1
|
Xu Z, Zhang T, Xu Z, Ma Y, Niu Z, Chen J, Zhang M, Shi F. Research Progress and Prospects of Nanozymes in Alleviating Abiotic Stress of Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8694-8714. [PMID: 39936319 DOI: 10.1021/acs.jafc.4c10799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The continuous destruction of the global ecological environment has led to increased natural disasters and adverse weather, severely affecting crop yields and quality, particularly due to abiotic stress. Nanase, a novel artificial enzyme, simulates various enzyme activities, is renewable, and shows significant potential in promoting crop growth and mitigating abiotic stress. This study reviews the classification of nanoenzymes into carbon-based, metal-based, metal oxide-based, and others based on synthesis materials. The catalytic mechanisms of these nanoenzymes are discussed, encompassing activities, such as oxidases, peroxidases, catalases, and superoxide dismutases. The catalytic mechanisms of nanoenzymes in alleviating salt, drought, high-temperature, low-temperature, heavy metal, and other abiotic stresses in crops are also highlighted. Furthermore, the challenges faced by nanoenzymes are discussed, especially in sustainable agricultural development. This review provides insights into applying nanoenzymes in sustainable agriculture and offers theoretical guidance for mitigating abiotic stress in crops.
Collapse
Affiliation(s)
- Zhenghong Xu
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Tongtong Zhang
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Zhihua Xu
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Yu Ma
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Zhihan Niu
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Jiaqi Chen
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Min Zhang
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Feng Shi
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| |
Collapse
|
2
|
Nakahara H, Hitomi Y. Designing Artificial Laccase Catalysts by Introducing Substrate Oxidation Metals into Oxygen-Reducing Metal-Organic Frameworks: Cu-Doped ZIF-67. Chemistry 2024; 30:e202402953. [PMID: 39422299 DOI: 10.1002/chem.202402953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/10/2024] [Accepted: 10/18/2024] [Indexed: 10/19/2024]
Abstract
Laccase, a multi-copper oxidase, is limited by its optimal temperature range and isolation costs. To overcome these challenges, we synthesized copper-doped zeolitic imidazolate framework-67 (Cu-doped ZIF-67) with 16 mol % Cu as an artificial laccase catalyst. The introduced Cu site acts as the phenol oxidation site, and Co-based ZIF-67 is the four-electron oxygen reduction site. Laccase also employs this division of oxidation and reduction sites. Cu-doped ZIF-67 demonstrated significant catalytic activity, superior to natural laccase, especially at elevated temperatures, and maintained stability across multiple reaction cycles. These findings suggest that Cu-doped ZIF-67 is a robust, reusable alternative for industrial applications requiring high thermal stability and efficient catalysis.
Collapse
Affiliation(s)
- Hiroki Nakahara
- Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, 1-3 Tatara Miyakodani, 610-0321, Kyotanabe, Kyoto, Japan
| | - Yutaka Hitomi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, 1-3 Tatara Miyakodani, 610-0321, Kyotanabe, Kyoto, Japan
| |
Collapse
|
3
|
Huang Y, Peng S, Liu Y, Feng G, Ding Z, Xiang B, Zheng L, Cheng H, Liu S, Yao H, Fang J. Emerging Roles of Nanozymes in Plant and Environmental Sectors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23008-23023. [PMID: 39400068 DOI: 10.1021/acs.jafc.4c05288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The demand for food has increased dramatically as the global population increases, putting more strain on the sustainability of agriculture. To fulfill this requirement, it is imperative to develop brand-new technologies. The application potential of nanozymes in the plant and environmental sectors is progressively becoming apparent as a result of their effective enzymatic catalytic activity and the distinctive characteristics of nanomaterials, including size, specific surface area, optical properties, and thermal properties. Herein, we systematically analyze the catalytic mechanisms of nanozymes with different enzyme-mimetic activities and summarize their applications in improving crop yields by regulating ROS levels and enhancing stress resistance and detecting and removing hazardous pollutants. Finally, we thoroughly analyze the challenges faced by nanozymes regarding size, design, application, economy, and biosafety and look forward to their future development directions to better serve sustainable agriculture.
Collapse
Affiliation(s)
- Yuewen Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Shan Peng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Yufeng Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Guangfu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Zizi Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Bo Xiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Lijuan Zheng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Haobin Cheng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Shiyu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Hao Yao
- Changsha IMADEK Intelligent Technology Company, Limited, Changsha 410081, P. R. China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, P. R. China
| |
Collapse
|
4
|
Liu Y, Zhang J, Cui S, Wei H, Yang D. Perovskite hydroxide-based laccase mimics with controllable activity for environmental remediation and biosensing. Biosens Bioelectron 2024; 256:116275. [PMID: 38603839 DOI: 10.1016/j.bios.2024.116275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Constructing relatively inexpensive nanomaterials to simulate the catalytic performance of laccase is of great significance in recent years. Although research on improving laccase-like activity by regulating ligands of copper (amino acids or small organic molecules, etc.) have achieved remarkable success. There are few reports on improving laccase-like activity by adjusting the composition of metal Cu. Here, we used perovskite hydroxide AB(OH)6 as a model to evaluate the relationship between Cu based alloys and their laccase-like activity. We found that when the Cu/Mn alloy ratio of the perovskite hydroxide A point is greater than 1, the laccase-like activity of the binary alloy perovskite hydroxide is higher than that of the corresponding single Cu. Based on the measurements of XPS and ICP-MS, we deduced that the improvements of laccase-like activity mainly attribute to the ratio of Cu+/Cu2+and the content of Cu. Moreover, two types of substrates (toxic pollutants and catechol neurotransmitters) were used to successfully demonstrated such nanozymes' excellent environmental protecting function and biosensing property. This work will provide a novel approach for the construction and application of laccase-like nanozymes in the future.
Collapse
Affiliation(s)
- Yufeng Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Jing Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Shuai Cui
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023, China.
| | - Dongzhi Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China.
| |
Collapse
|
5
|
Ding Z, Song Q, Wang G, Zhong Z, Zhong G, Li H, Chen Y, Zhou X, Liu L, Yang S. Synthesis of organic-inorganic hybrid nanocomposites modified by catalase-like catalytic sites for the controlling of kiwifruit bacterial canker. RSC Adv 2024; 14:17571-17582. [PMID: 38828279 PMCID: PMC11140456 DOI: 10.1039/d4ra02006e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024] Open
Abstract
Kiwifruit bacterial canker, caused by Pseudomonas syringae pv. Actinidiae (Psa), is one of the most important diseases in kiwifruit, creating huge economic losses to kiwifruit-growing countries around the world. Metal-based nanomaterials offer a promising alternative strategy to combat plant diseases induced by bacterial infection. However, it is still challenging to design highly active nanomaterials for controlling kiwifruit bacterial canker. Here, a novel multifunctional nanocomposite (ZnO@PDA-Mn) is designed that integrates the antibacterial activity of zinc oxide nanoparticles (ZnO NPs) with the plant reactive oxygen species scavenging ability of catalase (CAT) enzyme-like active sites through introducing manganese modified polydopamine (PDA) coating. The results reveal that ZnO@PDA-Mn nanocomposites can efficiently catalyze the conversion of H2O2 to O2 and H2O to achieve excellent CAT-like activity. In vitro experiments demonstrate that ZnO@PDA-Mn nanocomposites maintain the antibacterial activity of ZnO NPs and induce significant damage to bacterial cell membranes. Importantly, ZnO@PDA-Mn nanocomposites display outstanding curative and protective efficiencies of 47.7% and 53.8% at a dose of 200 μg mL-1 against Psa in vivo, which are superior to those of zinc thiozole (20.6% and 8.8%) and ZnO (38.7% and 33.8%). The nanocomposites offer improved in vivo control efficacy through direct bactericidal effects and decreasing oxidative damage in plants induced by bacterial infection. Our research underscores the potential of nanocomposites containing CAT-like active sites in plant protection, offering a promising strategy for sustainable disease management in agriculture.
Collapse
Affiliation(s)
- Zhenghao Ding
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| | - Qingqing Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| | - Guangdi Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| | - Zhuojun Zhong
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| | - Guoyong Zhong
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| | - Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| | - Yuexin Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| | - Xiang Zhou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| | - Liwei Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| | - Song Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| |
Collapse
|
6
|
Su C, Chen A, Liang W, Xie W, Xu X, Zhan X, Zhang W, Peng C. Copper-based nanomaterials: Opportunities for sustainable agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171948. [PMID: 38527545 DOI: 10.1016/j.scitotenv.2024.171948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
The exponential growth of the global population has resulted in a significant surge in the demand for food worldwide. Additionally, the impact of climate change has exacerbated crop losses caused by pests and pathogens. The transportation and utilization of traditional agrochemicals in the soil are highly inefficient, resulting in significant environmental losses and causing severe pollution of both the soil and aquatic ecosystems. Nanotechnology is an emerging field with significant potential for market applications. Among metal-based nanomaterials, copper-based nanomaterials have demonstrated remarkable potential in agriculture, which are anticipated to offer a promising alternative approach for enhancing crop yields and managing diseases, among other benefits. This review firstly performed co-occurrence and clustering analyses of previous studies on copper-based nanomaterials used in agriculture. Then a comprehensive review of the applications of copper-based nanomaterials in agricultural production was summarized. These applications primarily involved in nano-fertilizers, nano-regulators, nano-stimulants, and nano-pesticides for enhancing crop yields, improving crop resistance, promoting crop seed germination, and controlling crop diseases. Besides, the paper concluded the potential impact of copper-based nanomaterials on the soil micro-environment, including soil physicochemical properties, enzyme activities, and microbial communities. Additionally, the potential mechanisms were proposed underlying the interactions between copper-based nanomaterials, pathogenic microorganisms, and crops. Furthermore, the review summarized the factors affecting the application of copper-based nanomaterials, and highlighted the advantages and limitations of employing copper-based nanomaterials in agriculture. Finally, insights into the future research directions of nano-agriculture were put forward. The purpose of this review is to encourage more researches and applications of copper-based nanomaterials in agriculture, offering a novel and sustainable strategy for agricultural development.
Collapse
Affiliation(s)
- Chengpeng Su
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Anqi Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiyu Liang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenwen Xie
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiang Xu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiuping Zhan
- Shanghai Agricultural Technology Extension and Service Center, Shanghai 201103, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
7
|
Huang XL. Unveiling the role of inorganic nanoparticles in Earth's biochemical evolution through electron transfer dynamics. iScience 2024; 27:109555. [PMID: 38638571 PMCID: PMC11024932 DOI: 10.1016/j.isci.2024.109555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
This article explores the intricate interplay between inorganic nanoparticles and Earth's biochemical history, with a focus on their electron transfer properties. It reveals how iron oxide and sulfide nanoparticles, as examples of inorganic nanoparticles, exhibit oxidoreductase activity similar to proteins. Termed "life fossil oxidoreductases," these inorganic enzymes influence redox reactions, detoxification processes, and nutrient cycling in early Earth environments. By emphasizing the structural configuration of nanoparticles and their electron conformation, including oxygen defects and metal vacancies, especially electron hopping, the article provides a foundation for understanding inorganic enzyme mechanisms. This approach, rooted in physics, underscores that life's origin and evolution are governed by electron transfer principles within the framework of chemical equilibrium. Today, these nanoparticles serve as vital biocatalysts in natural ecosystems, participating in critical reactions for ecosystem health. The research highlights their enduring impact on Earth's history, shaping ecosystems and interacting with protein metal centers through shared electron transfer dynamics, offering insights into early life processes and adaptations.
Collapse
Affiliation(s)
- Xiao-Lan Huang
- Center for Clean Water Technology, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-6044, USA
| |
Collapse
|
8
|
Cui Z, Li Y, Tsyusko OV, Wang J, Unrine JM, Wei G, Chen C. Metal-Organic Framework-Enabled Sustainable Agrotechnologies: An Overview of Fundamentals and Agricultural Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38600745 DOI: 10.1021/acs.jafc.4c00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
With aggravated abiotic and biotic stresses from increasing climate change, metal-organic frameworks (MOFs) have emerged as versatile toolboxes for developing environmentally friendly agrotechnologies aligned with agricultural practices and safety. Herein, we have explored MOF-based agrotechnologies, focusing on their intrinsic properties, such as structural and catalytic characteristics. Briefly, MOFs possess a sponge-like porous structure that can be easily stimulated by the external environment, facilitating the controlled release of agrochemicals, thus enabling precise delivery of agrochemicals. Additionally, MOFs offer the ability to remove or degrade certain pollutants by capturing them within their pores, facilitating the development of MOF-based remediation technologies for agricultural environments. Furthermore, the metal-organic hybrid nature of MOFs grants them abundant catalytic activities, encompassing photocatalysis, enzyme-mimicking catalysis, and electrocatalysis, allowing for the integration of MOFs into degradation and sensing agrotechnologies. Finally, the future challenges that MOFs face in agrotechnologies were proposed to promote the development of sustainable agriculture practices.
Collapse
Affiliation(s)
- Zhaowen Cui
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jason M Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
- Kentucky Water Resources Research Institute, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Gehong Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Chun Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
9
|
Li Y, Cui Z, Shi L, Shan J, Zhang W, Wang Y, Ji Y, Zhang D, Wang J. Perovskite Nanocrystals: Superior Luminogens for Food Quality Detection Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4493-4517. [PMID: 38382051 DOI: 10.1021/acs.jafc.3c06660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
With the global limited food resources receiving grievous damage from frequent climate changes and ascending global food demand resulting from increasing population growth, perovskite nanocrystals with distinctive photoelectric properties have emerged as attractive and prospective luminogens for the exploitation of rapid, easy operation, low cost, highly accurate, excellently sensitive, and good selective biosensors to detect foodborne hazards in food practices. Perovskite nanocrystals have demonstrated supreme advantages in luminescent biosensing for food products due to their high photoluminescence (PL) quantum yield, narrow full width at half-maximum PL, tunable PL in the entire visible spectrum, easy preparation, and various modification strategies compared with conventional semiconductors. Herein, we have carried out a comprehensive discussion concerning perovskite nanocrystals as luminogens in the application of high-performance biosensing of foodborne hazards for food products, including a brief introduction of perovskite nanocrystals, perovskite nanocrystal-based biosensors, and their application in different categories of food products. Finally, the challenges and opportunities faced by perovskite nanocrystals as superior luminogens were proposed to promote their practicality in the future food supply.
Collapse
Affiliation(s)
- Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Zhaowen Cui
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Longhua Shi
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jinrui Shan
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yanwei Ji
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| |
Collapse
|
10
|
Huang XL, Harmer JR, Schenk G, Southam G. Inorganic Fe-O and Fe-S oxidoreductases: paradigms for prebiotic chemistry and the evolution of enzymatic activity in biology. Front Chem 2024; 12:1349020. [PMID: 38389729 PMCID: PMC10881703 DOI: 10.3389/fchem.2024.1349020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Oxidoreductases play crucial roles in electron transfer during biological redox reactions. These reactions are not exclusive to protein-based biocatalysts; nano-size (<100 nm), fine-grained inorganic colloids, such as iron oxides and sulfides, also participate. These nanocolloids exhibit intrinsic redox activity and possess direct electron transfer capacities comparable to their biological counterparts. The unique metal ion architecture of these nanocolloids, including electron configurations, coordination environment, electron conductivity, and the ability to promote spontaneous electron hopping, contributes to their transfer capabilities. Nano-size inorganic colloids are believed to be among the earliest 'oxidoreductases' to have 'evolved' on early Earth, playing critical roles in biological systems. Representing a distinct type of biocatalysts alongside metalloproteins, these nanoparticles offer an early alternative to protein-based oxidoreductase activity. While the roles of inorganic nano-sized catalysts in current Earth ecosystems are intuitively significant, they remain poorly understood and underestimated. Their contribution to chemical reactions and biogeochemical cycles likely helped shape and maintain the balance of our planet's ecosystems. However, their potential applications in biomedical, agricultural, and environmental protection sectors have not been fully explored or exploited. This review examines the structure, properties, and mechanisms of such catalysts from a material's evolutionary standpoint, aiming to raise awareness of their potential to provide innovative solutions to some of Earth's sustainability challenges.
Collapse
Affiliation(s)
- Xiao-Lan Huang
- NYS Center for Clean Water Technology, School of Marine and Atmospheric Sciences, Stony Brook, NY, United States
| | - Jeffrey R Harmer
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Gerhard Schenk
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Gordon Southam
- Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Li T, Bu J, Yang Y, Zhong S. A smartphone-assisted one-step bicolor colorimetric detection of glucose in neutral environment based on molecularly imprinted polymer nanozymes. Talanta 2024; 267:125256. [PMID: 37801931 DOI: 10.1016/j.talanta.2023.125256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023]
Abstract
In order to improve the specificity and the peroxidase-like activity of nanozyme at the neutral pH as well as to facilitate the naked-eye visual detection of the analyte concentration, a nanozyme based on molecularly imprinted polymers (MIPNs) for selective and bicolor colorimetric detection of glucose in neutral environment was developed. Compared with free nanozyme, the synthesized MIPNs showed a better catalytic capability, with a catalytic efficiency (kcat/Km) 9.5 times higher than that of free nanozyme. The kinetics experiment showed that the MIPNs demonstrated a fast kinetic feature and the kinetic data fitted a pseudo-first-order model. In practical application, the color of the detection system changed gradually from pink to blue as the glucose concentration increased in a broad linear range from 0 to 3 mM, with a detection limit of 6.22 μM. The colorimetric visualization of glucose concentration was read with a smartphone and no other instrument was needed. Therefore, a manageable and highly efficient method for the MIPNs-catalyzed visualization at the neutral pH and the one-step bicolor visual detection was constructed. This newly established method may also provide a new idea for further development and application of nanozymes.
Collapse
Affiliation(s)
- Tianhao Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Jiaqi Bu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Yanjing Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China.
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China; Changsha Medical University, Changsha, Hunan, 410219, China.
| |
Collapse
|
12
|
Deng D, Chang Y, Liu W, Ren M, Xia N, Hao Y. Advancements in Biosensors Based on the Assembles of Small Organic Molecules and Peptides. BIOSENSORS 2023; 13:773. [PMID: 37622859 PMCID: PMC10452798 DOI: 10.3390/bios13080773] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Over the past few decades, molecular self-assembly has witnessed tremendous progress in a variety of biosensing and biomedical applications. In particular, self-assembled nanostructures of small organic molecules and peptides with intriguing characteristics (e.g., structure tailoring, facile processability, and excellent biocompatibility) have shown outstanding potential in the development of various biosensors. In this review, we introduced the unique properties of self-assembled nanostructures with small organic molecules and peptides for biosensing applications. We first discussed the applications of such nanostructures in electrochemical biosensors as electrode supports for enzymes and cells and as signal labels with a large number of electroactive units for signal amplification. Secondly, the utilization of fluorescent nanomaterials by self-assembled dyes or peptides was introduced. Thereinto, typical examples based on target-responsive aggregation-induced emission and decomposition-induced fluorescent enhancement were discussed. Finally, the applications of self-assembled nanomaterials in the colorimetric assays were summarized. We also briefly addressed the challenges and future prospects of biosensors based on self-assembled nanostructures.
Collapse
Affiliation(s)
- Dehua Deng
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Wenjing Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Mingwei Ren
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yuanqiang Hao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
13
|
Jia C, Shi L, Li Y, Tian Y, Liu S, Wang S, Liao X, Wu H, Wang Z, Sun J, Zhang D, Zhu M, Ni Y, Wang J. "Potential Scalpel": A Bioassisted Ultrafast Staining Lateral Flow Immunoassay from De Novo to Results. Anal Chem 2023; 95:4095-4103. [PMID: 36780295 DOI: 10.1021/acs.analchem.2c04878] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
It is of great importance to overcome potential incompatibility problems between dyestuffs and antibodies (mAbs) for extensive commercial application of a dyestuff-chemistry-based ultrafast colorimetric lateral flow immunoassay (cLFIA). Herein, inspired by traditional staining technologies, a basic dyestuff gallocyanine (GC)-assisted biogenic "potential scalpel"-based cLFIA (GC-ABPS-based cLFIA) by employing clenbuterol (CLE) as proof-of-concept was proposed to solve a high degree of incompatibility between the same potential dyestuffs and mAbs. Goat antimouse immunoglobulin (Ab2) could serve as the "potential scalpel" to form the positive potential value biomolecular network self-assemblers (BNSA) with anti-CLE mAbs (AbCLE) by noncovalent force. The cLFIA completed the entire detection process from de novo to detection results within 30 min thanks to the easy availability and ideal marking efficiency (≤1 min, saving 0.4-10 h) of GC. Encouragingly, the proposed ultrafast GC-ABPS-based cLFIA has also exhibited high sensitivity (0.411 ng mL-1) and low cost (300 times) compared with other cLFIAs. Also, the feasibility of the proposed cLFIA was demonstrated by detecting CLE in beef, pork ham, and skim milk. Finally, the proposed GC-ABPS-based cLFIA has broadened the application range of dyestuffs and provided an effective reference strategy for the application of dyestuffs in food safety monitoring.
Collapse
Affiliation(s)
- Conghui Jia
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Longhua Shi
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yanli Tian
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Shaochi Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Xingrui Liao
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Haofen Wu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Ziqi Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23 Xinning Road, Xining 810008, Qinghai, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Mingqiang Zhu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
| | - Yongsheng Ni
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| |
Collapse
|
14
|
Li Y, Wang P, Huang L, Jia C, Gao X, Liu S, Wang S, Zhao P, Sun J, Zhang D, Zhu M, Shen Y, Wang J. Schiff-Base Chemistry-Coupled Catechol Oxidase-Like Nanozyme Reaction as a Universal Sensing Mode for Ultrasensitive Biosensing. Anal Chem 2023; 95:3769-3778. [PMID: 36757057 DOI: 10.1021/acs.analchem.2c04897] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Expanding sensing modes and improving catalytic performance of nanozyme-based analytical chemistry are beneficial to realizing the desired biosensing of analytes. Herein, Schiff-base chemistry coupled with a novel catechol oxidase-like nanozyme (CHzyme) is designed and constructed, exhibiting two main advantages, including (1) improving catalytic performance by nearly 2-fold compared with only the oxidase-like role of CHzyme; (2) increasing the designability of the output signal by signal transduction of cascade reaction. Thereafter, the substrate sensing modes based on a cascade reaction between the CHzyme-catalyzed reaction and Schiff-base chemistry are proposed and comprehensively studied, containing catalytic substrate sensing mode, competitive substrate sensing mode, and generated substrate sensing mode, expecting to be employed in environmental monitoring, food analyses, and clinical diagnoses, respectively. More meaningfully, the generated substrate sensing mode is successfully applied to construct a cascade reaction coupling ratiometric fluorescent immunoassay for the detection of clenbuterol, increasing 15-fold in detection sensitivity compared with the traditional enzyme-linked immunosorbent assay. It is expected that the expanded universal substrate sensing modes and the Schiff-base chemistry-enhanced nanozyme can enlighten the exploration of innovative biosensors.
Collapse
Affiliation(s)
- Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Peng Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Lunjie Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Conghui Jia
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Xiang Gao
- School of Food and Biological Engineering Key Laboratory for Agricultural Products Processing, Hefei University of Technology, Anhui Province, Hefei, 230009, China
| | - Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Shaochi Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Peng Zhao
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23 Xinning Road, Xining, 810008, QinghaiChina
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Mingqiang Zhu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, 712100, China
| | - Yizhong Shen
- School of Food and Biological Engineering Key Laboratory for Agricultural Products Processing, Hefei University of Technology, Anhui Province, Hefei, 230009, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| |
Collapse
|