1
|
Gao H, Chen N, An N, Zhan Y, Feng C, Hu W. Enhanced heterotrophic denitrification in groundwater using pretreated Ginkgo biloba leaves: Optimized carbon utilization and metabolic function diversity. ENVIRONMENTAL RESEARCH 2025; 271:121044. [PMID: 39914709 DOI: 10.1016/j.envres.2025.121044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Ginkgo biloba leaves (Gbl), as abundant agricultural and forestry residues which contains the quercetin that plays an important role in mediating electron transfer, represent a promising heterotrophic denitrification carbon source. Nonetheless, challenges persist due to concerns over nitrate leaching. This study pioneers the application of pretreated Gbl as external carbon sources for heterotrophic denitrification, with a focus on enhancing carbon bioavailability and mitigating nitrate leaching risks. Among the pretreatment strategies employed, the extraction process effectively eliminated NO3--N leaching, while the fermentation process reduced it by 52.8%. The saturated total organic carbon (TOC) concentration per unit mass of fermented Gbl was marginally lower compared to untreated leaves, yet the secondary kinetic reaction constant increased from 10.94 to 12.91 mg/(g·h·L), indicating an accelerated organic carbon release rate. Fermentation with Eurotium cristatum disrupted the rigid lignocellulose structure, thereby enhancing carbon source bioavailability. This resulted in a significant increase in alcohols in the leaching solution, from 27.0% to 68.6%, and a substantial reduction in aromatic compounds, from 20.2% to 0.2%, which alleviated microbial toxicity. In terms of denitrification performance, fermented Ginkgo biloba leaves (Fl) outperformed Ginkgo biloba extract residue leaves (Erl), which in turn surpassed untreated Gbl. Both Fl and Erl demonstrated robust adaptability across a broad pH range of 5.0-11.0. Under neutral conditions, the Fl system exhibited the highest primary kinetic constant for nitrate removal, reaching 0.0494 h⁻1. Microbial community revealed that all three carbon sources harbored denitrification and lignocellulose degradation capabilities. Notably, the Fl and Erl systems exhibited enhanced carbohydrate transport (G), amino acid transport (E), and inorganic ion transport (P), underscoring the potential pretreatments to optimize carbon source utilization. Collectively, these findings affirm the viability of Gbl as a carbon source for heterotrophic denitrification, providing valuable insights for its application in addressing nitrate pollution in aquatic environments.
Collapse
Affiliation(s)
- Hang Gao
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Ning An
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yongheng Zhan
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Weiwu Hu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
2
|
Zhang B, Qiu J, Qu Z, Xiao R, Wang L, Tian P, Zhang H, Chen W, Wang G. Bifidobacterium adolescentis FJSSZ23M10 modulates gut microbiota and metabolism to alleviate obesity through strain-specific genomic features. Food Funct 2025; 16:2415-2431. [PMID: 40008925 DOI: 10.1039/d4fo06449f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Obesity is a major global public health challenge, affecting billions and serving as a primary risk factor for many chronic diseases. Certain probiotics have shown promise in regulating energy balance and enhancing fat metabolism, offering potential strategies for managing obesity. In this study, we evaluated three strains of Bifidobacterium adolescentis and identified B. adolescentis FJSSZ23M10 as the most effective in alleviating high-fat diet (HFD)-induced obesity. This strain significantly reduced weight gain, improved abnormal serum biochemical indicators, decreased lipid accumulation in adipocytes, and enhanced energy expenditure. Furthermore, B. adolescentis FJSSZ23M10 treatment modulated the gut microbiota, notably increasing the abundance of Bifidobacterium and Faecalibaculum. Untargeted metabolomic analysis revealed that B. adolescentis FJSSZ23M10 uniquely upregulated beneficial metabolites, such as butyrate and pyruvic acid, suggesting its superior metabolic impact. Genomic analysis indicated that B. adolescentis FJSSZ23M10 harbored the highest abundance of unassigned genes and carbohydrate-active enzymes (CAZymes) compared to the other strains, highlighting its superior functional potential. Combining the shared and unique modifications in gut microbiota, metabolites, and genomic annotations, the study highlights that genomic differences among probiotics could shape their effects on gut microbiota and metabolites. Conclusively, the study underscores the critical role of probiotic genomic characteristics in determining their functional efficacy and suggests that the intake of the B. adolescentis FJSSZ23M10 strain with enriched genomic features, such as CAZymes, could represent a novel genomic-based strategy for alleviating obesity through gut microbiota modulation and metabolic regulation.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Food Science and Resources, Wuxi, Jiangsu 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Department of Microbiology and Immunology, National University of Singapore, 117545, Singapore
| | - Jiayin Qiu
- State Key Laboratory of Food Science and Resources, Wuxi, Jiangsu 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhihao Qu
- State Key Laboratory of Food Science and Resources, Wuxi, Jiangsu 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Rui Xiao
- State Key Laboratory of Food Science and Resources, Wuxi, Jiangsu 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Wuxi, Jiangsu 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Wuxi, Jiangsu 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Wuxi, Jiangsu 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Wuxi, Jiangsu 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Wuxi, Jiangsu 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| |
Collapse
|
3
|
Yu Y, Zhang K, Zhang D, Feng R, Chen K, Zhou X, Nie S, Xie MY. Highland Barley β-Glucan Relieves Symptoms of Colitis via PPARα-Mediated Intestinal Stem Cell Proliferation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24359-24373. [PMID: 39084686 DOI: 10.1021/acs.jafc.3c09535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Intestinal stem cells (ISCs) are necessary to maintain intestinal renewal. Here, we found that the highland barley β-glucan (HBG) alleviated pathological symptoms and promoted the proliferation of intestinal stem cells in colitis mice. Notably, metabolomics studies showed that docosahexaenoic acid (DHA) was significantly increased by the HBG treatment. DHA is a ligand for peroxisome proliferator-activated receptor α (PPARα), which can promote ISC proliferation. Expectedly, HBG facilitated the expression of intestinal PPARα and the proliferation of ISCs in colitis mice. Further experiments verified that DHA significantly facilitated the expression of PPARα and the proliferation of ISCs in intestinal organoids. Intriguingly, the effect of DHA on ISC proliferation was reversed by the PPARα inhibitor. Together, our data indicate that HBG might accelerate PPARα-mediated ISC proliferation through DHA. This provides new insights into the effective application of polysaccharides in maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Yongkang Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Ke Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Duoduo Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Ruting Feng
- State Key Laboratory of Food Science and Resources, Nanchang University, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Kunying Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Xingtao Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| |
Collapse
|
4
|
Liu R, Wu B, Zhang T, Zheng J, Sun Y. Fu brick tea polysaccharides: A state-of-the-art mini-review on extraction, purification, characteristics, bioactivities and applications. Int J Biol Macromol 2024; 280:136135. [PMID: 39349078 DOI: 10.1016/j.ijbiomac.2024.136135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/13/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Fu brick tea (FBT), a post-fermented dark tea, is highly esteemed for its abundant nutritional and medicinal values. Fu brick polysaccharides (FBTPs) are acidic heteropolysaccharides primarily composed of galactose and galacturonic acid, which are crucial components of FBT. FBTPs exhibit multiple bioactivities, including immunomodulatory, antioxidant, anti-inflammatory, regulatory effects on intestinal microbiota, anti-obesity, among others. Owing to their significant marketing potential and promising development prospects, FBTPs have attracted considerable attention from researchers worldwide. However, the specific mechanisms and underlying structure-function relationships of FBTPs are not well understood. Consequently, this review aims to provide comprehensive and cutting-edge information on the extraction, purification, structural characteristics, and biological activities of FBTPs, with an emphasis on exploring how their structural characteristics influence biological activities and therapeutic potential. We found that different materials and extraction techniques could result in differences in the structure-activity relationship of FBTPs. Furthermore, monosaccharide composition and molecular weight could also significantly impact the bioactivities of FBTPs, such as lipid-lowering effects and immunomodulatory activity. This review would further facilitate the applications of FBTPs as therapeutic agents and functional foods, thereby laying a solid foundation for their further development and utilization.
Collapse
Affiliation(s)
- Rui Liu
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin 150076, PR China
| | - Bolin Wu
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin 150076, PR China
| | - Ting Zhang
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin 150076, PR China
| | - Jianfeng Zheng
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin 150076, PR China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin 150076, PR China.
| |
Collapse
|
5
|
Zhang B, Ren D, Yang C, Zhao Y, Zhang X, Tian X, Yang X. Intracellular Polysaccharides of Eurotium cristatum Exhibited Anticolitis Effects in Association with Gut Tryptophan Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16347-16358. [PMID: 38982686 DOI: 10.1021/acs.jafc.4c04024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
This study is to investigate the protective effects of Eurotium cristatum intracellular polysaccharides (ECIP) on dextran sodium sulfate (DSS)-induced ulcerative colitis (UC). The oral administration of ECIP could downregulate the disease activity index (DAI) and ameliorate the colonic shortening, immune stress, and damage caused by DSS. In addition, ECIP treatment increased the colonic contents of SCFAs including acetic, propionic, and butyric acids in UC mice. Targeted and untargeted metabolic analysis suggested that ECIP dramatically altered the tryptophan metabolism in the feces of UC mice and promoted the conversion of tryptophan into indole metabolites including indolepyruvate and indole-3-acetic acid (IAA) and indolealdehyde (IAId). Moreover, ECIP observably increased the content of colonic IL-22 and stimulated the relative concentration and relative expression of tight junction molecules in mRNA and proteins levels. Conclusively, consumption of ECIP can improve colon damage and its related effects of UC by promoting the production of IAA and IAId to reinforce intestinal barriers.
Collapse
Affiliation(s)
- Bo Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an 710119, China
- Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Shaanxi Normal University, Xi'an 710119, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an 710119, China
- Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Shaanxi Normal University, Xi'an 710119, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Chengcheng Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an 710119, China
- Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Shaanxi Normal University, Xi'an 710119, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yan Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an 710119, China
- Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Shaanxi Normal University, Xi'an 710119, China
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xiangnan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an 710119, China
- Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Shaanxi Normal University, Xi'an 710119, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xinwei Tian
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an 710119, China
- Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Shaanxi Normal University, Xi'an 710119, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an 710119, China
- Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Shaanxi Normal University, Xi'an 710119, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
6
|
Song W, Zhou L, Liu T, Wang G, Lv J, Zhang S, Dai X, Wang M, Shi L. Characterization of Eurotium cristatum Fermented Thinned Young Apple and Mechanisms Underlying Its Alleviating Impacts on Experimental Colitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16221-16236. [PMID: 38996349 DOI: 10.1021/acs.jafc.4c02005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
A hundred million tons of young apples are thinned and discarded in the orchard per year, aiming to increase the yield and quality of apples. We fermented thinned young apples using a potential probiotic fungus, Eurotium cristatum, which notably disrupted the microstructure of raw samples, as characterized by the scanning electron microscope. Fermentation substantially altered the metabolite profiles of samples, which are predicted to alleviate colitis via regulating inflammatory response and response to lipopolysaccharide by using network pharmacology analysis. In vivo, oral gavage of water extracts of E. cristatum fermented young apples (E.YAP) effectively alleviated DSS-induced colitis, restored the histopathology damage, reduced the levels of inflammatory cytokines, and promoted colonic expressions of tight junction proteins. Moreover, E.YAP ameliorated gut dysbacteriosis by increasing abundances of Lactobacillus,Blautia, Muribaculaceae, and Prevotellaceae_UCG-001 while inhibiting Turicibacter, Alistipes, and Desulfovibrio. Importantly, E.YAP increased colonic bile acids, such as CA, TCA, DCA, TUDCA, and LCA, thereby alleviating colitis via PXR/NF-κB signaling. Furthermore, a synbiotic combination with Limosilactobacillus reuteri WX-94, a probiotic strain isolated from feces of healthy individuals with anti-inflammatory properties, augmented anticolitis capacities of E.YAP. Our findings demonstrate that E.YAP could be a novel, potent, food-based anti-inflammatory prebiotic for relieving inflammatory injuries.
Collapse
Affiliation(s)
- Wei Song
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Lanqi Zhou
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Tianqi Liu
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Guoze Wang
- Guizhou Provincial Engineering Research Center of Ecological Food Innovation, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Jiayao Lv
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Shiyi Zhang
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaoshuang Dai
- Xbiome, Scientific Research Building, Room 907, Tsinghua High-Tech Park, Shenzhen 518000, China
| | - Meng Wang
- Shaanxi Functional Food Engineering Center Company Limited, Xi'an 710069, China
| | - Lin Shi
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| |
Collapse
|
7
|
Geng X, Liu Y, Xu W, Li G, Xue B, Feng Y, Tang S, Wei W, Yuan H. Eukaryotes may play an important ecological role in the gut microbiome of Graves' disease. Front Immunol 2024; 15:1334158. [PMID: 38455050 PMCID: PMC10917987 DOI: 10.3389/fimmu.2024.1334158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
The prevalence of autoimmune diseases worldwide has risen rapidly over the past few decades. Increasing evidence has linked gut dysbiosis to the onset of various autoimmune diseases. Thanks to the significant advancements in high-throughput sequencing technology, the number of gut microbiome studies has increased. However, they have primarily focused on bacteria, so our understanding of the role and significance of eukaryotic microbes in the human gut microbial ecosystem remains quite limited. Here, we selected Graves' disease (GD) as an autoimmune disease model and investigated the gut multi-kingdom (bacteria, fungi, and protists) microbial communities from the health control, diseased, and medication-treated recovered patients. The results showed that physiological changes in GD increased homogenizing dispersal processes for bacterial community assembly and increased homogeneous selection processes for eukaryotic community assembly. The recovered patients vs. healthy controls had similar bacterial and protistan, but not fungal, community assembly processes. Additionally, eukaryotes (fungi and protists) may play a more significant role in gut ecosystem functions than bacteria. Overall, this study gives brief insights into the potential contributions of eukaryotes to gut and immune homeostasis in humans and their potential influence in relation to therapeutic interventions.
Collapse
Affiliation(s)
- Xiwen Geng
- Department of the Clinical Research Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yalei Liu
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenbo Xu
- Department of Clinical Microbiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Gefei Li
- Department of Blood Transfusion, Henan Provincial People's Hospital, Department of Blood Transfusion of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Binghua Xue
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Feng
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shasha Tang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Wei
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huijuan Yuan
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Li H, Dai W, Zhang X, Lu J, Song F, Li H. Chemical components of Fu brick tea and its potential preventive effects on metabolic syndrome. Food Sci Nutr 2024; 12:35-47. [PMID: 38268870 PMCID: PMC10804099 DOI: 10.1002/fsn3.3771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 01/26/2024] Open
Abstract
As living standards advance, an escalating emphasis is placed on health, particularly in relation to prevalent chronic metabolic disorders. It is necessary to explore safe and effective functional foods or drugs. Fu brick tea (FBT) is a kind of dark tea fermented by fungi. The extracts are rich in compounds that can effectively relieve metabolic diseases such as hyperglycemia and hyperlipidemia, protect the liver, improve human immunity, enhance antioxidant activity, and regulate intestinal flora. This paper summarizes the biological activities and mechanisms of the extracts, polysaccharides, and small molecular compounds of FBT, which provides a certain theoretical basis for the rational, systematic, comprehensive development and utilization of the FBT resources. It is expected to develop and apply these active substances in health care products and natural medicines and provide more beneficial and diversified FBT products for human beings.
Collapse
Affiliation(s)
- Honghua Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of ChinaSchool of Light IndustryBeijing Technology and Business UniversityBeijingChina
| | - Wei Dai
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of ChinaSchool of Light IndustryBeijing Technology and Business UniversityBeijingChina
| | - Xinjun Zhang
- Key Laboratory of Forest Ecology in Tibet Plateau (Ministry of Education), Institute of Tibet Plateau EcologyTibet Agriculture & Animal Husbandry UniversityNyingchiTibetChina
| | - Jie Lu
- Key Laboratory of Forest Ecology in Tibet Plateau (Ministry of Education), Institute of Tibet Plateau EcologyTibet Agriculture & Animal Husbandry UniversityNyingchiTibetChina
| | - Fuhang Song
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of ChinaSchool of Light IndustryBeijing Technology and Business UniversityBeijingChina
| | - Hua Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of ChinaSchool of Light IndustryBeijing Technology and Business UniversityBeijingChina
| |
Collapse
|
9
|
Wang XP, Shan RY, Li ZL, Kong XR, Hou RT, Wu HN, Chen CS. Metabolic improvements of novel microbial fermentation on black tea by Eurotium cristatum. Front Microbiol 2023; 14:1287802. [PMID: 38149271 PMCID: PMC10750952 DOI: 10.3389/fmicb.2023.1287802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
Due to its traditional fermentation, there are obvious limits on the quality improvements in black tea. However, microbial fermentation can provide an abundance of metabolites and improve the flavor of tea. The "golden flower" fungi are widely used in the microbial fermentation of tea and has unique uses in healthcare. To further explore the improvements in black tea quality achieved via microbial fermentation, we used widely targeted metabolomics and metagenomics analyses to investigate the changes in and effects of metabolites and other microorganisms during the interaction between the "golden flower" fungi and black tea. Five key flavor metabolites were detected, the levels of catechin, epigallocatechin gallate, (-)-epicatechin gallate were decreased by different degrees after the inoculation of the "golden flower" fungus, whereas the levels of caffeine and (+)-gallocatechin increased. Botryosphaeriaceae, Botryosphaeriales, Dothideomycetes, Aspergillaceae, Trichocomaceae, and Lecanoromycetes play a positive role in the black tea fermentation process after inoculation with the "golden flower" fungi. D-Ribose can prevent hypoxia-induced apoptosis in cardiac cells, and it shows a strong correlation with Botryosphaeriaceae and Botryosphaeriales. The interaction between microorganisms and metabolites is manifested in tryptophan metabolism, starch and sucrose metabolism, and amino sugar and nucleotide sugar metabolism. In conclusion, the changes in metabolites observed during the fermentation of black tea by "golden flower" fungi are beneficial to human health. This conclusion extends the knowledge of the interaction between the "golden flower" fungi and black tea, and it provides important information for improving the quality of black tea.
Collapse
Affiliation(s)
- Xiu-ping Wang
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Rui-yang Shan
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Zhao-long Li
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Xiang-rui Kong
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Ruo-ting Hou
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Hui-ni Wu
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Chang-song Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|