1
|
Yi B, Zhou B, Zhou D, Yang L, Xu H. CRISPR/Cas-powered nucleic acid amplification and amplification-free biosensors for public safety detection: Principles, advances and prospects. Biotechnol Adv 2025; 83:108609. [PMID: 40409480 DOI: 10.1016/j.biotechadv.2025.108609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/13/2025] [Accepted: 05/18/2025] [Indexed: 05/25/2025]
Abstract
Rapid, accurate, cost-effective, and efficient ultrasensitive detection strategies are essential for public health safety (including food safety, disease prevention and environmental governance). The CRISPR/CRISPR-associated (Cas) detection is a cutting-edge technology that has been widely used in the detection of public health safety due to its targeted cleavage properties (signal amplification), attomolar level sensitivity, high specificity (recognizing single-base mismatches), and rapid turnover time. However, the current research about CRISPR/Cas-based biosensors is not clear, such as mechanism problem and application differences of integrating CRISPR/Cas system with other technologies, and how to further innovate and develop in the future. Therefore, further detailed analysis and comparative discussion of CRISPR/Cas-based biosensors is needed. Currently, CRISPR/Cas system powered biosensors can be mainly categorized into two types: CRISPR/Cas system powered nucleic acid amplification biosensors and CRISPR/Cas system powered nucleic acid amplification-free biosensors. The two biosensors have different characteristics and advantages. This paper first provides an in-depth investigation of the enzymatic mechanism of CRISPR/Cas system at the molecular level. Then, this paper summarizes the principles and recent advances of CRISPR/Cas system powered nucleic acid amplification biosensors and CRISPR/Cas system powered nucleic acid amplification-free biosensors and discusses their integration mechanisms in depth. More, the differences and application-oriented between the two biosensors are further discussed. Finally, the application orientation and future perspectives of the two biosensors are discussed, and unique insights into the future development of CRISPR/Cas system are provided.
Collapse
Affiliation(s)
- Bo Yi
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Baoqing Zhou
- Jiangxi General Institute of Testing and Certification, Nanchang 330052, PR China
| | - Donggen Zhou
- Ningbo International Travel Healthcare Center (Ningbo customs port hospital), Ningbo 315000, PR China
| | - Luyu Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|
2
|
Ye Y, Li L, Chen Y, Li B, Xu Z. Molecular methods for rapid detection and identification of foodborne pathogenic bacteria. World J Microbiol Biotechnol 2025; 41:175. [PMID: 40369382 DOI: 10.1007/s11274-025-04396-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 05/04/2025] [Indexed: 05/16/2025]
Abstract
Foodborne pathogenic bacteria are one of the main factors causing food safety issues. The rapid and accurate detection of pathogenic bacteria using molecular techniques is an effective and powerful strategy for preventing and controlling outbreaks of foodborne diseases, thereby ensuring food safety. This article summarizes the rapid and efficient molecular diagnostic techniques for detecting pathogenic bacteria, including polymerase chain reaction and its derivatives, isothermal amplification, DNA hybridization, genomic sequencing, and Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/CRISPR-associated (CRISPR/Cas)-based detection technique. Through a comparative analysis of the technical principles, advantages, and potential limitations of these diagnostic methods, as well as an outlook on the future development directions for molecular biological detection technology, which will provide a valuable reference for developing more accurate, convenient, and sensitive methods for foodborne pathogens detection, and will help better address the challenges posed by foodborne diseases, thereby ensuring public health and safety.
Collapse
Affiliation(s)
- Yanxin Ye
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, 467036, P.R. China
| | - Leilei Li
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, 467036, P.R. China
| | - Yanyan Chen
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, 467036, P.R. China
| | - Bingbing Li
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, 467036, P.R. China.
| | - Zhenshang Xu
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, 250353, P.R. China.
| |
Collapse
|
3
|
Wei M, Wang J, Wang Y, Liu L, Xu X, Wang J. Application Research on the Triplex RT-ddPCR Assay for the Simultaneous Detection of Human Astrovirus and Sapovirus in Bivalve Shellfish. Foodborne Pathog Dis 2025. [PMID: 40229132 DOI: 10.1089/fpd.2025.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
Human astrovirus (HAstV) and sapovirus (SaV) are significant pathogens associated with acute gastroenteritis in humans. This study established a triple reverse transcription-droplet digital polymerase chain reaction (PCR) (RT-ddPCR) assay incorporating MS2 phage as a process control virus for the simultaneous quantification of HAstV and SaV. The assay was validated using 240 bivalve samples, comprising five shellfish species: Ostreidae (n = 43), Ruditapes philippinarum (n = 84), Sinonovacula constricta (n = 27), Scapharca subcrenata (n = 23), and Pectinidae (n = 63). The results indicated that the developed RT-ddPCR assay had a good exclusivity, with detection limits of 5.15 copies/reaction for HAstV, 7.71 copies/reaction for SaV, and 6.13 copies/reaction for MS2 RNA. Viral screening revealed HAstV in 1.25% (3/240) of samples, with a maximum load of 22,140 copies/2 g, while SaV exhibited a higher prevalence of 13.33% (32/240) and a peak concentration of 68,700 copies/2 g. Different species of bivalve shellfish exhibited varying detection rates; the highest SaV detection rate was found in Ostreidaes at 20.93% (9/43), followed by Ruditapes philippinarums at 14.29% (12/84), Scapharca subcrenatas at 13.04% (3/23), Pectinidaes at 11.11% (7/63), and Sinonovacula constrictas at 3.70% (1/27). HAstV was only detected in R. philippinarums and Pectinidaes, with detection rates of 1.19% (1/84) and 3.17% (2/63), respectively. Additionally, both HAstV and SaV were detected in a single Pectinidae sample (0.42%, 1/240). The triple RT-ddPCR assay developed in this study is reliable, accurate, and highly sensitive, providing effective technical support for the quantitative detection of HAstV and SaV in bivalve shellfish.
Collapse
Affiliation(s)
- Maolin Wei
- School of Public Health, Hebei Medical University, Shijiazhuang, China
- Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs, Shijiazhuang, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Jinfeng Wang
- Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs, Shijiazhuang, China
| | - Yan Wang
- School of Public Health, Hebei Medical University, Shijiazhuang, China
- Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs, Shijiazhuang, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Libing Liu
- Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs, Shijiazhuang, China
| | - Xiangdong Xu
- School of Public Health, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Jianchang Wang
- School of Public Health, Hebei Medical University, Shijiazhuang, China
- Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs, Shijiazhuang, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| |
Collapse
|
4
|
Dos Santos Natividade R, Danzer B, Somoza V, Koehler M. Atomic force microscopy at the forefront: unveiling foodborne viruses with biophysical tools. NPJ VIRUSES 2025; 3:25. [PMID: 40295860 PMCID: PMC11971264 DOI: 10.1038/s44298-025-00107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/13/2025] [Indexed: 04/30/2025]
Abstract
Foodborne viruses are significant public health threats, capable of causing life-threatening infections and posing major risks for future pandemics. However, the development of vaccines and treatments remains limited due to gaps in understanding their biophysical properties. Among these viruses, noroviruses are currently the leading cause of viral gastroenteritis globally and are responsible for numerous foodborne outbreaks. In this review, we explore the use of biophysical methods, with a focus on atomic force microscopy (AFM), to study foodborne viruses. We demonstrate how AFM can provide crucial insights into virus-host interactions, transmission dynamics, and environmental stability. We also show that the integration of various biophysical approaches offers new opportunities for advancing our understanding of foodborne viruses, ultimately guiding the development of effective prevention strategies and antiviral therapies.
Collapse
Affiliation(s)
| | - Barbara Danzer
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- School of Life Science, Technical University of Munich, Freising, Germany
| | - Veronika Somoza
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Chair of Nutritional Systems Biology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Melanie Koehler
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany.
- TUM Junior Fellow at the Chair of Nutritional Systems Biology, Technical University of Munich, Freising, Germany.
| |
Collapse
|
5
|
Zhao Z, Xiong Q, Zhu Y, Zhang C, Li Z, Chen Z, Zhang Y, Deng X, Tao Y, Xu S. CRISPR/Cas12a-Enabled Amplification-Free Colorimetric Visual Sensing Strategy for Point-of-Care Diagnostics of Biomarkers. Anal Chem 2025; 97:1019-1027. [PMID: 39701943 DOI: 10.1021/acs.analchem.4c06196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
CRISPR/Cas12a-based biosensors have garnered significant attention in the field of point-of-care testing (POCT), yet the majority of the CRISPR-based POCT methods employ fluorescent systems as report probes. Herein, we report a new CRISPR/Cas12a-enabled multicolor visual biosensing strategy for the rapid detection of disease biomarkers. The proposed assay provided vivid color responses to enhance the accuracy of visual detection. In the existence of the target, the trans-cleavage activity of CRISPR-Cas12a was activated. The report probe modified with magnetic beads (MBs) and horseradish peroxidase (HRP) was cleaved, and HRP was released in the supernatant. As a result, HRP mediated the etching of gold nanobipyramids (AuNBPs) under hydrogen peroxide and 3,3',5,5'-tetramethylbenzidine and generated a vivid color response. The proposed method has been verified by the detection of the breast cancer 1 gene (BRCA1) as a proof-of-principle target. According to the different colors of AuNBPs, our experimental results have demonstrated that as low as 30 pM BRCA1 can be detected with no more than 60 min. Additionally, the proposed sensor has been successfully applied in the analysis of BRCA1 in human serum samples with satisfactory results, which indicates great potential for the sensitive determination of biomarkers and the POCT area.
Collapse
Affiliation(s)
- Zhe Zhao
- Cancer Research Center & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine & Jiangxi Province Key Laboratory for Diagnosis, Treatment and Rehabilitation of Cancer in Chinese Medicine, Nanchang, Jiangxi 330004, China
- College of Acupuncture and Tuina Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Qing Xiong
- Cancer Research Center & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine & Jiangxi Province Key Laboratory for Diagnosis, Treatment and Rehabilitation of Cancer in Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Yan Zhu
- Cancer Research Center & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine & Jiangxi Province Key Laboratory for Diagnosis, Treatment and Rehabilitation of Cancer in Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Cong Zhang
- Cancer Research Center & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine & Jiangxi Province Key Laboratory for Diagnosis, Treatment and Rehabilitation of Cancer in Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Zhixin Li
- Institute for Advanced Study, Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Zhonghui Chen
- Central Laboratory, Affiliated Hospital of Putian University, Putian University, Putian 351100, China
| | - Ying Zhang
- Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Xiaoyu Deng
- Ministry of Education Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Yingzhou Tao
- Cancer Research Center & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine & Jiangxi Province Key Laboratory for Diagnosis, Treatment and Rehabilitation of Cancer in Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Shaohua Xu
- Cancer Research Center & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine & Jiangxi Province Key Laboratory for Diagnosis, Treatment and Rehabilitation of Cancer in Chinese Medicine, Nanchang, Jiangxi 330004, China
| |
Collapse
|
6
|
Yin L, Zhao Z, Wang C, Zhou C, Wu X, Gao B, Wang L, Man S, Cheng X, Wu Q, Hu S, Fan H, Ma L, Xing H, Shen L. Development and evaluation of a CRISPR/Cas12a-based diagnostic test for rapid detection and genotyping of HR-HPV in clinical specimens. Microbiol Spectr 2025; 13:e0225324. [PMID: 39570020 PMCID: PMC11705848 DOI: 10.1128/spectrum.02253-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/27/2024] [Indexed: 11/22/2024] Open
Abstract
Persistent infection with high-risk human papillomavirus (HR-HPV) is the principal etiological factor of cervical cancer. Considering the gradual progression of cervical cancer, the early, rapid, sensitive, and specific identification of HPV, particularly HR-HPV types, is crucial in halting the advancement of the illness. Here, we established a rapid, highly sensitive, and specific HR-HPV detection platform, leveraging the CRISPR/Cas12a assay in conjunction with multienzyme isothermal rapid amplification. Our platform enables the detection and genotyping of 14 types of HR-HPV by using type-specific crRNAs. The outcomes of the detection can be interpreted either through a fluorescence reader or visually. Furthermore, we achieved one-tube multiplex detection of 14 HR-HPV types through the use of multiple amplifications and a crRNA pool. The detection sensitivity of this method is 2 copies/μL with no cross-reactivity, and the results can be obtained within 30 minutes. This method exhibited 100% clinical sensitivity and 100% clinical specificity when applied to 258 clinical specimens. Based on these findings, our CRISPR/Cas-based HR-HPV detection platform holds promise as a novel clinical detection tool, offering a visually intuitive and expedited alternative to existing HPV infection diagnostics and providing fresh perspectives for clinical cervical cancer screening.IMPORTANCEThis study developed a novel high-risk human papillomavirus (HR-HPV) detection platform based on CRISPR/Cas12a technology. This platform not only enables the rapid, highly sensitive, and specific detection and genotyping of 14 types of HR-HPV but also achieves single-tube multiplex detection of 14 HR-HPV types through ingenious design. The outcomes of the detection can be interpreted either through a fluorescence reader or visually. To the best of our knowledge, this is the first paper to utilize CRISPR/Cas diagnostic technology for the simultaneous detection of 14 types of HPV and to evaluate its feasibility in clinical sample detection using a large number of clinical samples. We hope that this work will facilitate the rapid and accurate detection of HPV and promote the broader application of CRISPR/Cas diagnostic technology.
Collapse
Affiliation(s)
- Lijuan Yin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Ziqian Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Chunhua Wang
- Department of Clinical Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
- Department of Clinical Laboratory, Xiangyang No.1 People's Hospital, Hubei Universitly of Medicine, Xiangyang, China
| | - Caihong Zhou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Xiuzhen Wu
- Dynamiker Sub-Center of Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Disease, Tianjin, China
| | - Baoxue Gao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Liangyuan Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Xinkuan Cheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Qiankun Wu
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Siqi Hu
- Institute of Pediatrics, Faculty of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongxia Fan
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Hui Xing
- Department of Clinical Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| | - Liang Shen
- Department of Clinical Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| |
Collapse
|
7
|
Qiao J, Zhao Z, Li Y, Lu M, Man S, Ye S, Zhang Q, Ma L. Recent advances of food safety detection by nucleic acid isothermal amplification integrated with CRISPR/Cas. Crit Rev Food Sci Nutr 2024; 64:12061-12082. [PMID: 37691410 DOI: 10.1080/10408398.2023.2246558] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Food safety problems have become one of the most important public health issues worldwide. Therefore, the development of rapid, effective and robust detection is of great importance. Amongst a range of methods, nucleic acid isothermal amplification (NAIA) plays a great role in food safety detection. However, the widespread application remains limited due to a few shortcomings. CRISPR/Cas system has emerged as a powerful tool in nucleic acid detection, which could be readily integrated with NAIA to improve the detection sensitivity, specificity, adaptability versatility and dependability. However, currently there was a lack of a comprehensive summary regarding the integration of NAIA and CRISPR/Cas in the field of food safety detection. In this review, the recent advances in food safety detection based on CRISPR/Cas-integrated NAIA were comprehensively reviewed. To begin with, the development of NAIA was summarized. Then, the types and working principles of CRISPR/Cas were introduced. The applications of the integration of NAIA and CRISPR/Cas for food safety were mainly introduced and objectively discussed. Lastly, current challenges and future opportunities were proposed. In summary, this technology is expected to become an important approach for food safety detection, leading to a safer and more reliable food industry.
Collapse
Affiliation(s)
- Jiali Qiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Zhiying Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Yaru Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Minghui Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Shengying Ye
- Pharmacy Department, The 983th Hospital of the Joint Logistics Support Force of the, Chinese People's Liberation Army, Tianjin, China
| | - Qiang Zhang
- Branch of Tianjin Third Central Hospital, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
8
|
Liu Y, Gou S, Qiu L, Xu Z, Yang H, Yang S, Zhao Y. A CRISPR/Cas12a-powered gold/nickel foam surface-enhanced Raman spectroscopy biosensor for nucleic acid specific detection in foods. Analyst 2024; 149:4343-4350. [PMID: 39051914 DOI: 10.1039/d4an00778f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Food is a necessary source of energy, but it also serves as a pathway for transmitting infectious pathogens, making food safety a matter of great concern. Rapid, accurate, and specific detection methods for foodborne viruses are crucial. Surface-Enhanced Raman Scattering (SERS), due to its superior sensitivity and characteristic fingerprint spectra, holds enormous potential. However, due to the limitations of SERS, it requires specific conditions to achieve specificity. In order to enhance the specificity and accuracy of nucleic acid detection based on SERS, we have developed a CRISPR-Cas12a-mediated SERS technique to identify target DNA, harnessing the targeting recognition capability of CRISPR-Cas12a and ultra-sensitive SERS tags and successfully addressing SERS' lack of specific detection capability. This system includes a gold/nickel foam substrate (Au-NFs) and a reporter (ssDNA-ROX). The phenomenon of colloidal gold/silver nano-aggregation due to magnesium ions, which is commonly encountered in CRISPR-SERS, was simultaneously solved using AuNFs. The qualitative and quantitative analysis of target DNA in drinking water was performed by monitoring the intensity change of ROX Raman reporter molecules. The results showed that the sensor detected DNA within 30 min and the limit of detection (LOD) was 8.23 fM. This is expected to become one of the alternative methods for nucleic acid detection for its rapid detection and high specificity.
Collapse
Affiliation(s)
- Yan Liu
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, China
| | - Shirui Gou
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Long Qiu
- Wuxi Tolo Biotechnology Co., Ltd, Wuxi, Jiangsu, China
| | - Zhiwen Xu
- Technology Center for Animal Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai, China
| | - Haifeng Yang
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, China
| | - Shiping Yang
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, China
| | - Yu Zhao
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
9
|
Muzammil K, Rayyani S, Abbas Sahib A, Gholizadeh O, Naji Sameer H, Jwad Kazem T, Badran Mohammed H, Ghafouri Kalajahi H, Zainul R, Yasamineh S. Recent Advances in Crimean-Congo Hemorrhagic Fever Virus Detection, Treatment, and Vaccination: Overview of Current Status and Challenges. Biol Proced Online 2024; 26:20. [PMID: 38926669 PMCID: PMC11201903 DOI: 10.1186/s12575-024-00244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus, and zoonosis, and affects large regions of Asia, Southwestern and Southeastern Europe, and Africa. CCHFV can produce symptoms, including no specific clinical symptoms, mild to severe clinical symptoms, or deadly infections. Virus isolation attempts, antigen-capture enzyme-linked immunosorbent assay (ELISA), and reverse transcription polymerase chain reaction (RT-PCR) are all possible diagnostic tests for CCHFV. Furthermore, an efficient, quick, and cheap technology, including biosensors, must be designed and developed to detect CCHFV. The goal of this article is to offer an overview of modern laboratory tests available as well as other innovative detection methods such as biosensors for CCHFV, as well as the benefits and limits of the assays. Furthermore, confirmed cases of CCHF are managed with symptomatic assistance and general supportive care. This study examined the various treatment modalities, as well as their respective limitations and developments, including immunotherapy and antivirals. Recent biotechnology advancements and the availability of suitable animal models have accelerated the development of CCHF vaccines by a substantial margin. We examined a range of potential vaccines for CCHF in this research, comprising nucleic acid, viral particles, inactivated, and multi-epitope vaccines, as well as the present obstacles and developments in this field. Thus, the purpose of this review is to present a comprehensive summary of the endeavors dedicated to advancing various diagnostic, therapeutic, and preventive strategies for CCHF infection in anticipation of forthcoming hazards.
Collapse
Affiliation(s)
- Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, King Khalid University, Khamis Mushait Campus, Abha, 62561, Saudi Arabia
| | - Saba Rayyani
- Medical Faculty, University of Georgi, Tbilisi, Georgia
| | | | | | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Tareq Jwad Kazem
- Scientific Affairs Department, Al-Mustaqbal University, Hillah, Babylon, 51001, Iraq
| | - Haneen Badran Mohammed
- Optics techniques department, health and medical techniques college, Al-Noor University, Mosul, Iraq
| | | | - Rahadian Zainul
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Padang, Indonesia.
| | - Saman Yasamineh
- Center for Advanced Material Processing, Artificial Intelligence, and Biophysics Informatics (CAMPBIOTICS), Universitas Negeri Padang, Padang, Indonesia.
| |
Collapse
|
10
|
Kou J, Li Y, Zhao Z, Qiao J, Zhang Q, Han X, Cheng X, Man S, Ma L. Simultaneous Dual-Gene Test of Methicillin-Resistant Staphylococcus Aureus using an Argonaute-Centered Portable and Visual Biosensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311764. [PMID: 38506607 DOI: 10.1002/smll.202311764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Indexed: 03/21/2024]
Abstract
The development of novel method for drug-resistant bacteria detection is imperative. A simultaneous dual-gene Test of methicillin-resistant Staphylococcus aureus (MRSA) is developed using an Argonaute-centered portable biosensor (STAR). This is the first report concerning Argonaute-based pathogenic bacteria detection. Simply, the species-specific mecA and nuc gene are isothermally amplified using loop-mediated isothermal amplification (LAMP) technique, followed by Argonaute-based detection enabled by its programmable, guided, sequence-specific recognition and cleavage. With the strategy, the targeted nucleic acid signals gene are dexterously converted into fluorescent signals. STAR is capable of detecting the nuc gene and mecA gene simultaneously in a single reaction. The limit of detection is 10 CFU/mL with a dynamic range from 10 to 107 CFU/mL. The sample-to-result time is <65 min. This method is successfully adapted to detect clinical samples, contaminated foods, and MRSA-infected animals. This work broadens the reach of Argonaute-based biosensing and presents a novel bacterial point-of-need (PON) detection platform.
Collapse
Affiliation(s)
- Jun Kou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yaru Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Zhiying Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Jiali Qiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Qiang Zhang
- Branch of Tianjin Third Central Hospital, Tianjin, 300250, China
| | - Xiao Han
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xinkuan Cheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| |
Collapse
|
11
|
Lehnert T, Gijs MAM. Microfluidic systems for infectious disease diagnostics. LAB ON A CHIP 2024; 24:1441-1493. [PMID: 38372324 DOI: 10.1039/d4lc00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Microorganisms, encompassing both uni- and multicellular entities, exhibit remarkable diversity as omnipresent life forms in nature. They play a pivotal role by supplying essential components for sustaining biological processes across diverse ecosystems, including higher host organisms. The complex interactions within the human gut microbiota are crucial for metabolic functions, immune responses, and biochemical signalling, particularly through the gut-brain axis. Viruses also play important roles in biological processes, for example by increasing genetic diversity through horizontal gene transfer when replicating inside living cells. On the other hand, infection of the human body by microbiological agents may lead to severe physiological disorders and diseases. Infectious diseases pose a significant burden on global healthcare systems, characterized by substantial variations in the epidemiological landscape. Fast spreading antibiotic resistance or uncontrolled outbreaks of communicable diseases are major challenges at present. Furthermore, delivering field-proven point-of-care diagnostic tools to the most severely affected populations in low-resource settings is particularly important and challenging. New paradigms and technological approaches enabling rapid and informed disease management need to be implemented. In this respect, infectious disease diagnostics taking advantage of microfluidic systems combined with integrated biosensor-based pathogen detection offers a host of innovative and promising solutions. In this review, we aim to outline recent activities and progress in the development of microfluidic diagnostic tools. Our literature research mainly covers the last 5 years. We will follow a classification scheme based on the human body systems primarily involved at the clinical level or on specific pathogen transmission modes. Important diseases, such as tuberculosis and malaria, will be addressed more extensively.
Collapse
Affiliation(s)
- Thomas Lehnert
- Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| | - Martin A M Gijs
- Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| |
Collapse
|
12
|
Li Y, Liu Y, Tang X, Qiao J, Kou J, Man S, Zhu L, Ma L. CRISPR/Cas-Powered Amplification-Free Detection of Nucleic Acids: Current State of the Art, Challenges, and Futuristic Perspectives. ACS Sens 2023; 8:4420-4441. [PMID: 37978935 DOI: 10.1021/acssensors.3c01463] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
CRISPR/Cas system is becoming an increasingly influential technology that has been repositioned in nucleic acid detection. A preamplification step is usually required to improve the sensitivity of CRISPR/Cas-based detection. The striking biological features of CRISPR/Cas, including programmability, high sensitivity and sequence specificity, and single-base resolution. More strikingly, the target-activated trans-cleavage could act as a biocatalytic signal transductor and amplifier, thereby empowering it to potentially perform nucleic acid detection without a preamplification step. The reports of such work are on the rise, which is not only scientifically significant but also promising for futuristic end-user applications. This review started with the introduction of the detection methods of nucleic acids and the CRISPR/Cas-based diagnostics (CRISPR-Dx). Next, we objectively discussed the pros and cons of preamplification steps for CRISPR-Dx. We then illustrated and highlighted the recently developed strategies for CRISPR/Cas-powered amplification-free detection that can be realized through the uses of ultralocalized reactors, cascade reactions, ultrasensitive detection systems, or others. Lastly, the challenges and futuristic perspectives were proposed. It can be expected that this work not only makes the researchers better understand the current strategies for this emerging field, but also provides insight for designing novel CRISPR-Dx without a preamplification step to win practicable use in the near future.
Collapse
Affiliation(s)
- Yaru Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yajie Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiaoqin Tang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiali Qiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jun Kou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lei Zhu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
13
|
Ma L, Zhang W, Yin L, Li Y, Zhuang J, Shen L, Man S. A SERS-signalled, CRISPR/Cas-powered bioassay for amplification-free and anti-interference detection of SARS-CoV-2 in foods and environmental samples using a single tube-in-tube vessel. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131195. [PMID: 36963196 PMCID: PMC10005974 DOI: 10.1016/j.jhazmat.2023.131195] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 05/03/2023]
Abstract
The pandemic of COVID-19 creates an imperative need for sensitive and portable detection of SARS-CoV-2. We devised a SERS-read, CRISPR/Cas-powered nanobioassay, termed as OVER-SARS-CoV-2 (One-Vessel Enhanced RNA test on SARS-CoV-2), which enabled supersensitive, ultrafast, accurate and portable detection of SARS-CoV-2 in a single vessel in an amplification-free and anti-interference manner. The SERS nanoprobes were constructed by conjugating gold nanoparticles with Raman reporting molecular and single-stranded DNA (ssDNA) probes, whose aggregation-to-dispersion changes can be finely tuned by target-activated Cas12a though trans-cleavage of linker ssDNA. As such, the nucleic acid signals could be dexterously converted and amplified to SERS signals. By customizing an ingenious vessel, the steps of RNA reverse transcription, Cas12a trans-cleavage and SERS nanoprobes crosslinking can be integrated into a single and disposal vessel. It was proved that our proposed nanobioassay was able to detect SARS-CoV-2 as low as 200 copies/mL without any pre-amplification within 45 min. In addition, the proposed nanobioassay was confirmed by clinical swab samples and challenged for SARS-CoV-2 detection in simulated complex environmental and food samples. This work enriches the arsenal of CRISPR-based diagnostics (CRISPR-Dx) and provides a novel and robust platform for SARS-CoV-2 decentralized detection, which can be put into practice in the near future.
Collapse
Affiliation(s)
- Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition, Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Wenlu Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition, Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lijuan Yin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition, Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yaru Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition, Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jianwen Zhuang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition, Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Liang Shen
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441000, China.
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition, Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
14
|
Li Y, Kou J, Han X, Qiao J, Zhang W, Man S, Ma L. Argonaute-triggered visual and rebuilding-free foodborne pathogenic bacteria detection. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131485. [PMID: 37149945 DOI: 10.1016/j.jhazmat.2023.131485] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/15/2023] [Accepted: 04/23/2023] [Indexed: 05/09/2023]
Abstract
Foodborne pathogenic bacteria are recognized as the main causes of microbial contamination in food safety. Early screening and ultrasensitive detection of foodborne pathogenic bacteria is critical procedure to guarantee food safety. Argonaute is emerging as a new tool for detection owing to the programmability and high specificity. We reported a Novel and One-step cleavage method based on Argonaute by integrating Tag-specific primer extension and Exonuclease I (Exo I) for the first time, termed as NOTE-Ago. In this method, the invA of Salmonella typhi and nuc gene of Staphylococcus aureus were amplified using Tag-specific primer and the remaining primers were digested by Exo I. Then amplicons were served as the guide DNA for PfAgo. Consequently, the fluorophore-quencher reporter could be cleaved via PfAgo, resulting in changes in fluorescent intensity. With this strategy, target nucleic acid could be dexterously converted into fluorescent signals. The NOTE-Ago assay could detect 1 CFU/mL with a dynamic range from 1 to 108 CFU/mL. The satisfactory selectivity of NOTE-Ago assay further facilitated its application for detecting S. typhi- and S. aureus-contaminated food samples. This work enriches the toolbox of Argonaute-based detection and provides a one-step cleavage and rebuilding-free method for ultrasensitive detection of bacteria.
Collapse
Affiliation(s)
- Yaru Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jun Kou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiao Han
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiali Qiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenlu Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|