1
|
Chen K, Song D, Shi D, Li L, Wu Z. Synthesis and Activity of Novel Pyrazole/Pyrrole Carboxamides Containing a Dinitrogen Six-Membered Heterocyclic as Succinate Dehydrogenase and Ergosterol Biosynthesis Inhibitors against Colletotrichum camelliae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10914-10922. [PMID: 40266629 DOI: 10.1021/acs.jafc.5c02618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Pyrazole carboxamide derivatives were initially extensively studied as succinate dehydrogenase inhibitors (SDHIs). In the present study, a series of pyrazole/pyrrole carboxamides containing a dinitrogen six-membered heterocyclic were designed based on our reported active skeletons with dual mode of action. Bioactivity results showed that the target compound Q18 demonstrated superior antifungal efficacy against Colletotrichum camelliae (C. camelliae) with an EC50 value of 6.0 mg/L. The in vivo protective activity of Q18 was 74.7% at 100 mg/L. Scanning electron microscopy and transmission electron microscopy showed that Q18 could disrupt the surface morphology of the mycelia and cause lipid peroxidation of cell membrane, which was further verified by the determination of relative conductivity and malondialdehyde contents. Combined with ergosterol content, docking results between Q18 with SDH and CYP51, and the IC50 value of Q18 for SDH (9.7 mg/L), it is concluded that Q18 is a potential SDHI and ergosterol biosynthesis inhibitor. Thus, the present study provides fresh insight into the study of derivatives of the amides.
Collapse
Affiliation(s)
- Kuai Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Dandan Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Detan Shi
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Longju Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Zhibing Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| |
Collapse
|
2
|
Yi M, Li H, Li S, Liu S, Sun M, Yang L, Bao X. Design, synthesis, crystal structure, fungicidal activity, and mechanism of action of novel thiazole-based hydrazide derivatives containing the 4-aminoquinazoline moiety. Bioorg Chem 2025; 156:108237. [PMID: 39914035 DOI: 10.1016/j.bioorg.2025.108237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/16/2025] [Accepted: 01/31/2025] [Indexed: 03/28/2025]
Abstract
A family of novel thiazole-based hydrazide derivatives bearing the 4-aminoquinazoline moiety were designed and synthesized by the molecular hybridization strategy, and assessed for their antifungal activities in vitro and in vivo. Among these derivatives, the chemical structure of compound A26 was clearly confirmed via X-ray crystallography. The bioassay results revealed that some of the synthesized compounds exhibited significant inhibition effects against the tested phytopathogenic fungi. For example, in vitro EC50 (half maximal effective concentration) values of compounds A19 and A26 against Rhizoctonia solani, A19 against Verticillium dahliae, A26 against Alternaria solani, and A17 against Colletotrichum gloeosporioides were all less than 3.0 μg/mL. In particular, compound A19 with a 2-fluorophenyl group had an EC50 value as low as 2.87 μg/mL towards R. solani, comparable to that of Chlorothalonil (1.44 μg/mL) and slightly inferior to those of Carbendazim and Boscalid (0.85 and 0.83 μg/mL, respectively). In addition, in vivo assays using this compound displayed the curative and protective efficiencies of 48.4% and 59.6% against R. solani, respectively, at the concentration of 200 μg/mL. Moreover, the mechanistic studies indicated that compound A19 likely exerted its highly antifungal effects by acting as an effective succinate dehydrogenase (SDH) inhibitor with an IC50 value of 29.33 μM, based on SDH enzymatic inhibition assays and molecular docking studies. Meanwhile, the presence of compound A19 adversely impacted the integrity of cell membranes and mycelial morphologies of R. solani.
Collapse
Affiliation(s)
- Mingyan Yi
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Sha Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Shengping Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Mingman Sun
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Lan Yang
- College of Pharmacy, Guizhou University, Guiyang 550025, China.
| | - Xiaoping Bao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
3
|
Tian GM, Yi MY, Yan TS, Liu SS, Huang J, Li H, Bao XP. Design, synthesis, X-ray crystal structure, and antifungal evaluation of new acetohydrazide derivatives containing a 4-thioquinazoline moiety. PEST MANAGEMENT SCIENCE 2025; 81:1624-1637. [PMID: 39629599 DOI: 10.1002/ps.8566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 02/14/2025]
Abstract
BACKGROUND To find efficient agricultural fungicides, 29 new 4-thioquinazoline-containing acetohydrazide derivatives were prepared and tested for their fungicidal properties. RESULTS All of the target compounds were characterized by 1H and 13C nuclear magnetic resonance and high-resolution mass spectrometry techniques, and the molecular structure of compound A2 was verified by single-crystal X-ray diffraction measurement. The experimental results revealed that many compounds from this series had impressive inhibition efficacies in vitro against the tested fungi. For example, compound A25 was identified as the best fungicidal agent against Rhizoctonia solani with an EC50 (half-maximal effective concentration) value of 0.66 μg mL-1, superior to those of the commercial fungicides chlorothalonil, carbendazim and boscalid. Additionally, this compound displayed favorable protection and curative activities in vivo against rice sheath blight caused by R. solani. Antifungal mechanistic studies on compound A25 indicated that this compound exerted its strong anti-R. solani effects probably through an effective inhibition of fungal succinate dehydrogenase activity [half-maximal inhibitory concentration (IC50) = 4.88 μm] and the impairment of cell membrane integrity, based on the results from enzymatic bioassays, molecular docking studies, and scanning and transmission electron microscopy observations. CONCLUSION Acetohydrazide derivatives containing the 4-thioquinazoline moiety had the potential to be employed as lead compounds for developing more efficient agricultural fungicides in the near future. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guang-Min Tian
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Ming-Yan Yi
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Tai-Sen Yan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Song-Song Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Jian Huang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Xiao-Ping Bao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
4
|
Yang Y, Liu S, Yan T, Yi M, Li H, Bao X. Design, Synthesis, Antifungal Activity, and Mechanism of Action of New Piperidine-4-carbohydrazide Derivatives Bearing a Quinazolinyl Moiety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17283-17294. [PMID: 39074377 DOI: 10.1021/acs.jafc.4c03860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
A series of new piperidine-4-carbohydrazide derivatives bearing a quinazolinyl moiety were prepared and evaluated for their fungicidal activities against agriculturally important fungi. Among these derivatives, the chemical structure of compound A45 was clearly verified by X-ray crystallographic analysis. The antifungal bioassays revealed that many compounds in this series possessed good to excellent inhibition effects toward the tested fungi. For example, compounds A13 and A41 had EC50 values of 0.83 and 0.88 μg/mL against Rhizoctonia solani in vitro, respectively, superior to those of positive controls Chlorothalonil and Boscalid (1.64 and 0.96 μg/mL, respectively). Additionally, the above two compounds also exhibited notable inhibitory activities against Verticillium dahliae (with EC50 values of 1.12 and 3.20 μg/mL, respectively), far better than the positive controls Carbendazim and Chlorothalonil (19.3 and 11.0 μg/mL, respectively). More importantly, compound A13 could potently inhibit the proliferation of R. solani in the potted rice plants, showing good in vivo curative and protective efficiencies of 76.9% and 76.6% at 200 μg/mL, respectively. Furthermore, compound A13 demonstrated an effective inhibition of succinate dehydrogenase (SDH) activity in vitro with an IC50 value of 6.07 μM. Finally, the molecular docking study revealed that this compound could be well embedded into the active pocket of SDH via multiple noncovalent interactions, involving residues like SER39, ARG43, and GLY46.
Collapse
Affiliation(s)
- Yehui Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Songsong Liu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Taisen Yan
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Mingyan Yi
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Hong Li
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Xiaoping Bao
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
5
|
Saeedian Moghadam E, Bonyasi F, Bayati B, Sadeghi Moghadam M, Amini M. Recent Advances in Design and Development of Diazole and Diazine Based Fungicides (2014-2023). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15427-15448. [PMID: 38967261 DOI: 10.1021/acs.jafc.4c02187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
With fungal diseases posing a major threat to agricultural production, the application of fungicides to control related diseases is often considered necessary to ensure the world's food supply. The search for new bioactive agents has long been a priority in crop protection due to the continuous development of resistance against currently used types of active compounds. Heterocyclic compounds are an inseparable part of the core structures of numerous lead compounds, these rings constitute pharmacophores of a significant number of fungicides developed over the past decade by agrochemists. Among heterocycles, nitrogen-based compounds play an essential role. To date, diazole (imidazole and pyrazole) and diazine (pyrimidine, pyridazine, and pyrazine) derivatives make up an important series of synthetic fungicides. In recent years, many reports have been published on the design, synthesis, and study of the fungicidal activity of these scaffolds, but there was a lack of a comprehensive classified review on nitrogen-containing scaffolds. Regarding this issue, here we have reviewed the published articles on the fungicidal activity of the diazole and diazine families. In current review, we have classified the molecules synthesized so far based on the size of the ring.
Collapse
Affiliation(s)
- Ebrahim Saeedian Moghadam
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Fahimeh Bonyasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Bahareh Bayati
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mahdis Sadeghi Moghadam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mohsen Amini
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| |
Collapse
|
6
|
Chai JQ, Wang XB, Yue K, Hou ST, Jin F, Liu Y, Tai L, Chen M, Yang CL. Design, Synthesis, Antifungal Activity, and Action Mechanism of Pyrazole-4-carboxamide Derivatives Containing Oxime Ether Active Fragment As Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11308-11320. [PMID: 38720452 DOI: 10.1021/acs.jafc.3c07880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The dearomatization at the hydrophobic tail of the boscalid was carried out to construct a series of novel pyrazole-4-carboxamide derivatives containing an oxime ether fragment. By using fungicide-likeness analyses and virtual screening, 24 target compounds with theoretical strong inhibitory effects against fungal succinate dehydrogenase (SDH) were designed and synthesized. Antifungal bioassays showed that the target compound E1 could selectively inhibit the in vitro growth of R. solani, with the EC50 value of 1.1 μg/mL that was superior to that of the agricultural fungicide boscalid (2.2 μg/mL). The observations by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that E1 could reduce mycelial density and significantly increase the mitochondrial number in mycelia cytoplasm, which was similar to the phenomenon treated with boscalid. Enzyme activity assay showed that the E1 had the significant inhibitory effect against the SDH from R. solani, with the IC50 value of 3.3 μM that was superior to that of boscalid (7.9 μM). The mode of action of the target compound E1 with SDH was further analyzed by molecular docking and molecular dynamics simulation studies. Among them, the number of hydrogen bonds was significantly more in the SDH-E1 complex than that in the SDH-boscalid complex. This research on the dearomatization strategy of the benzene ring for constructing pyrazole-4-carboxamides containing an oxime ether fragment provides a unique thought to design new antifungal drugs targeting SDH.
Collapse
Affiliation(s)
- Jian-Qi Chai
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao-Bin Wang
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
- College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Kai Yue
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai-Tao Hou
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Jin
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yv Liu
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Lang Tai
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Chen
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Chun-Long Yang
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Liang Q, Gao F, Jian J, Yang J, Hao X, Huang L. Design, Synthesis and Antifungal Activity of Nootkatone Derivatives Containing Acylhydrazone and Oxime Ester. Chem Biodivers 2024; 21:e202400355. [PMID: 38453645 DOI: 10.1002/cbdv.202400355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
In an attempt to search for new natural products-based antifungal agents, fifty-three nootkatone derivatives were designed, synthesized, and evaluated for their antifungal activity against Phytophthora parasitica var nicotianae, Fusarium oxysporum, Fusarium graminearum and Phomopsis sp. by the mycelium growth rate method. Nootkatone derivatives N17 exhibited good inhibitory activity against Phomopsis. sp. with EC50 values of 2.02 μM. The control effect of N17 against Phomopsis. sp. on kiwifruit showed that N17 exhibited a good curative effect in reducing kiwifruit rot at the concentration of 202 μM(100×EC50 ), with the curative effect of 41.11 %, which was better than commercial control of pyrimethanil at the concentration of 13437 μM(100×EC50 ) with the curative effect of 38.65 %. Phomopsis. sp. mycelium treated with N17 showed irregular surface collapse and shrinkage, and the cell membrane crinkled irregularly, vacuoles expanded significantly, mitochondria contracted, and organelles partially swollen by the SEM and TEM detected. Preliminary pharmacological experiments show that N17 exerted antifungal effects by altering release of cellular contents, and altering cell membrane permeability and integrity. The cytotoxicity test demonstrated that N17 showed almost no toxicity to K562 cells. The presented results implied that N17 may be as a potential antifungal agents for developing more efficient fungicides to control Phomopsis sp.
Collapse
Affiliation(s)
- Qilong Liang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, People's Republic of China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, People's Republic of China
| | - Futian Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, People's Republic of China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, People's Republic of China
- School of Pharmacy, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Junyou Jian
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, People's Republic of China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, People's Republic of China
| | - Jue Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, People's Republic of China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, People's Republic of China
| | - Xiaojiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, People's Republic of China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, People's Republic of China
| | - Liejun Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, People's Republic of China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, People's Republic of China
| |
Collapse
|
8
|
Gong C, Meng K, Sun Z, Zeng W, An Y, Zou H, Qiu Y, Liu D, Xue W. Flavonol Derivatives Containing a Quinazolinone Moiety: Design, Synthesis, and Antiviral Activity. Chem Biodivers 2024; 21:e202301737. [PMID: 38204291 DOI: 10.1002/cbdv.202301737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 01/12/2024]
Abstract
A series of flavonol derivatives containing quinazolinone were designed and synthesized, and their antiviral activities against tobacco mosaic virus (TMV) were evaluated. The results of the half maximal effective concentration (EC50 ) test against TMV showed that the EC50 value of curative activity of K5 was 139.6 μg/mL, which was better than that of the commercial drug ningnanmycin (NNM) 296.0 μg/mL, and the EC50 value of protective activity of K5 was 120.6 μg/mL, which was superior to that of NNM 207.0 μg/mL. The interaction of K5 with TMV coat protein (TMV-CP) was investigated using microscale thermophoresis (MST) and molecular docking and the results showed that K5 can combine with TMV-CP more strongly to TMV-CP than that NNM can. Furthermore, the assay measuring malondialdehyde (MDA) content indicated that K5 had the ability to improve the disease resistance of tobacco. Hence, this study offers strong evidence that flavonol derivatives have potential as novel antiviral agents.
Collapse
Affiliation(s)
- Chenyu Gong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Kaini Meng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Zhiling Sun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Wei Zeng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Youshan An
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Hongqian Zou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Yujiao Qiu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Da Liu
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Huaihua University, Huaihua, 418008, China
| | - Wei Xue
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| |
Collapse
|
9
|
Sun XP, Yu CS, Min LJ, Cantrell CL, Hua X, Sun NB, Liu XH. Discovery of Highly Efficient Novel Antifungal Lead Compounds Targeting Succinate Dehydrogenase: Pyrazole-4-carboxamide Derivatives with an N-Phenyl Substituted Amide Fragment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19312-19323. [PMID: 38018356 DOI: 10.1021/acs.jafc.3c04842] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Developing environmentally friendly fungicides is crucial to tackle the issue of rising pesticide resistance. In this study, a series of novel pyrazole-4-carboxamide derivatives containing N-phenyl substituted amide fragments were designed and synthesized. The structures of target compounds were confirmed by 1H NMR, 13C NMR, and HRMS, and the crystal structure of the most active compound N-(1-(4-(4-(tert-butyl)benzamido)phenyl)propan-2-yl)-3-(difluoromethyl)-N-methoxy-1-methyl-1H-pyrazole-4-carboxamide (U22) was further determined by X-ray single-crystal diffraction. The bioassay results indicated that the 26 target compounds possessed good in vitro antifungal activity against Sclerotinia sclerotiorum with EC50 values for compounds U12, U13, U15, U16, U18, U22, and U23 being 4.17 ± 0.46, 8.04 ± 0.71, 7.01 ± 0.71, 12.77 ± 1.00, 8.11 ± 0.70, 0.94 ± 0.11, and 9.48 ± 0.83 μg·mL-1, respectively, which were the similar to controls bixafen (6.70 ± 0.47 μg·mL-1), fluxapyroxad (0.71 ± 0.14 μg·mL-1), and pydiflumetofen (0.06 ± 0.01 μg·mL-1). Furthermore, in vivo antifungal activity results against S. sclerotiorum indicated that compounds U12 (80.6%) and U22 (89.9%) possessed excellent preventative efficacy at 200 μg·mL-1, which was the same as the control pydiflumetofen (82.4%). Scanning electron microscopy and transmission electron microscopy studies found that the compound U22 could destroy the hyphal morphology and damage mitochondria, cell membranes, and vacuoles. The results of molecular docking of compound U22 and pydiflumetofen with succinate dehydrogenase (SDH) indicated they interact well with the active site of SDH. This study validated our approach and design strategy to produce compounds with an enhanced biological activity as compared to the parent structure.
Collapse
Affiliation(s)
- Xin-Peng Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, Zhejiang China
| | - Chen-Sheng Yu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Li-Jing Min
- College of Life Science, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou 313000, Zhejiang, China
| | - Charles L Cantrell
- United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, Oxford, Mississippi 38677, United States
| | - Xuewen Hua
- College of Agriculture, Liaocheng University, Liaocheng 252000, Shandong, China
| | - Na-Bo Sun
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, Zhejiang China
| | - Xing-Hai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
10
|
Tian Y, Shi J, Deng X, Yu T, Hu Y, Hu R, Lei Y, Yu L, Zhu X, Li J. Design, Synthesis, and Antifungal Activity of Some Novel Phenylthiazole Derivatives Containing an Acylhydrazone Moiety. Molecules 2023; 28:7084. [PMID: 37894562 PMCID: PMC10608836 DOI: 10.3390/molecules28207084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Crop fungal diseases pose a serious threat to global crop production and quality. Developing new and efficient fungicides is an important measure to control crop diseases. Phenylthiazole was found to be an excellent antifungal skeleton based on our previous study on the structural optimization and biological activity of the natural product thiasporine A. To find new fungicides, 45 phenylthiazole derivatives containing an acylhydrazone moiety were designed and synthesized by the principle of active substructure splicing. Forty-two of the forty-five compounds are novel, except for compounds E1, E14, and E33. Their structures were structurally characterized by 1H NMR, 13C NMR, and HRMS. The antifungal activities of the target compounds against Magnaporthe oryzae Colletotrichum camelliaet, Bipolaris maydis, and Sclerotinia sclerotiorum were evaluated at 25 μg/mL. The bioassay results revealed that most of these compounds exhibited excellent antifungal activities against M. oryzae and C. camelliaet at 25 μg/mL. In particular, compounds E4, E10, E14, E17, E23, E26, and E27 showed the inhibition rate of more than 80% against M. oryzae, with EC50 values of 1.66, 2.01, 2.26, 1.45, 1.50, 1.29, and 2.65 μg/mL, respectively, which were superior to that of the commercial fungicides Isoprothiolane (EC50 = 3.22 μg/mL) and Phenazine-1-carboxylic acid (EC50 = 27.87 μg/mL). The preliminary structure-activity relationship (SAR) results suggested that introducing methyl, halogen, or methoxy at the ortho-position of R1 and the para-position of R2 can endow the final structure with excellent antifungal activity against M. oryzae. The current results provide useful data for developing phenylthiazole derivatives as new fungicides for controlling rice blast caused by M. oryzae.
Collapse
Affiliation(s)
- Yao Tian
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.T.); (J.S.); (X.D.); (T.Y.); (Y.H.); (R.H.); (Y.L.); (L.Y.)
- Institute of Pesticides, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Jinchao Shi
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.T.); (J.S.); (X.D.); (T.Y.); (Y.H.); (R.H.); (Y.L.); (L.Y.)
- Institute of Pesticides, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Xiaoqian Deng
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.T.); (J.S.); (X.D.); (T.Y.); (Y.H.); (R.H.); (Y.L.); (L.Y.)
- Institute of Pesticides, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Tingyu Yu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.T.); (J.S.); (X.D.); (T.Y.); (Y.H.); (R.H.); (Y.L.); (L.Y.)
- Institute of Pesticides, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Yong Hu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.T.); (J.S.); (X.D.); (T.Y.); (Y.H.); (R.H.); (Y.L.); (L.Y.)
- Institute of Pesticides, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Richa Hu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.T.); (J.S.); (X.D.); (T.Y.); (Y.H.); (R.H.); (Y.L.); (L.Y.)
- Institute of Pesticides, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Yufeng Lei
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.T.); (J.S.); (X.D.); (T.Y.); (Y.H.); (R.H.); (Y.L.); (L.Y.)
- Institute of Pesticides, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Linhua Yu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.T.); (J.S.); (X.D.); (T.Y.); (Y.H.); (R.H.); (Y.L.); (L.Y.)
- Institute of Pesticides, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Xiang Zhu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.T.); (J.S.); (X.D.); (T.Y.); (Y.H.); (R.H.); (Y.L.); (L.Y.)
- Institute of Pesticides, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Junkai Li
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.T.); (J.S.); (X.D.); (T.Y.); (Y.H.); (R.H.); (Y.L.); (L.Y.)
- Institute of Pesticides, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| |
Collapse
|