); (L.Z.)
- Institute of Plant Virus Research, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qijian Chen
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (Y.J.); (X.C.); (T.C.); (L.Z.)
- Institute of Plant Virus Research, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
6
|
Wang DP, Wu LH, Li R, He N, Zhang QY, Zhao CY, Jiang T. A Novel Aldisine Derivative Exhibits Potential Antitumor Effects by Targeting JAK/STAT3 Signaling. Mar Drugs 2023; 21:md21040218. [PMID: 37103357 PMCID: PMC10141377 DOI: 10.3390/md21040218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
The JAK/STAT3 signaling pathway is aberrantly hyperactivated in many cancers, promoting cell proliferation, survival, invasiveness, and metastasis. Thus, inhibitors targeting JAK/STAT3 have enormous potential for cancer treatment. Herein, we modified aldisine derivatives by introducing the isothiouronium group, which can improve the antitumor activity of the compounds. We performed a high-throughput screen of 3157 compounds and identified compounds 11a, 11b, and 11c, which contain a pyrrole [2,3-c] azepine structure linked to an isothiouronium group through different lengths of carbon alkyl chains and significantly inhibited JAK/STAT3 activities. Further results showed that compound 11c exhibited the optimal antiproliferative activity and was a pan-JAKs inhibitor capable of inhibiting constitutive and IL-6-induced STAT3 activation. In addition, compound 11c influenced STAT3 downstream gene expression (Bcl-xl, C-Myc, and Cyclin D1) and induced the apoptosis of A549 and DU145 cells in a dose-dependent manner. The antitumor effects of 11c were further demonstrated in an in vivo subcutaneous tumor xenograft experiment with DU145 cells. Taken together, we designed and synthesized a novel small molecule JAKs inhibitor targeting the JAK/STAT3 signaling pathway, which has predicted therapeutic potential for JAK/STAT3 overactivated cancer treatment.
Collapse
Affiliation(s)
- Dong-Ping Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Li-Hong Wu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Rui Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Na He
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Qian-Yue Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Chen-Yang Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Department of Cancer Biology, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA
- Correspondence: (C.-Y.Z.); (T.J.)
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: (C.-Y.Z.); (T.J.)
| |
Collapse
|