1
|
Ding L, Wang Y, Pu L, Wang T, Liu Y, Zhou X, Wang K. Visible light-responsive enrofloxacin PEC aptasensor based on CN QDs sensitized Bi 4O 5Br 2 nanosheets. Anal Chim Acta 2025; 1337:343545. [PMID: 39800504 DOI: 10.1016/j.aca.2024.343545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 12/11/2024] [Indexed: 05/02/2025]
Abstract
BACKGROUND The excessive application of enrofloxacin (ENR) results in residues contaminating both food and the environment. Consequently, developing robust analytical methods for the selective detection of ENR is crucial. The photoelectrochemical (PEC) sensor has emerged as a highly sensitive analytical technique that has seen rapid development in recent years. The functioning of a PEC sensor relies on the reducing capacity of photogenerated electrons and the oxidizing capacity of photogenerated holes produced by the photoactive material. Bi4O5Br2 demonstrates its potential in electrochemical detection, but faces inherent challenges, including swift electron-hole recombination and slow carrier migration, which hinder its catalytic activity. RESULTS In this study, we synthesized carbon nitride quantum dots doped with Bi4O5Br2 (CN QDs/Bi4O5Br2) through an in situ growth method, utilizing this composite as a photoactive material. The incorporation of CN QDs leads to a 17-fold increase in photocurrent compared to Bi4O5Br2 alone. This enhancement is attributed not only to the improved separation of electron-hole pairs, facilitated by the CN QDs, which boosts photocatalytic activity, but also to the enlarged range of visible light absorption. We employed an ENR-specific aptamer as the recognition element, resulting in the construction of a high-performance photoelectrochemical aptasensor for ENR detection. The sensor exhibited a linear detection range of 1 × 10-1 to 1 × 106 ng mL-1 and a detection limit of 0.033 ng mL-1. The impressive performance of the CN QDs/Bi4O5Br2 sensing platform demonstrates its potential application in detecting ENR concentrations in food, biomedical contexts, and environmental analyses. SIGNIFICANCE Benefiting from the sensitization of CN QDs, CN QDs/Bi4O5Br2 exhibited 17-fold PEC signal of pure Bi4O5Br2. The presence of quantum dots in CN QDs/Bi4O5Br2 facilitates rapid separation of electron-hole pairs, leading to significantly enhanced PEC activity and improved detection performance for ENR. This research convincingly illustrates that integrating CN QDs with Bi4O5Br2 nanosheets could pave the way for designing more efficient bismuth-based semiconductor photoactive materials for sensing applications.
Collapse
Affiliation(s)
- Lijun Ding
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yuan Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Lianxi Pu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Tianshuo Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yuanhao Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Xilong Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
2
|
Cai Q, Li H, Li Z, Jie G. Study on the Electrochemiluminescence Emission Mechanism of HOF-14 and Its Multimode Sensing and Imaging Application. Anal Chem 2024; 96:16900-16909. [PMID: 39434665 DOI: 10.1021/acs.analchem.4c03783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
A novel hydrogen-bonded organic framework (HOF-14) has attracted much attention due to its excellent biocompatibility and low toxicity, but its research in the electrochemiluminescence (ECL) field has not been reported. In this work, the annihilation-type and coreactant-type ECL emission mechanisms of HOF-14 were studied systematically for the first time. It was found that the ECL quantum efficiency of HOF-14/TEA coreactant system was the highest, which was 1.82 times that of Ru(bpy)32+/TEA. Further, the ECL emission intensity of HOF-14/TEA system could achieve colorimetric (CL) imaging of mobile phone. We also discovered that HOF-14 had superior photoelectrochemical (PEC) performance. Based on the above research results, a unique HOF-14-based multimode sensing and imaging platform was constructed. The antibiotic Enrofloxacin (ENR) was selected as the detection target, and the Cu-Zn bimetallic single-atom nanozyme (Cu-Zn/SAzyme) with excellent peroxidase (POD)-like activity was used to prepare quenching probes. When the target ENR was present, Cu-Zn/SAzyme quenching probes were introduced to the surface of HOF-14 by the dual-aptamer sandwich method. Cu-Zn/SAzyme could catalyze diaminobenzidine (DAB) to produce brown precipitations to quench the ECL, PEC, and CL signals of HOF-14, realizing multimode detection of ENR. This work not only discovered excellent ECL and PEC property of new HOF-14 material but also systematically studied the ECL emission mechanism of HOF-14, and proposed a novel multimode sensing and imaging platform, which greatly improved the detection accuracy of target and showed great contributions to the field of ECL analysis.
Collapse
Affiliation(s)
- Qianqian Cai
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Hongkun Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zhikang Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
3
|
Yin S, Chen X, Li R, Sun L, Yao C, Li Z. Wearable, Biocompatible, and Dual-Emission Ocular Multisensor Patch for Continuous Profiling of Fluoroquinolone Antibiotics in Tears. ACS NANO 2024; 18:18522-18533. [PMID: 38963059 DOI: 10.1021/acsnano.4c04153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The abuse or misuse of antibiotics in clinical and agricultural settings severely endangers human health and ecosystems, which has raised profound concerns for public health worldwide. Trace detection and reliable discrimination of commonly used fluoroquinolone (FQ) antibiotics and their analogues have consequently become urgent to guide the rational use of antibiotic medicines and deliver efficient treatments for associated diseases. Herein, we report a wearable eye patch integrated with a quadruplex nanosensor chip for noninvasive detection and discrimination of primary FQ antibiotics in tears during routine eyedrop treatment. A set of dual-mode fluorescent nanoprobes of red- or green-emitting CdTe quantum dots integrated with lanthanide ions and a sensitizer, adenosine monophosphate, were constructed to provide an enhanced fluorescence up to 45-fold and nanomolar sensitivity toward major FQs owing to the aggregation-regulated antenna effect. The aggregation-driven, CdTe-Ln(III)-based microfluidic sensor chip is highly specific to FQ antibiotics against other non-FQ counterparts or biomolecular interfering species and is able to accurately discriminate nine types of FQ or non-FQ eyedrop suspensions using linear discriminant analysis. The prototyped wearable sensing detector has proven to be biocompatible and nontoxic to human tissues, which integrates the entire optical imaging modules into a miniaturized, smartphone-based platform for field use and reduces the overall assay time to ∼5 min. The practicability of the wearable eye patch was demonstrated through accurate quantification of antibiotics in a bactericidal event and the continuous profiling of FQ residues in tears after using a typical prescription antibiotic eyedrop. This technology provides a useful supplement to the toolbox for on-site and real-time examination and regulation of inappropriate daily drug use that might potentially lead to long-term antibiotic abuse and has great implications in advancing personal healthcare techniques for the regulation of daily medication therapy.
Collapse
Affiliation(s)
- Shengnan Yin
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiaofeng Chen
- School of Life and Health Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Runze Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Linlin Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Chanyu Yao
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Zheng Li
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
4
|
Hou X, Gao X, Yang P, Niu Q, Liu Q, Yang X. Signal Modulation Induced by a Hole Transfer Layer Participant Photoactive Gate: A Highly Sensitive Organic Photoelectrochemical Transistor Sensing Platform. Anal Chem 2024; 96:11083-11091. [PMID: 38924704 DOI: 10.1021/acs.analchem.4c02261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
It is urgent to pursue appropriate gate photoactive materials for gate-to-channel signal modulation to achieve superior transconductance performances of organic photoelectrochemical transistor (OPECT) sensors. Notably, a hole transfer layer (HTL) participant CdZnS/sulfur-doped Ti3C2 MXene (S-MXene) gate was designed and developed in this work, which exhibited a remarkable signal modulation performance by up to 3 orders of magnitude. Because of the incorporation of S-MXene with an enhanced electrical conductivity as the effective HTL, the signal modulation capabilities of the CdZnS/S-MXene photoactive gate were superior to those of CdZnS and CdZnS/MXene. This incorporation inhibited the recombination of the interfacial charge and facilitated the transfer of photogenerated holes, thus enhancing the photoelectric conversion performance. This enhancement facilitated fast electron transfer with a larger effective photovoltage to augment the dedoping ability of channel ions. Based on these findings, an aptasensing platform that exhibited good performance was constructed using the proposed OPECT device, with ofloxacin as a model target and an aptamer for specific recognition. The developed OPECT aptasensor had various advantages, including a high sensitivity, good linear range (1.0 × 10-13 to 1.0 × 10-6 M), and low limit of detection (3.3 × 10-15 M). This study provided a proof-of-concept for the generalized development of HTL participant gates for OPECT sensors and other related applications.
Collapse
Affiliation(s)
- Xiuli Hou
- Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xin Gao
- Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Peilin Yang
- Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qijian Niu
- Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qian Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaoyue Yang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| |
Collapse
|
5
|
Liu S, Zhang M, Chen Q, Ouyang Q. Multifunctional Metal-Organic Frameworks Driven Three-Dimensional Folded Paper-Based Microfluidic Analysis Device for Chlorpyrifos Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14375-14385. [PMID: 38860923 DOI: 10.1021/acs.jafc.4c02875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Chlorpyrifos (CPF) residues in food pose a serious threat to ecosystems and human health. Herein, we propose a three-dimensional folded paper-based microfluidic analysis device (3D-μPAD) based on multifunctional metal-organic frameworks, which can achieve rapid quantitative detection of CPF by fluorescence-colorimetric dual-mode readout. Upconversion nanomaterials were first coupled with a bimetal organic framework possessing peroxidase activity to create a fluorescence-quenched nanoprobe. After that, the 3D-μPAD was finished by loading the nanoprobe onto the paper-based detection zone and spraying it with a color-developing solution. With CPF present, the fluorescence intensity of the detection zone gradually recovers, the color changes from colorless to blue. This showed a good linear relationship with the concentration of CPF, and the limits of detection were 0.028 (fluorescence) and 0.043 (colorimetric) ng/mL, respectively. Moreover, the 3D-μPAD was well applied in detecting real samples with no significant difference compared with the high-performance liquid chromatography method. We believe it has huge potential for application in the on-site detection of food hazardous substance residues.
Collapse
Affiliation(s)
- Shuangshuang Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Mingming Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
- Tea industry Research Institute, Fujian Eight Horses Tea Co., Ltd, Quanzhou 362442, PR China
| |
Collapse
|
6
|
Zhang M, Wang X, Liu S, Riaz T, Chen Q, Ouyang Q. Integrating target-responsive microfluidic-based biosensing chip with smartphone for simultaneous quantification of multiple fluoroquinolones. Biosens Bioelectron 2024; 254:116192. [PMID: 38489967 DOI: 10.1016/j.bios.2024.116192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
The presence of fluoroquinolone (FQs) antibiotic residues in the food and environment has become a significant concern for human health and ecosystems. In this study, the background-free properties of upconversion nanoparticles (UCNPs), the high specificity of the target aptamer (Apt), and the high quenching properties of graphene oxide (GO) were integrated into a microfluidic-based fluorescence biosensing chip (MFBC). Interestingly, the microfluidic channels of the MFBC were prepared by laser-printing technology without the need for complex preparation processes and additional specialized equipment. The target-responsive fluorescence biosensing probes loaded on the MFBC were prepared by self-assembly of the UCNPs-Apt complex with GO based on π-π stacking interactions, which can be used for the detection of the two FQs on a large scale without the need for multi-step manipulations and reactions, resulting in excellent multiplexed, automated and simultaneous sensing capabilities with detection limits as low as 1.84 ng/mL (enrofloxacin) and 2.22 ng/mL (ciprofloxacin). In addition, the MFBC was integrated with a smartphone into a portable device to enable the analysis of a wide range of FQs in the field. This research provides a simple-to-prepare biosensing chip with great potential for field applications and large-scale screening of FQs residues in the food and environment.
Collapse
Affiliation(s)
- Mingming Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Xue Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Shuangshuang Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Tahreem Riaz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China; College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
7
|
Hu Y, Chen X, Wang K, Jiang C, Liu W, Zhang S, Zheng M, Zhou Y, Xiao Y, Liu Y. Fluorescent responsive membrane based on terbium coordination polymer and carbon dots with AIE effect for rapid and visual detection of fluoroquinolone. Biosens Bioelectron 2024; 254:116205. [PMID: 38484411 DOI: 10.1016/j.bios.2024.116205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 04/02/2024]
Abstract
In this study, based on aggregation-induced emission (AIE) effect and antenna effect, a novel portable fluorescent responsive membrane was constructed with red carbon dots (R-CDs) as reference signal and terbium coordination polymer (Tb-AMP CPs) as response signal for visual, instrument-free, and sensitive detection of fluoroquinolones (FQs). Specifically, the fluorescent responsive membrane (R-T membrane) was prepared by physically depositing R-CDs with AIE property and Tb-AMP CPs on the surface of polyvinylidene fluoride filter membranes at ambient temperature. In the presence of FQs, Tb3+ in the Tb-AMP CPs of the prepared membrane coordinated with the β-diketone structure of FQs, which turned on the yellow-green fluorescence through the "antenna effect". As the concentration of FQs increased, the R-T membrane achieved a fluorescent color transition from bright pink to yellow-green. Its visual detection sensitivity for three FQs, including ciprofloxacin, difloxacin, and enrofloxacin, was 0.01 μM, and the detection limits were 7.4 nM, 7.8 nM, and 9.2 nM, respectively, by analyzing the color parameter green. In the residue analysis of FQs in real samples, the constructed membrane also exhibited remarkable anti-interference and reliability, which is of great significance for ensuring the safety of animal-derived food.
Collapse
Affiliation(s)
- Yunyun Hu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xi Chen
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Kai Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Chuang Jiang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Wenya Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Siyu Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Mingming Zheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yaqing Xiao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yingnan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
8
|
Shen S, Shi YE, Yin M, Wang Z. Host-Guest Doping Modulated Afterglow Emission of Fluoroquinolones for Their Separation-Free Detection and Discrimination. Anal Chem 2024; 96:5640-5647. [PMID: 38551637 DOI: 10.1021/acs.analchem.4c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Detection and discrimination of fluoroquinolones (FQs) are crucial for food safety but remain a formidable challenge due to their minor differences in molecular structures and the serious interferences from food matrices. Herein, we propose an afterglow assay for the detection and discrimination of FQs through modulating their room-temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF) properties by a host-guest doping strategy. FQs were doped into the boric acid host, forming boronic anhydride structures and hydrogen bonds, which prompted the RTP and TADF performance of FQs by stabilizing their excited states, preventing triplet exciton quenching, and reducing the energy gap between singlet and triplet states. The FQs can be quantitatively detected through monitoring the afterglow intensity of host-guest systems, as low as 0.25 μg/mL. The differences in the afterglow intensity and emission lifetime allowed accurate discrimination of 11 types of FQs through pattern recognition methods. Aided by the delayed signal detection model of afterglow emission, the background signal and the interferences from food matrices were effectively eliminated, which endow the detection and discrimination of mixed FQs in commercial meat samples, without multiple-step separation processes.
Collapse
Affiliation(s)
- Song Shen
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Yu-E Shi
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Mingyuan Yin
- Hebei Key Laboratory of Public Health Safety, Ministry of Education & College of Public Health, Hebei University, Baoding 071002, China
| | - Zhenguang Wang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| |
Collapse
|