1
|
Zong H, Zhang L, Cheng Y, Sheng Z, Zhuge B, Lu X. Efficient Autoinducible Expression of Recombinant Proteins via the DegSU Quorum Sensing System in a Robust Bacillus subtilis. ACS Synth Biol 2025; 14:273-284. [PMID: 39757760 DOI: 10.1021/acssynbio.4c00798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
DegSU quorum sensing (QS) system enables autoinducible expression of recombinant proteins in Bacillus subtilis . However, insufficient promoter strength and a complex regulatory circuit limit its practical application. Here, the QS-responsive promoter PaprE was modified by core region mutation, upstream truncation, and addition of activating binding sites, yielding PE742 with a 118.3% increase in strength. A mathematical model was developed to accurately quantify the regulatory process from a comprehensive perspective. Guided by this model, the DegSU QS system was further optimized in a robust B. subtilis by knocking out competitive target genes sacB and amyE, operons pgs and srfA, introducing variants degUL113F and degQ36Hy, and increasing regulatory strength by 84.0%. A 52.5% increase in acetoin titer and a 65.9% increase in extracellular carboxypeptidase activity validated the industrial value of this study. Overall, this study addresses the limitations of the DegSU QS system in practical application and demonstrates its potential for high-level recombinant protein production.
Collapse
Affiliation(s)
- Hong Zong
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Liya Zhang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yiwen Cheng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhiying Sheng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Bin Zhuge
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xinyao Lu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Jiang JY, Xue D, Gong JS, Zheng QX, Zhang YS, Su C, Xu ZH, Shi JS. A comprehensive review on microbial hyaluronan-degrading enzymes: from virulence factors to biotechnological tools. BIORESOUR BIOPROCESS 2024; 11:114. [PMID: 39722064 DOI: 10.1186/s40643-024-00832-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
Hyaluronan (HA), a natural high molecular weight polysaccharide, has extensive applications in cosmetology and medical treatment. Hyaluronan-degrading enzymes (Hyals) act as molecular scissors that cleave HA by breaking the glucosidic linkage. Hyals are present in diverse organisms, including vertebrates, invertebrates and microorganisms, and play momentous roles in biological processes. In recent years, microbial Hyals (mHyals) have gained considerable attention for their exceptional performance in the production and processing of HA. Moreover, the applications of mHyals have been greatly extended to various biomedical fields. To explore the potential applications of mHyals, a thorough comprehension is imperative. In this context, this review systematically summarizes the sources, structures, mechanisms and enzymatic properties of mHyals and discusses their biological functions in host invasion, disease development, and regulation of intestinal flora. Furthermore, versatile applications inspired by their biological functions in medicine development, molecular biology, and industrial biotechnology are comprehensively reviewed. Finally, prospects are presented to emphasize the importance of exploration, expression and characterization of mHyals and the necessity of excavating their potential in biotechnological fields.
Collapse
Affiliation(s)
- Jia-Yu Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| | - Dai Xue
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
- Affiliated Children's Hospital of Jiangnan University, Wuxi, 214023, People's Republic of China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China.
| | - Qin-Xin Zheng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| | - Yue-Sheng Zhang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs, Lyngby, Denmark
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| | - Zheng-Hong Xu
- School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
3
|
Ndochinwa GO, Wang QY, Okoro NO, Amadi OC, Nwagu TN, Nnamchi CI, Moneke AN, Odiba AS. New advances in protein engineering for industrial applications: Key takeaways. Open Life Sci 2024; 19:20220856. [PMID: 38911927 PMCID: PMC11193397 DOI: 10.1515/biol-2022-0856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/01/2024] [Accepted: 03/13/2024] [Indexed: 06/25/2024] Open
Abstract
Recent advancements in protein/enzyme engineering have enabled the production of a diverse array of high-value compounds in microbial systems with the potential for industrial applications. The goal of this review is to articulate some of the most recent protein engineering advances in bacteria, yeast, and other microbial systems to produce valuable substances. These high-value substances include α-farnesene, vitamin B12, fumaric acid, linalool, glucaric acid, carminic acid, mycosporine-like amino acids, patchoulol, orcinol glucoside, d-lactic acid, keratinase, α-glucanotransferases, β-glucosidase, seleno-methylselenocysteine, fatty acids, high-efficiency β-glucosidase enzymes, cellulase, β-carotene, physcion, and glucoamylase. Additionally, recent advances in enzyme engineering for enhancing thermostability will be discussed. These findings have the potential to revolutionize various industries, including biotechnology, food, pharmaceuticals, and biofuels.
Collapse
Affiliation(s)
- Giles Obinna Ndochinwa
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, 410001, Nigeria
- State Key Laboratory of Biomass Enzyme Technology, Guangxi Academy of Sciences, Nanning, Nanning, 530007, China
| | - Qing-Yan Wang
- State Key Laboratory of Biomass Enzyme Technology, Guangxi Academy of Sciences, Nanning, Nanning, 530007, China
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Nanning, 530007, China
| | - Nkwachukwu Oziamara Okoro
- Department of Pharmaceutical and medicinal chemistry, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Nigeria
| | - Oyetugo Chioma Amadi
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, 410001, Nigeria
| | - Tochukwu Nwamaka Nwagu
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, 410001, Nigeria
| | - Chukwudi Innocent Nnamchi
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, 410001, Nigeria
| | - Anene Nwabu Moneke
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, 410001, Nigeria
| | - Arome Solomon Odiba
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Nigeria
| |
Collapse
|
4
|
Yan M, Chen Y, Feng Y, Saeed M, Fang Z, Zhen W, Ni Z, Chen H. Perspective on Agricultural Industrialization: Modification Strategies for Enhancing the Catalytic Capacity of Keratinase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38832583 DOI: 10.1021/acs.jafc.4c03025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Keratinases is a special hydrolytic enzyme produced by microorganisms, which has the ability to catalyze the degradation of keratin. Currently, keratinases show great potential for application in many agricultural and industrial fields, such as biofermented feed, leather tanning, hair removal, and fertilizer production. However, these potentials have not yet been fully unleashed on an industrial scale. This paper reviews the sources, properties, and catalytic mechanisms of keratinases. Strategies for the molecular modification of keratinases are summarized and discussed in terms of improving the substrate specificity, thermostability, and pH tolerance of keratinases. The modification strategies are also enriched by the introduction of immobilized enzymes and directed evolution. In addition, the selection of modification strategies when facing specific industrial applications is discussed and prospects are provided. We believe that this review serves as a reference for the future quest to extend the application of keratinases from the laboratory to industry.
Collapse
Affiliation(s)
- Mingchen Yan
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Ying Chen
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Yong Feng
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Muhammad Saeed
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Zhen Fang
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212000, China
| | - Wang Zhen
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212000, China
| | - Zhong Ni
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Huayou Chen
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| |
Collapse
|
5
|
Saeed M, Yan M, Ni Z, Hussain N, Chen H. Molecular strategies to enhance the keratinase gene expression and its potential implications in poultry feed industry. Poult Sci 2024; 103:103606. [PMID: 38479096 PMCID: PMC10951097 DOI: 10.1016/j.psj.2024.103606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/18/2024] [Accepted: 02/27/2024] [Indexed: 03/24/2024] Open
Abstract
The tons of keratin waste are produced by the poultry and meat industry which is an insoluble and protein-rich material found in hair, feathers, wool, and some epidermal wastes. These waste products could be degraded and recycled to recover protein, which can save our environment. One of the potential strategy to achieve this target is use of microbial biotreatment which is more convenient, cost-effective, and environment-friendly by formulating hydrolysate complexes that could be administered as protein supplements, bioactive peptides, or animal feed ingredients. Keratin degradation shows great promise for long-term protein and amino acid recycling. According to the MEROPS database, known keratinolytic enzymes currently belong to at least 14 different protease families, including S1, S8, S9, S10, S16, M3, M4, M14, M16, M28, M32, M36, M38, and M55. In addition to exogenous attack (proteases from families S9, S10, M14, M28, M38, and M55), the various keratinolytic enzymes also function via endo-attack (proteases from families S1, S8, S16, M4, M16, and M36). Biotechnological methods have shown great promise for enhancing keratinase expression in different strains of microbes and different protein engineering techniques in genetically modified microbes such as bacteria and some fungi to enhance keratinase production and activity. Some microbes produce specific keratinolytic enzymes that can effectively degrade keratin substrates. Keratinases have been successfully used in the leather, textile, and pharmaceutical industries. However, the production and efficiency of existing enzymes need to be optimized before they can be used more widely in other processes, such as the cost-effective pretreatment of chicken waste. These can be improved more effectively by using various biotechnological applications which could serve as the best and novel approach for recycling and degrading biomass. This paper provides practical insights about molecular strategies to enhance keratinase expression to effectively utilize various poultry wastes like feathers and feed ingredients like soybean pulp. Furthermore, it describes the future implications of engineered keratinases for environment friendly utilization of wastes and crop byproducts for their better use in the poultry feed industry.
Collapse
Affiliation(s)
- Muhammad Saeed
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Mingchen Yan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Zhong Ni
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Nazar Hussain
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
6
|
Liu X, Lian M, Zhao M, Huang M. Advances in recombinant protease production: current state and perspectives. World J Microbiol Biotechnol 2024; 40:144. [PMID: 38532149 DOI: 10.1007/s11274-024-03957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
Proteases, enzymes that catalyze the hydrolysis of peptide bonds in proteins, are important in the food industry, biotechnology, and medical fields. With increasing demand for proteases, there is a growing emphasis on enhancing their expression and production through microbial systems. However, proteases' native hosts often fall short in high-level expression and compatibility with downstream applications. As a result, the recombinant production of proteases has become a significant focus, offering a solution to these challenges. This review presents an overview of the current state of protease production in prokaryotic and eukaryotic expression systems, highlighting key findings and trends. In prokaryotic systems, the Bacillus spp. is the predominant host for proteinase expression. Yeasts are commonly used in eukaryotic systems. Recent advancements in protease engineering over the past five years, including rational design and directed evolution, are also highlighted. By exploring the progress in both expression systems and engineering techniques, this review provides a detailed understanding of the current landscape of recombinant protease research and its prospects for future advancements.
Collapse
Affiliation(s)
- Xiufang Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mulin Lian
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China.
| |
Collapse
|