1
|
Raj J, Tassis P, Männer K, Farkaš H, Jakovčević Z, Vasiljević M. Effects of a Multicomponent Mycotoxin Detoxifying Agent on Health and Performance of Weaned Pigs Under Combined Dietary Exposure to Deoxynivalenol (DON) and Zearalenone (ZEN). Toxins (Basel) 2025; 17:146. [PMID: 40137919 PMCID: PMC11946165 DOI: 10.3390/toxins17030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
The aim of the present study was to evaluate the efficacy of a multicomponent mycotoxin detoxifying agent (MMDA, MYCORAID, Patent Co, Mišićevo, Serbia) in weaned pigs receiving contaminated feed with deoxynivalenol (DON) and zearalenone (ZEN). In total, 168 pigs were equally allocated in four experimental groups from day 25 to day 66 of age. The T1 group received feed without mycotoxins or MMDA. The pigs in group T2 received contaminated feed (CF) with 1.5 mg of DON/kg feed and 0.9 mg of ZEN/kg feed for the first two weeks and 1.2 mg of DON/kg feed and 0.9 mg of ZEN/kg feed for the rest of the trial period, without the addition of MMDA. Groups T3 and T4 received the CF with the addition of 1.5 g of MMDA/kg feed (T3), or 3 g of MMDA/kg feed (T4). Performance parameters, stress, and inflammatory biomarkers, as well as mycotoxin residues in liver, kidney, and muscle tissue were assessed. The results demonstrated improved average daily gain (ADG) and feed conversion ratio (FCR) along with reduced DON residues in kidney samples in groups T3 and T4 when compared with the T2 group. Although a typical dose-response relationship was not present in all parameter alterations, the results of the study proved the efficacy of the test product with improved growth performance and reduced mycotoxins absorption under the concurrent DON and ZEN exposure conditions and supported its use as a mitigating tool against mycotoxicosis under field conditions.
Collapse
Affiliation(s)
- Jog Raj
- Patent Co, DOO., Vlade Ćetkovića 1A, 24211 Mišićevo, Serbia; (H.F.); (Z.J.); (M.V.)
| | - Panagiotis Tassis
- Farm Animals Clinic, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece
| | - Klaus Männer
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany;
| | - Hunor Farkaš
- Patent Co, DOO., Vlade Ćetkovića 1A, 24211 Mišićevo, Serbia; (H.F.); (Z.J.); (M.V.)
| | - Zdenka Jakovčević
- Patent Co, DOO., Vlade Ćetkovića 1A, 24211 Mišićevo, Serbia; (H.F.); (Z.J.); (M.V.)
| | - Marko Vasiljević
- Patent Co, DOO., Vlade Ćetkovića 1A, 24211 Mišićevo, Serbia; (H.F.); (Z.J.); (M.V.)
| |
Collapse
|
2
|
Stefan-van Staden RI, Chera-Anghel IA, Cioates Negut C. Fast screening of Milk for Deoxynivalenol. Food Chem 2025; 463:141337. [PMID: 39298844 DOI: 10.1016/j.foodchem.2024.141337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
A 2D platform was designed and validated for fast screening of milk for deoxynivalenol. The qualitative and quantitative assay of deoxynivalenol in the milk samples was done using a 2D stochastic sensor based on single walled carbon nanotubes modified with [N-(pyridine-4-yl-methyl)]octadec-9-enamide. The working concentration range was between 10-15 and 10-6 g mL-1, with a sensitivity of 5.48 × 105 s-1g-1mL, and a limit of determination of 1 fg mL-1. Recovery values higher than 99.00 % with RSD values lower than 1.00 % were recorded for the determination of deoxynivalenol in cow's and in the vegetarian (coconut milk, soy milk, almond milk) milk.
Collapse
Affiliation(s)
- Raluca-Ioana Stefan-van Staden
- Laboratory of Electrochemistry and PATLAB Bucharest, National Institute of Research for Electrochemistry and Condensed Matter, Bucharest 060021, Romania; National University of Science and Technology POLITEHNICA of Bucharest, Faculty of Chemical Engineering and Biotechnologies, Romania.
| | - Irina-Alina Chera-Anghel
- Laboratory of Electrochemistry and PATLAB Bucharest, National Institute of Research for Electrochemistry and Condensed Matter, Bucharest 060021, Romania; National University of Science and Technology POLITEHNICA of Bucharest, Faculty of Chemical Engineering and Biotechnologies, Romania
| | - Catalina Cioates Negut
- Laboratory of Electrochemistry and PATLAB Bucharest, National Institute of Research for Electrochemistry and Condensed Matter, Bucharest 060021, Romania
| |
Collapse
|
3
|
He J, Zhao G, Chen M, Ren X, Zhu P, Liu Z, Zhou J, Chen H, Xiao C, Li XG. Identification and functional analysis of hub genes involved in deoxynivalenol-induced enterotoxicity in porcine (Sus scrofa). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117544. [PMID: 39675078 DOI: 10.1016/j.ecoenv.2024.117544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Deoxynivalenol (DON) is a type of mycotoxin commonly found in food and animal feed. When consumed, it can have harmful effects on the intestine. The porcine digestive system is physiologically similar to that of humans, making pigs a suitable model for studying DON-induced enterotoxicity. However, the exact ways DON causes intestinal damage in pigs still need to be fully understood. To address this knowledge gap, this study aimed to identify hub genes associated with enterotoxicity caused by DON exposure. Transcriptomic datasets from porcine jejunal explants exposed to DON were extensively analyzed using bioinformatic techniques in this study. A total of 265 differentially expressed genes (DEGs) were identified, with 238 being up-regulated and 27 being down-regulated, indicating that exposure to DON tends to increase gene expression. Further analysis revealed that the up-regulated DEGs were enriched in tumor necrosis factor, nuclear factor kappa-B, mitogen-activated protein kinases, and Janus kinase/signal transducer and activator of transcription-related signaling pathways. In addition, Weighted gene co-expression network analysis was performed to identify highly co-expressed modules. Then, genes in the highest co-expressed module were intersected with the up-regulated DEGs to construct a Protein-Protein Interaction network, resulting in 237 overlapping genes. Subsequently, 6 hub genes (CXCR4, PTGS2, ICAM1, IL-1A, IL-1B, and IL-10) that played a central role in the response to DON were identified using cytohubba in conjunction with the Molecular Complex Detection. In summary, exposure to DON is more likely to result in increased rather than decreased gene expression. Six of the upregulated genes, which are involved in immunoregulation and inflammation, were identified as hub genes related to DON-induced enterotoxicity in pigs. This study provides new insights into the mechanisms underlying DON-induced enterotoxicity and could guide interventions for this condition.
Collapse
Affiliation(s)
- Jinhua He
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, China
| | - Geng Zhao
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, China; Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Mingxia Chen
- School of Animal Science and Technology, Guangdong Polytechnic of Science and Trade, Qingyuan 511500, China
| | - Ximing Ren
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Peizhi Zhu
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhizhong Liu
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, China; Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiayi Zhou
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hanwei Chen
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, China; Panyu Health Management Center (Panyu Rehabilitation Hospital), Guangzhou 511450, China
| | - Chuqiao Xiao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xiang-Guang Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
4
|
Qin X, Li X, Guo J, Zhou M, Xu Q, Lv Q, Zhu H, Xiao K, Liu Y, Chen S. Necroptosis contributes to deoxynivalenol-induced activation of the hypothalamic-pituitary-adrenal axis in a piglet model. Int Immunopharmacol 2024; 143:113541. [PMID: 39541842 DOI: 10.1016/j.intimp.2024.113541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The mycotoxin deoxynivalenol (DON) is highly prevalent in cereals as an immune stressor. The hypothalamic-pituitary-adrenal (HPA) axis is activated during periods of stress, and the organism is accompanied by inflammation. Necroptosis is a newly identified type of cell death. However, the relationship between necroptosis and HPA axis activation induced by DON is rarely reported. Our study aimed to explore the role played by necroptosis in HPA activation in a stress of piglet model produced by DON. Our results indicated that both feeding with a contaminated-DON diet (4 ppm) and DON injection at 0.8 mg/kg BW increased the concentration of plasma corticotropin-releasing hormone (CRH) and adrenocorticotrophic hormone (ACTH) and the mRNA expression of adrenal steroidogenic acute regulatory protein (StAR). Furthermore, the mRNA expression of pro-inflammatory cytokines and factors related to necroptosis in the hypothalamus, pituitary gland, and adrenal gland were increased. As an inhibitor of necroptosis, necrostatin-1 (Nec-1) inhibited necroptosis through decreasing mRNA expression of necroptosis signal factors in the HPA axis. Nec-1 also reduced the mRNA levels of pro-inflammatory cytokines in the HPA axis. Meanwhile, the activation of the HPA axis was inhibited by Nec-1 as shown by the decrease of plasma CRH and ACTH concentrations and the mRNA expressions of hypothalamus CRH and pituitary POMC. These findings indicated that as a result of necroptosis, the HPA axis was activated by DON. In light of these findings, necroptosis could be considered as an intervention target that alleviates HPA axis activation and stress responses.
Collapse
Affiliation(s)
- Xu Qin
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaotong Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Junjie Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mohan Zhou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qilong Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qingqing Lv
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Kan Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shaokui Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
5
|
Chen H, Zhou X, Ma J, Shan A. Low-dose deoxynivalenol exposure triggers hepatic excessive ferritinophagy and mitophagy mitigated by hesperidin modulated O-GlcNAcylation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135952. [PMID: 39341193 DOI: 10.1016/j.jhazmat.2024.135952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/08/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
The level and breadth of deoxynivalenol (DON) contamination in foods made with cereals have increased due to global warming. Consumption of DON-contaminated food and feed poses significant risks to human health and animal production. However, the mechanism by which prolonged exposure to low-dose DON leads to liver damage in animals and effective treatments remain unclear. Our investigation focused on the impact of varying DON exposure times on AML12 cells as well as the long-term liver damage caused by low-dose DON exposure in mice. In addition, this article investigated the unique role of hesperidin in mitigating hepatic ferroptosis induced by low-dose DON exposure. Our results imply that DON's suppression of O-GlcNAcylation exacerbated mitophagy by encouraging ferritinophagy and causing labile iron to aggregate within mitochondria. Furthermore, DON could increase NCOA4-mediated ferritinophagy by De-O-GlcNAcylation FTH to trigger ferroptosis-associated liver injury in mice. Notably, hesperidin alleviated the susceptibility to ferroptosis by increasing O-GlcNAcylation levels and effectively attenuated the liver injury induced by low-dose DON exposure. This finding provides a new strategy for dealing with liver injury caused by low-dose DON exposure.
Collapse
Affiliation(s)
- Hao Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xintong Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, PR China.
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
6
|
Jiang C, Li S, Cai D, Ye J, Bao Q, Liu C, Wang S. ChatGPT-based meta-analysis for evaluating the temporal and spatial characteristics of deoxynivalenol contamination in Chinese wheat. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135888. [PMID: 39303607 DOI: 10.1016/j.jhazmat.2024.135888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/26/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Deoxynivalenol (DON) is a major source of mycotoxins in wheat. However, there is a lack of systematic reporting of the overall contamination status in China, hindering comprehensive assessments. In this study, we utilized a meta-analysis approach based on ChatGPT to systematically analyze DON contamination in wheat-growing regions in China, as reported in the literature from 2010 to 2021. By optimizing the query processes and refining the methodology keywords using ChatGPT, efficient screening, data identification, and literature extraction were achieved for the first time during the meta-analysis data acquisition phase. The matching rates for the screening and extraction of 1091 articles were 100 % and 95.4 %, respectively, resulting in a 20.5-fold work efficiency increase compared to that by manual operations. Meta-subgroup analysis by province and year revealed significant spatiotemporal heterogeneity in DON contamination in the wheat-growing regions of China. Furthermore, the relationship between climate factors and DON levels in wheat was investigated to illustrate the spatial and temporal heterogeneity of DON in Chinese wheat. The results showed that DON concentrations were mainly influenced by relative humidity and precipitation during the wheat-growing season. This novel ChatGPT-assisted meta-analysis approach provides valuable insights and offers a promising method for efficient meta-analyses in other fields.
Collapse
Affiliation(s)
- Chuanzhi Jiang
- School of Computer and Artificial Intelligence, Beijing Technology and Business University, Beijing, China; Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University, Beijing, China; Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Sen Li
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Di Cai
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Jin Ye
- Academy of National Food and Strategic Reserves Administration, Beijing, China.
| | - Qinghang Bao
- Department of Computer Science, The University of Hong Kong, Hong Kong
| | - Cuiling Liu
- School of Computer and Artificial Intelligence, Beijing Technology and Business University, Beijing, China; Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University, Beijing, China.
| | - Songxue Wang
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| |
Collapse
|
7
|
Li R, Tan B, Jiang Q, Chen F, Liu K, Liao P. Eucommia ulmoides flavonoids alleviate intestinal oxidative stress damage in weaned piglets by regulating the Nrf2/Keap1 signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117373. [PMID: 39571260 DOI: 10.1016/j.ecoenv.2024.117373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/17/2024] [Accepted: 11/17/2024] [Indexed: 12/09/2024]
Abstract
This study examined how Eucommia ulmoides flavonoids (EUF) protect against intestinal oxidative stress induced by deoxynivalenol (DON) in weaned piglets. Forty weaned piglets were randomly assigned to four dietary groups for a period of 14 days. The piglets were fed a control diet (Control) or the Control diet supplemented with 100 mg EUF/kg (EUF group), 4 mg DON/kg diet (DON group) or both (EUF+DON group) in a 2×2 factorial design. DON-challenged piglets on the EUF-supplemented diet showed significant improvements in growth performance. They also had notably lower serum levels of alkaline phosphatase (ALP), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) compared to those not receiving supplementation (P<0.05). In the EUF group, the relative weights of the liver, spleen, and kidneys were significantly lower than those in the control group (P<0.05). However, there were no significant differences in the relative heart weights among the four groups (P>0.05). Piglets challenged with DON and fed a diet supplemented with EUF showed significantly lower levels of interleukin-8 (IL-8) and interferon-γ (IFN-γ) mRNA and protein expression in serum and intestinal tissues compared to those in the DON group (P < 0.05). The EUF+DON group significantly increased the serum levels of glutathione peroxidase (GSH-Px), reactive oxygen species (ROS), and total antioxidative capability enzymes compared to the DON group (P<0.05). The EUF and DON group had significantly higher villus height, crypt depth, and villus height to crypt depth ratio in the small intestine compared to the supplemented DON-challenged piglets (P<0.05). Moreover, compared to the DON group, EUF can significantly enhance the expression of nuclear factor erythroid 2-related factor 2(Nfr2)/Kelch-like ECH-associating protein 1(Keap1) and antioxidant genes (i.e., HO-1, GCLC, GCLM), as well as their proteins in the DON-induced small intestines of piglets (P<0.05). In conclusion, EUF helps protect piglets from intestinal oxidative stress caused by DON by influencing the Nrf2/Keap1 signaling pathway, thereby supporting their intestinal health.
Collapse
Affiliation(s)
- Rui Li
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Qian Jiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Fengming Chen
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan 410219, China
| | - Kai Liu
- Department of Infectious Diseases and Public Health, City University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Peng Liao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China.
| |
Collapse
|
8
|
Liang S, Tong H, Wang Y, Lv X, Xiong J, Zhu Y, Hou Q, Yang X, Yang X. Lactiplantibacillus plantarum JM113 alleviates deoxynivalenol induced intestinal damage by microbial modulation in broiler chickens. Poult Sci 2024; 103:104291. [PMID: 39316978 PMCID: PMC11462358 DOI: 10.1016/j.psj.2024.104291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
Deoxynivalenol (DON) contamination causes the grievous injury in public and animal health, poultry suffer from the greater toxin challenge. Probiotic have been considered as a potential way to mitigate the deleterious effects of DON. In this study, a total of 144 1-day-old Arbor Acres chickens were randomly assigned into 3 groups: control group, DON group (5 mg/kg DON diet), DJ group (1×109 cfu Lactiplantibacillus plantarum JM113/kg DON diet). The results showed that Lactiplantibacillus plantarum JM113 (L. plantarum JM113) increased the growth performance of 21-day-old broilers that challenged by the DON (P < 0.05), and the DON-induced disorder of jejunal morphology was recovered in DJ group (P < 0.05). Compared with the DON group, the mRNA and protein levels of Nrf2 and NQO-1 were upregulated in jejunum of DJ group broilers (P < 0.05). Meanwhile, administration of L. plantarum JM113 effectively increased the expression level of barrier-related genes, and the protein abundance of occludin and claudin1 (P < 0.05). L. plantarum JM113 restored the mRNA and protein abundance of PCNA, and proliferation-linked gene (Lgr5 and Bmi1) expression levels in jejunum of DON-insulted broilers (P < 0.05). Furthermore, administration of L. plantarum JM113 significantly enhanced the relative abundance of s_Limosilactobacillus_reuteri in jejuna of DON-challenged broilers (P < 0.05). Spearman correlation analysis showed that s_Limosilactobacillus_reuteri was positively associated with the jejunal barrier related genes (P < 0.05). In conclusion, L. plantarum JM113 alleviated the toxic effects of DON by regulating the jejunal function through microbial adjustment. Our findings proposed a viable approach to mitigating the adverse effects of deoxynivalenol exposure in broilers.
Collapse
Affiliation(s)
- Saisai Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haonan Tong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yinlong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xinying Lv
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiaying Xiong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yufei Zhu
- Dayu Biological Industry Development Research Institute in Xi'an, Xi'an, China
| | - Qihang Hou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
9
|
Lemos GAA, Gerez JR, Costa JB, Venâncio EJ, Souza M, Favaron PO, Greghi JR, Gloria EM, Staurengo-Ferrari L, Verri WA, Bracarense APFRL. Deoxynivalenol induces ovarian damage and uterine changes in prepubertal and adult mice. Toxicon 2024; 251:108123. [PMID: 39419402 DOI: 10.1016/j.toxicon.2024.108123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Deoxynivalenol (DON) is associated with reproductive toxicity in animals. The frequent contamination of cereal-based foods with DON and the high intake of these by children raises particular concern about the susceptibility of this subpopulation to adverse effects from this mycotoxin. However, age-related differences in the in vivo reproductive toxicity of DON have not been evaluated. Therefore, the effects of DON on serum follicle-stimulating hormone (FSH) levels, histology, and inflammatory and oxidative stress responses in the ovaries and uteruses of prepubertal and adult mice were investigated. Twenty female prepubertal Swiss mice (21 days old) and 20 young adult mice (65 days old) were fed a control diet or a diet containing 10 mg of DON/kg of feed for 15 days (prepubertal mice) and 28 days (adult mice). In the ovaries, DON induced an increase in the lesional score in both age groups. Ingestion of DON decreased FSH levels in prepubertal females, whereas an increase was observed in adult mice. In prepubertal mice, a reduction in the number of macrophages and increased levels of TNF-α were observed in the ovaries of the DON group, while in adult animals, an increase in the number of macrophages and higher levels of TNF-α were noted. Exposure to DON led to an increase in type I collagen in the uteruses of adult mice, while in prepubertal mice, a decrease in type III collagen was observed. DON exposure also resulted in a decrease in FRAP levels and an increase in ABTS and lipid peroxidation in the uteruses of prepubertal mice. Taken together, the results indicate that the effects of DON on reproductive organs are age-specific, with toxicity established as early as the prepubertal period.
Collapse
Affiliation(s)
- G A A Lemos
- Laboratory of Animal Pathology, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, km 380, 86057-970, Londrina, Paraná, Brazil
| | - J R Gerez
- Laboratory of Animal Pathology, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, km 380, 86057-970, Londrina, Paraná, Brazil
| | - J B Costa
- Laboratory of Animal Pathology, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, km 380, 86057-970, Londrina, Paraná, Brazil
| | - E J Venâncio
- Department of Immunology, Parasitology and General Pathology, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, km 380, 86057-970, Londrina, Paraná, Brazil
| | - M Souza
- Laboratory of Animal Pathology, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, km 380, 86057-970, Londrina, Paraná, Brazil
| | - P O Favaron
- Department of General Biology, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, km 380, 86057-970, Londrina, Paraná, Brazil
| | - J R Greghi
- Laboratório de Andrologia e Reprodução Animal Assistida (Laraa), Universidade Estadual de Londrina (UEL), Rod Celso Garcia Cid, PR 445 Km 380, CEP, 86057-970, Londrina, PR, Brazil
| | - E M Gloria
- Biological Science Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, 13418-900, São Paulo, Brazil
| | - L Staurengo-Ferrari
- Department of Immunology, Parasitology and General Pathology, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, km 380, 86057-970, Londrina, Paraná, Brazil; Laboratory of Pain, Inflammation, Neuropathy and Cancer, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, km 380, 86057-970, Londrina, Paraná, Brazil
| | - W A Verri
- Department of Immunology, Parasitology and General Pathology, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, km 380, 86057-970, Londrina, Paraná, Brazil; Laboratory of Pain, Inflammation, Neuropathy and Cancer, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, km 380, 86057-970, Londrina, Paraná, Brazil
| | - A P F R L Bracarense
- Laboratory of Animal Pathology, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, km 380, 86057-970, Londrina, Paraná, Brazil.
| |
Collapse
|
10
|
Zhao Q, Zhang S, Feng W, Zhou A, Shi L, Zhang J. Deoxynivalenol-mediated kidney injury via endoplasmic reticulum stress in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117243. [PMID: 39447294 DOI: 10.1016/j.ecoenv.2024.117243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
OBJECTIVE Deoxynivalenol (DON) is a common fungal toxin that poses significant health risks to humans and animals. The present study aimed to investigate the adverse effects and molecular mechanisms of DON-induced kidney injury. METHODS Male C57BL/6 mice aged 5-6 weeks were used to establish a DON-induced acute kidney injury model. Histological analysis, biochemical assays, molecular techniques, Western blot, RNA sequencing, and transmission electron microscopy were employed to analyze kidney damage, inflammation, oxidative stress, apoptosis, and endoplasmic reticulum (ER) stress. RESULTS DON disrupted kidney morphology, induced inflammatory cell infiltration, and triggered inflammatory responses. DON increased MDA content while decreasing antioxidant enzyme activity (SOD and CAT). It also triggered apoptosis, evidenced by elevated levels of caspase-12, cleaved caspase-3, and BAX, and reduced levels of Bcl-2. Transcriptomic analysis identified distinct expression patterns in 1756 genes in DON-exposed mouse kidneys, notably upregulating ER stress-related genes. Further investigation revealed ultrastructural changes in the ER and mitochondrial damage induced by DON, along with increased levels of p-IRE1, p-PERK, and their downstream targets, indicating unfolded protein response (UPR) activation in the kidney. The ER stress inhibitor 4-Phenylbutyric acid (4-PBA) significantly mitigated DON-induced ER stress, oxidative damage, apoptosis, tissue injury, ER expansion, and mitochondrial damage. CONCLUSION Our findings highlight the role of ER stress in DON-induced kidney injury and the protective effect of 4-PBA against these adverse effects.
Collapse
Affiliation(s)
- Qingbo Zhao
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Siyi Zhang
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Weili Feng
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ao Zhou
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Liangyu Shi
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jing Zhang
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
11
|
Li J, Wang X, Nepovimova E, Wu Q, Kuca K. Deoxynivalenol induces cell senescence in RAW264.7 macrophages via HIF-1α-mediated activation of the p53/p21 pathway. Toxicology 2024; 506:153868. [PMID: 38906241 DOI: 10.1016/j.tox.2024.153868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Deoxynivalenol (DON), a potent mycotoxin, exhibits strong immunotoxicity and poses a significant threat to human and animal health. Cell senescence has been implicated in the immunomodulatory effects of DON; however, the potential of DON to induce cell senescence remains inadequately explored. Emerging evidence suggests that hypoxia-inducible factor-1α (HIF-1α) serves as a crucial target of mycotoxins and is closely involved in cell senescence. To investigate this potential, we employed the RAW264.7 macrophage model and treated the cells with varying concentrations of DON (2-8 μM) for 24 h. Transcriptome analysis revealed that 2365 genes were significantly upregulation while 2405 genes were significantly decreased after exposure to DON. KEGG pathway enrichment analysis demonstrated substantial enrichment in pathways associated with cellular senescence and hypoxia. Remarkably, we observed a rapid and sustained increase in HIF-1α expression following DON treatment. DON induced cell senescence through the activation of the p53/p21WAF1/CIP1 (p21) and p16INK4A (p16) pathways, while also upregulating the expression of nuclear factor-κB, leading to the secretion of senescence-associated secretory phenotype (SASP) factors, including IL-6, IL-8, and CCL2. Crucially, HIF-1α positively regulated the expression of p53, p21, and p16, as well as the secretion of SASP factors. Additionally, DON induced cell cycle arrest at the S phase, enhanced the activity of the senescence biomarker senescence-associated β-galactosidase, and disrupted cell morphology, characterized by mitochondrial damage. Our study elucidates that DON induces cell senescence in RAW264.7 macrophages by modulating the HIF-1α/p53/p21 pathway. These findings provide valuable insights for the accurate prevention of DON-induced immunotoxicity and associated diseases.
Collapse
Affiliation(s)
- Jiefeng Li
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan 430070, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove 50005, Czech Republic.
| |
Collapse
|
12
|
Wang Z, Duan H, You X, Peng Q, Yuan N, Sha R, Xie Z, Feng Y. Deoxynivalenol triggers mitotic catastrophe and apoptosis in C2C12 myoblasts. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116607. [PMID: 38908055 DOI: 10.1016/j.ecoenv.2024.116607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
Deoxynivalenol (DON), commonly known as vomitoxin, is a mycotoxin produced by fungi and is frequently found as a contaminant in various cereal-based food worldwide. While the harmful effects of DON have been extensively studied in different tissues, its specific impact on the proliferation of skeletal muscle cells remains unclear. In this study, we utilized murine C2C12 myoblasts as a model to explore the influence of DON on their proliferation. Our observations indicated that DON exhibits dose-dependent toxicity, significantly inhibiting the proliferation of C2C12 cells. Through the application of RNA-seq analysis combined with gene set enrichment analysis, we identified a noteworthy downregulation of genes linked to the extracellular matrix (ECM) and condensed chromosome. Concurrently with the reduced expression of ECM genes, immunostaining analysis revealed notable changes in the distribution of fibronectin, a vital ECM component, condensing into clusters and punctate formations. Remarkably, the exposure to DON induced the formation of multipolar spindles, leading to the disruption of the normal cell cycle. This, in turn, activated the p53-p21 signaling pathway and ultimately resulted in apoptosis. These findings contribute significant insights into the mechanisms through which DON induces toxicity within skeletal muscle cells.
Collapse
Affiliation(s)
- Zhenzhen Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Huimin Duan
- Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical University, Jining, China.
| | - Xue You
- Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical University, Jining, China
| | - Qian Peng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Ningyang Yuan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Rula Sha
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Zhiqin Xie
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Ying Feng
- Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical University, Jining, China; CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China.
| |
Collapse
|
13
|
Mishra S, Kapoor R, Sushma, Kanchan S, Jha G, Sharma D, Tomar B, Rath SK. Deoxynivalenol Induces Drp-1-Mediated Mitochondrial Dysfunction via Elevating Oxidative Stress. Chem Res Toxicol 2024; 37:1139-1154. [PMID: 38875017 DOI: 10.1021/acs.chemrestox.4c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Mitochondrial dysfunction is often linked to neurotoxicity and neurological diseases and stems from oxidative stress, yet effective therapies are lacking. Deoxynivalenol (DON or vomitoxin) is one of the most common and hazardous type-B trichothecene mycotoxins, which contaminates crops used for food and animal feed. Despite the abundance of preliminary reports, comprehensive investigations are scarce to explore the relationship between these fungal metabolites and neurodegenerative disorders. The present study aimed to elucidate the precise role of DON in mitochondrial dynamics and cell death in neuronal cells. Excessive mitochondrial fission is associated with the pathology of several neurodegenerative diseases. Human SH-SY5Y cells were treated with different concentrations of DON (250-1000 ng/mL). Post 24 and 48 h DON treatment, the indexes were measured as follows: generation of reactive oxygen species (ROS), ATP levels, mitochondrial membrane potential, calcium levels, and cytotoxicity in SH-SY5Y cells. The results showed that cytotoxicity, intracellular calcium levels, and ROS in the DON-treated group increased, while the ATP levels and mitochondrial membrane potential decreased in a dose-dependent manner. With increasing DON concentrations, the expression levels of P-Drp-1, mitochondrial fission proteins Mff, and Fis-1 were elevated with reduced activities of MFN1, MFN2, and OPA1, further resulting in an increased expression of autophagic marker LC3 and beclin-1. The reciprocal relationship between mitochondrial damage and ROS generation is evident as ROS can instigate structural and functional deficiencies within the mitochondria. Consequently, the impaired mitochondria facilitate the release of ROS, thereby intensifying the cycle of damage and exacerbating the overall process. Using specific hydroxyl, superoxide inhibitors, and calcium chelators, our study confirmed that ROS and Ca2+-mediated signaling pathways played essential roles in DON-induced Drp1 phosphorylation. Therefore, ROS and mitochondrial fission inhibitors could provide critical research tools for drug development in mycotoxin-induced neurodegenerative diseases.
Collapse
Affiliation(s)
- Sakshi Mishra
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Radhika Kapoor
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Sushma
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Sonam Kanchan
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Gaurav Jha
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Divyansh Sharma
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Bhawna Tomar
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Srikanta Kumar Rath
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| |
Collapse
|
14
|
Jiang J, Zhou X, Chen H, Wang X, Ruan Y, Liu X, Ma J. 18β-Glycyrrhetinic acid protects against deoxynivalenol-induced liver injury via modulating ferritinophagy and mitochondrial quality control. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134319. [PMID: 38657511 DOI: 10.1016/j.jhazmat.2024.134319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024]
Abstract
Deoxynivalenol (DON), a widespread mycotoxin, represents a substantial public health hazard due to its propensity to contaminate agricultural produce, leading to both acute and chronic health issues in humans and animals upon consumption. The role of ferroptosis in DON-induced hepatic damage remains largely unexplored. This study investigates the impact of 18β-glycyrrhetinic acid (GA), a prominent constituent of glycyrrhiza, on DON hepatotoxicity and elucidates the underlying mechanisms. Our results indicate that GA effectively attenuates liver injury inflicted by DON. This was achieved by inhibiting nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy and ferroptosis, as well as by adjusting mitochondrial quality control (MQC). Specifically, GA curtails ferritinophagy by diminishing NCOA4 expression without affecting the autophagic flux. At a molecular level, GA binds to and stabilizes programmed cell death protein 4 (PDCD4), thereby inhibiting its ubiquitination and subsequent degradation. This stabilization of PDCD4 leads to the downregulation of NCOA4 via the JNK-Jun-NCOA4 axis. Knockdown of PDCD4 weakened GA's protective action against DON exposure. Furthermore, GA improved mitochondrial function and limited excessive mitophagy and mitochondrial division induced by DON. Disrupting GA's modulation of MQC nullified its anti-ferroptosis effects. Overall, GA offers protection against DON-induced ferroptosis by blocking ferritinophagy and managing MQC. ENVIRONMENTAL IMPLICATION: Food contamination from mycotoxins, is a problem for agricultural and food industries worldwide. Deoxynivalenol (DON), the most common mycotoxins in cereal commodities. A survey in 2023 showed that the positivity rate for DON contamination in food reached more than 70% globally. DON can damage the health of humans whether exposed to high doses for short periods of time or low doses for long periods of time. We have discovered 18β-Glycyrrhetinic acid (GA), a prominent constituent of glycyrrhiza. Liver damage caused by low-dose DON can be successfully treated with GA. This study will support the means of DON control, including antidotes.
Collapse
Affiliation(s)
- Junze Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xintong Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yongbao Ruan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaohui Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, PR China.
| |
Collapse
|
15
|
Guo C, Wen J, Sun Y, Liang G, Wang Z, Pan L, Huang J, Liao Y, Wang Z, Chen Q, Mu P, Deng Y. Pyrroloquinoline quinone production defines the ability of Devosia species to degrade deoxynivalenol. Food Funct 2024; 15:6134-6146. [PMID: 38767386 DOI: 10.1039/d4fo00024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Deoxynivalenol (DON) is a prevalent mycotoxin that primarily contaminates cereal crops and animal feed, posing a significant risk to human and animal health. In recent years, an increasing number of Devosia strains have been identified as DON degradation bacteria, and significant efforts have been made to explore their potential applications in the food and animal feed industries. However, the characteristics and mechanisms of DON degradation in Devosia strains are still unclear. In this study, we identified a novel DON degrading bacterium, Devosia sp. D-G15 (D-G15), from soil samples. The major degradation products of DON in D-G15 were 3-keto-DON, 3-epi-DON and an unidentified product, compound C. The cell viability assay showed that the DON degradation product of D-G15 revealed significantly reduced toxicity to HEK293T cells compared to DON. Three enzymes for DON degradation were further identified, with G15-DDH converting DON to 3-keto-DON and G15-AKR1/G15-AKR6 reducing 3-keto-DON to 3-epi-DON. Interestingly, genome comparison of Devosia strains showed that the pyrroloquinoline quinone (PQQ) synthesis gene cluster is a unique feature of DON degradation strains. Subsequently, adding PQQ to the cultural media of Devosia strains without PQQ synthesis genes endowed them with DON degradation activity. Furthermore, a novel DON-degrading enzyme G13-DDH (<30% homology with known DON dehydrogenase) was identified from a Devosia strain that lacks PQQ synthesis ability. In summary, a novel DON degrading Devosia strain and its key enzymes were identified, and PQQ production was found as a distinct feature among Devosia strains with DON degradation activity, which is important for developing Devosia strain-based technology in DON detoxification.
Collapse
Affiliation(s)
- Chongwen Guo
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Jikai Wen
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Yu Sun
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Guoqiang Liang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Zijiao Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Lulu Pan
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Jiarun Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Yuanxin Liao
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Zeyuan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Qingmei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Peiqiang Mu
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Yiqun Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China.
- Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, P. R. China
| |
Collapse
|
16
|
Guo P, Li X, Xue Y, Lu Q, Liu Y, Xiong J, Wu Z, Fu S, Ye C, Wang X, Qiu Y. Using network pharmacology and molecular docking to uncover the mechanism by which quercetin alleviates deoxynivalenol-induced porcine intestinal injury. Toxicon 2024; 243:107709. [PMID: 38615996 DOI: 10.1016/j.toxicon.2024.107709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Deoxynivalenol is a widespread feed contaminant that leads to vomit, which results in serious symptom such as increased intestinal permeability and even intestinal mucosal necrosis. Recent studies have reported the role of quercetin in alleviating deoxynivalenol-induced intestinal injury; however, the mechanisms and targets remain unclear. Thus, we aimed to identify the mechanisms of action by using a combination of network pharmacology and molecular docking. We identified 151 quercetin targets, 235 deoxynivalenol targets and 47 porcine intestinal injury targets by searching compound database and PubMed database, among which there were two common targets. The PPI network showed that the key proteins involved are NQO1 and PPAR-γ. The PPI network showed that the key proteins involved were NQO1 and PPARG. GO analysis found that genes were enriched primarily in response to oxidative stress. The PPI network showed that the key proteins involved are NQO1 and PPAR-γ. The genes are enriched primarily in response to oxidative stress. KEGG analysis showed enrichment of the HIF, reactive oxygen species and other signaling pathways. The molecular docking results indicated key binding activity between NQO1-quercetin and PPAR-γ-quercetin. By using network pharmacology, we have revealed the potential molecular mechanisms by which quercetin alleviates deoxynivalenol-induced porcine intestinal injury, which lays the foundation for the development of drugs to treat deoxynivalenol-induced intestinal injury in pigs.
Collapse
Affiliation(s)
- Pu Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xuemin Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yunda Xue
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Qirong Lu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yu Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Jianglin Xiong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Zhongyuan Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Chun Ye
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
17
|
Guerre P, Lassallette E, Beaujardin-Daurian U, Travel A. Fumonisins alone or mixed with other fusariotoxins increase the C22-24:C16 sphingolipid ratios in chicken livers, while deoxynivalenol and zearalenone have no effect. Chem Biol Interact 2024; 395:111005. [PMID: 38615975 DOI: 10.1016/j.cbi.2024.111005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Poultry feed is often contaminated with fumonisins, deoxynivalenol, and zearalenone, which can result in oxidative damage, inflammation and change in lipid metabolism. Although sphingolipids play key roles in cells, only the effects of fumonisins on the sphingolipidome are well-documented. In chickens, fumonisins have been shown to increase the sphinganine to sphingosine ratio and the C22-24:C16 sphingolipid ratio, which has been proposed as a new biomarker of toxicity. In this study, we used UHPLC-MSMS targeted analysis to measure the effect of fusariotoxins on sphingolipids in the livers of chickens fed with diets containing fusariotoxins administered individually and in combination, at the maximum levels recommended by the European Commission. Chickens were exposed from hatching until they reached 35 days of age. This study revealed for the first time that fumonisins, deoxynivalenol, and zearalenone alone and in combination have numerous effects on the sphingolipidome in chicken livers. A 30-50 % decrease in ceramide, dihydroceramide, sphingomyelin, dihydrosphingomyelin, monohexosylceramide and lactosylceramide measured at the class level was observed when fusariotoxins were administered alone, whereas a 30-100 % increase in dihydroceramide, sphingomyelin, dihydrosphingomyelin, and monohexosylceramide was observed when the fusariotoxins were administered in combination. For these different variables, strong significant interactions were observed between fumonisins and zearalenone and between fumonisins and deoxynivalenol, whereas interactions between deoxynivalenol and zearalenone were less frequent and less significant. Interestingly, an increase in the C22-24:C16 ratio of ceramides, sphingomyelins, and monohexosylceramides was observed in chickens fed the diets containing fumonisins only, and this increase was close when the toxin was administered alone or in combination with deoxynivalenol and zearalenone. This effect mainly corresponded to a decrease in sphingolipids with a fatty acid chain length of 16 carbons, whereas C22-24 sphingolipids were unaffected or increased. In conclusion the C22-24:C16 ratio emerged as a specific biomarker, with variations dependent only on the presence of fumonisins.
Collapse
Affiliation(s)
- Philippe Guerre
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France.
| | | | | | | |
Collapse
|
18
|
Lethe MCL, Paris V, Wang X, Chan CTY. Similarities in Structure and Function of UDP-Glycosyltransferase Homologs from Human and Plants. Int J Mol Sci 2024; 25:2782. [PMID: 38474028 PMCID: PMC10932239 DOI: 10.3390/ijms25052782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
The uridine diphosphate glycosyltransferase (UGT) superfamily plays a key role in the metabolism of xenobiotics and metabolic wastes, which is essential for detoxifying those species. Over the last several decades, a huge effort has been put into studying human and mammalian UGT homologs, but family members in other organisms have been explored much less. Potentially, other UGT homologs can have desirable substrate specificity and biological activities that can be harnessed for detoxification in various medical settings. In this review article, we take a plant UGT homology, UGT71G1, and compare its structural and biochemical properties with the human homologs. These comparisons suggest that even though mammalian and plant UGTs are functional in different environments, they may support similar biochemical activities based on their protein structure and function. The known biological functions of these homologs are discussed so as to provide insights into the use of UGT homologs from other organisms for addressing human diseases related to UGTs.
Collapse
Affiliation(s)
- Mary Caroline L. Lethe
- Department of Biomedical Engineering, College of Engineering, University of North Texas, 3940 N Elm Street, Denton, TX 76207, USA (V.P.)
| | - Vincent Paris
- Department of Biomedical Engineering, College of Engineering, University of North Texas, 3940 N Elm Street, Denton, TX 76207, USA (V.P.)
| | - Xiaoqiang Wang
- Department of Biological Sciences, College of Science, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA;
- BioDiscovery Institute, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA
| | - Clement T. Y. Chan
- Department of Biomedical Engineering, College of Engineering, University of North Texas, 3940 N Elm Street, Denton, TX 76207, USA (V.P.)
- BioDiscovery Institute, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA
| |
Collapse
|
19
|
Lethe MCL, Bui D, Hu M, Wang X, Singh R, Chan CTY. Discovering New Substrates of a UDP-Glycosyltransferase with a High-Throughput Method. Int J Mol Sci 2024; 25:2725. [PMID: 38473971 PMCID: PMC10931590 DOI: 10.3390/ijms25052725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
UDP-glycosyltransferases (UGTs) form a large enzyme family that is found in a wide range of organisms. These enzymes are known for accepting a wide variety of substrates, and they derivatize xenobiotics and metabolites for detoxification. However, most UGT homologs have not been well characterized, and their potential for biomedical and environmental applications is underexplored. In this work, we have used a fluorescent assay for screening substrates of a plant UGT homolog by monitoring the formation of UDP. We optimized the assay such that it could be used for high-throughput screening of substrates of the Medicago truncatula UGT enzyme, UGT71G1, and our results show that 34 of the 159 screened compound samples are potential substrates. With an LC-MS/MS method, we confirmed that three of these candidates indeed were glycosylated by UGT71G1, which includes bisphenol A (BPA) and 7-Ethyl-10-hydroxycamptothecin (SN-38); derivatization of these toxic compounds can lead to new environmental and medical applications. This work suggests that UGT homologs may recognize a substrate profile that is much broader than previously anticipated. Additionally, it demonstrates that this screening method provides a new means to study UDP-glycosyltransferases, facilitating the use of these enzymes to tackle a wide range of problems.
Collapse
Affiliation(s)
- Mary C. L. Lethe
- Department of Biomedical Engineering, College of Engineering, University of North Texas, 3940 N Elm Street, Denton, TX 76207, USA;
| | - Dinh Bui
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Boulevard, Houston, TX 77204, USA; (D.B.); (M.H.); (R.S.)
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Boulevard, Houston, TX 77204, USA; (D.B.); (M.H.); (R.S.)
| | - Xiaoqiang Wang
- Department of Biological Sciences, College of Science, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA;
| | - Rashim Singh
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Boulevard, Houston, TX 77204, USA; (D.B.); (M.H.); (R.S.)
- Sanarentero LLC, 514 N. Elder Grove Drive, Pearland, TX 77584, USA
| | - Clement T. Y. Chan
- Department of Biomedical Engineering, College of Engineering, University of North Texas, 3940 N Elm Street, Denton, TX 76207, USA;
- BioDiscovery Institute, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA
| |
Collapse
|
20
|
Liu L, Liu H, Meng P, Zhang Y, Zhang F, Jia Y, Cheng B, Lammi MJ, Zhang F, Guo X. Involvement of Yes-Associated Protein 1 Activation in the Matrix Degradation of Human-Induced-Pluripotent-Stem-Cell-Derived Chondrocytes Induced by T-2 Toxin and Deoxynivalenol Alone and in Combination. Int J Mol Sci 2024; 25:878. [PMID: 38255951 PMCID: PMC10815455 DOI: 10.3390/ijms25020878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
T-2 toxin and deoxynivalenol (DON) are two prevalent mycotoxins that cause cartilage damage in Kashin-Beck disease (KBD). Cartilage extracellular matrix (ECM) degradation in chondrocytes is a significant pathological feature of KBD. It has been shown that the Hippo pathway is involved in cartilage ECM degradation. This study aimed to examine the effect of YAP, a major regulator of the Hippo pathway, on the ECM degradation in the hiPS-derived chondrocytes (hiPS-Ch) model of KBD. The hiPS-Ch injury models were established via treatment with T-2 toxin/DON alone or in combination. We found that T-2 toxin and DON inhibited the proliferation of hiPS-Ch in a dose-dependent manner; significantly increased the levels of YAP, SOX9, and MMP13; and decreased the levels of COL2A1 and ACAN (all p values < 0.05). Immunofluorescence revealed that YAP was primarily located in the nuclei of hiPS-Ch, and its expression level increased with toxin concentrations. The inhibition of YAP resulted in the dysregulated expression of chondrogenic markers (all p values < 0.05). These findings suggest that T-2 toxin and DON may inhibit the proliferation of, and induce the ECM degradation, of hiPS-Ch mediated by YAP, providing further insight into the cellular and molecular mechanisms contributing to cartilage damage caused by toxins.
Collapse
Affiliation(s)
- Li Liu
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi’an 710061, China; (L.L.); (H.L.); (P.M.); (Y.Z.); (F.Z.); (Y.J.); (B.C.); (M.J.L.)
| | - Huan Liu
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi’an 710061, China; (L.L.); (H.L.); (P.M.); (Y.Z.); (F.Z.); (Y.J.); (B.C.); (M.J.L.)
| | - Peilin Meng
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi’an 710061, China; (L.L.); (H.L.); (P.M.); (Y.Z.); (F.Z.); (Y.J.); (B.C.); (M.J.L.)
| | - Yanan Zhang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi’an 710061, China; (L.L.); (H.L.); (P.M.); (Y.Z.); (F.Z.); (Y.J.); (B.C.); (M.J.L.)
- School of Nursing, Lanzhou University, Lanzhou 730000, China
| | - Feng’e Zhang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi’an 710061, China; (L.L.); (H.L.); (P.M.); (Y.Z.); (F.Z.); (Y.J.); (B.C.); (M.J.L.)
| | - Yumeng Jia
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi’an 710061, China; (L.L.); (H.L.); (P.M.); (Y.Z.); (F.Z.); (Y.J.); (B.C.); (M.J.L.)
| | - Bolun Cheng
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi’an 710061, China; (L.L.); (H.L.); (P.M.); (Y.Z.); (F.Z.); (Y.J.); (B.C.); (M.J.L.)
| | - Mikko J. Lammi
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi’an 710061, China; (L.L.); (H.L.); (P.M.); (Y.Z.); (F.Z.); (Y.J.); (B.C.); (M.J.L.)
- Department of Integrative Medical Biology, University of Umeå, 901 87 Umeå, Sweden
| | - Feng Zhang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi’an 710061, China; (L.L.); (H.L.); (P.M.); (Y.Z.); (F.Z.); (Y.J.); (B.C.); (M.J.L.)
| | - Xiong Guo
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi’an 710061, China; (L.L.); (H.L.); (P.M.); (Y.Z.); (F.Z.); (Y.J.); (B.C.); (M.J.L.)
| |
Collapse
|
21
|
Sun C, Yang F, Xiao J, Zhou W, Li J, Gu X. Simulating ozone degradation of deoxynivalenol and its bio-safety assessment by mouse model. Front Microbiol 2023; 14:1286503. [PMID: 37965553 PMCID: PMC10642302 DOI: 10.3389/fmicb.2023.1286503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Deoxynivalenol (DON), a trichothecene mycotoxin, is one of the most prevalent mycotoxins globally, primarily produced by Fusarium species. DON exposure could cause a range of symptoms, including nausea, vomiting, gastroenteritis, growth retardation, immunosuppression, and intestinal flora disorders in both humans and animals. Recently, ozone degradation technology has been applied for DON control. However, the safety of the contaminated grain after degradation was often ignored. Therefore, the implementation technology for assessing the safety of DON-contaminated grain degradation is of great significance for food safety. In this study, based on previous degradation result of DON, we further studied and assessed the toxicity of corn contaminated with ozone-degrading DON by animal experiments in mice. We simulated feed made from corn contaminated with DON produced by inoculated Fusarium graminearum, which was treated with an ozone aqueous solution. DON treated by ozone could effectively increase the expression of total protein in mice and improve the immune system efficacy. Meanwhile, compared with DON directly-exposed mice, the corn with degrading DON could effectively maintain the level of liver and kidney immune function, and improved growth performance, enterohepatic circulation, and energy metabolism. Our study indicated that the toxicity of fed corn contaminated with degrading-DON decreased significantly after ozone degradation, resulting in a much lower toxicity compared to the DON group, or nontoxicity to some extent. Therefore, we hope that this mouse model could be used as a promising approach for assessing the risk of fungal toxins on metabolism, immunity, and intestinal health.
Collapse
Affiliation(s)
- Chao Sun
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Fang Yang
- Technology Center of Nanchang Customs District, Nanchang, China
| | - Jianhui Xiao
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Wenwen Zhou
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Jun Li
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Xiaolong Gu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|