1
|
Trung LG, Gwag JS, Do HH, Mishra RK, Nguyen MK, Tran NT. Hierarchical chitin and chitosan-derived heterostructural nanocomposites: From interdisciplinary applications to a sustainable vision. Carbohydr Polym 2025; 362:123702. [PMID: 40409803 DOI: 10.1016/j.carbpol.2025.123702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/23/2025] [Accepted: 05/02/2025] [Indexed: 05/25/2025]
Abstract
Natural biopolymeric nanomaterials are highly prioritized and indispensable for industrial production and human use due to their exceptional features. In recent years, the development of bioinspired materials has rapidly advanced, driven by their outstanding qualities and versatile applications. Among these, chitin and chitosan stand out for their biodegradability, biocompatibility, and hierarchical structures, captivating researchers worldwide. In order to ameliorate the characteristics of these materials, integrating them with complementary components such as polymers, organics, and nanomaterials to create multifunctional chitinous bio-composites has become increasingly important. This review highlights recent progress in the development of these composite biomaterials, emphasizing biomimetic design, synthesis methodologies, and applications in drug delivery, cancer therapy, tissue engineering, wound healing, antimicrobial activity, food safety, natural bio-adhesives, and various industrial uses, alongside their ecological balance on Earth within a sustainable vision. Additionally, the discussion also addresses ongoing challenges and explores potential prospects for advancing these innovative biocomposites.
Collapse
Affiliation(s)
- Le Gia Trung
- Department of Physics, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Jin Seog Gwag
- Department of Physics, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Ha Huu Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam
| | | | - Minh Kim Nguyen
- Department of Nanoscience and Technology Convergence, Gachon University, Gyeonggi-do 13120, South Korea.
| | - Nguyen Tien Tran
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Viet Nam; Faculty of Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang 550000, Viet Nam.
| |
Collapse
|
2
|
Marquez R, Aguado RJ, Barrios N, Arellano H, Tolosa L, Delgado-Aguilar M. Advanced antimicrobial surfaces in cellulose-based food packaging. Adv Colloid Interface Sci 2025; 341:103472. [PMID: 40132295 DOI: 10.1016/j.cis.2025.103472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025]
Abstract
This critical review provides a comprehensive framework for selecting engineered colloidal and nanostructured systems for cellulose-based food packaging. Meta-analysis was used as a methodological approach to categorize them according to antimicrobial agents, coating methods, and synergistic effects against a broad spectrum of microorganisms. The most frequent substrate is flexible packaging paper (35-70 g/m2, uncalendered), often intended for food wrapping. Among antimicrobial agents, chitosan-based coatings are a common choice-often combined with essential oils-being particularly effective against Gram-positive bacteria (e.g., Staphylococcus aureus, Listeria monocytogenes, Bacillus subtilis). This is attributed to electrostatic interactions between the polysaccharide's protonated -NH3+ groups and teichoic acids within bacterial cell walls. Inorganic metal nanoparticles, such as ZnO nanorods and Ag nanoparticles, are broadly effective by compromising the membranes of various foodborne pathogens-including Bacillus cereus and Pseudomonas aeruginosa. Terpenoid- or phenolic-rich essential oils-commonly delivered in emulsions or encapsulated in host-guest β-cyclodextrin complexes-inhibit the growth of yeasts and molds, besides some common bacteria when grafted onto bleached paper. Synergistic effects have been observed with complex coatings such as chitosan combined with CuONPs. Despite their promising performance, the widespread industrial adoption of cellulose-based active packaging in the food sector requires addressing not only antimicrobial activity, but also barrier properties and feasible methods to functionalize the paper surface (e.g., bar coating). These challenges, often overlooked, are critically assessed herein. All considered, further studies are required to address the challenges of cellulosic antimicrobial materials in a holistic manner to accelerate its large-scale implementation in the food sector.
Collapse
Affiliation(s)
- Ronald Marquez
- LEPAMAP-PRODIS Research Group, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| | - Roberto J Aguado
- LEPAMAP-PRODIS Research Group, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| | - Nelson Barrios
- Department of Forest Biomaterials, North Carolina State University, Box 8005, Raleigh, NC 27695-8005, USA
| | - Helena Arellano
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, 59000 Lille, France
| | - Laura Tolosa
- School of Chemical Engineering, University of Los Andes, Merida, Venezuela
| | - Marc Delgado-Aguilar
- LEPAMAP-PRODIS Research Group, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain.
| |
Collapse
|
3
|
Hu S, Han L, Yu C, Pan L, Tu K. A Review on Replacing Food Packaging Plastics with Nature-Inspired Bio-Based Materials. Foods 2025; 14:1661. [PMID: 40428441 PMCID: PMC12110880 DOI: 10.3390/foods14101661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/07/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Food packaging is critical to delaying food spoilage, maintaining food quality, reducing food waste, and ensuring food safety. However, the environmental problems associated with petroleum-based packaging materials have led to a search for sustainable alternatives. Bio-based materials are emerging as such alternatives, but they have limitations such as low mechanical strength and poor moisture resistance. Fortunately, nature's insights guide solutions to these challenges, propelling the evolution of high-performance bio-based packaging. These new food packaging materials are characterized by impact resistance, superhydrophobicity, self-healing capabilities, dynamic controlled release, high mechanical strength, and real-time freshness monitoring. Nature-inspired strategies not only focus on enhancing material performance but also introduce innovative design concepts that effectively avoid the homogenization of food packaging and inspire researchers to develop diverse, cutting-edge solutions. Overcoming the existing problems of bio-based materials and endowing them with breakthrough properties are key drivers for their replacement of food packaging plastics. This review provides insights into the application of biomimetics in enhancing the functionality of bio-based materials and clearly articulates the key drivers for the replacement of plastic food packaging by bio-based materials. By systematically integrating existing research findings, this paper identifies the challenges facing nature-inspired food packaging innovations and points the way to their future development.
Collapse
Affiliation(s)
| | | | | | | | - Kang Tu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (S.H.); (L.H.); (C.Y.); (L.P.)
| |
Collapse
|
4
|
Li H, Murugesan A, Shoaib M, Chen Q. Emerging Trends and Future Prospects of Peptide-Based Hydrogels: Revolutionizing Food Technology Applications. Compr Rev Food Sci Food Saf 2025; 24:e70187. [PMID: 40371450 DOI: 10.1111/1541-4337.70187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/28/2025] [Accepted: 04/17/2025] [Indexed: 05/16/2025]
Abstract
Peptide-based hydrogels (PHs) are versatile materials with considerable potential in food technology. Advances in synthesis techniques, such as self-assembly, click chemistry, enzymatic cross-linking, and co-assembly with polymers, have improved their production efficiency and scalability. Derived from natural amino acids, PHs are biocompatible, biodegradable, and responsive to environmental factors like pH and temperature. In food technology, encapsulation and controlled release of bioactive compounds enhance nutrient stability, flavor preservation, and bioavailability. PHs serve as texture modifiers, improve product consistency, and possess antimicrobial properties for food preservation by inhibiting spoilage and pathogens. Their biodegradability supports eco-friendly practices and sustainable packaging, including edible films and coatings that extend shelf life. Adjustable properties such as ionic strength make PHs adaptable to specific needs. PHs also show potential in developing advanced food equipment, including 3D printers and encapsulation systems, promoting efficiency and sustainability. This review emphasizes that PHs offer innovative, sustainable solutions to enhance food functionality, quality, and safety, with broad applications in food processing and preservation.
Collapse
Affiliation(s)
- Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Arul Murugesan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Muhammad Shoaib
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, P. R. China
| |
Collapse
|
5
|
Song Q, Gao H, Cheng L, Mitchell WL, Zhu M, Mao Y. Emerging Initiated Chemical Vapor Deposition Nanocoatings for Sustainable Food and Agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6442-6455. [PMID: 40062506 DOI: 10.1021/acs.jafc.5c01820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Initiated chemical vapor deposition (iCVD) has emerged as a versatile technique for developing functional nanocoatings that address critical food and agricultural challenges. This review highlights the unique capacities of iCVD nanocoatings, which enable precise engineering of surface properties, such as targeted cellular and molecular interactions, antimicrobial activity, and fouling resistance. In addition, the solvent-free nature of iCVD is particularly advantageous for coating sensitive materials and complex geometries commonly used across food and agriculture applications. This review provides an overview of iCVD's chemistry, deposition mechanisms, and ability to control nanocoating morphology and composition. Key applications discussed include iCVD nanocoatings for food quality monitoring, pathogen detection, antimicrobial food packaging, biomass extraction, and irrigation water purification. By summarizing recent advancements and identifying emerging trends, this review showcases the potential of iCVD as a powerful tool for developing sustainable, nanoenabled solutions in modern food and agriculture production.
Collapse
Affiliation(s)
- Qing Song
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China
| | - Haijun Gao
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China
| | - Lin Cheng
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China
| | - Whitney L Mitchell
- Division of Natural Sciences, Lyon College, Batesville, Arkansas 72501, United States
| | - Mengfan Zhu
- Division of Natural Sciences, Lyon College, Batesville, Arkansas 72501, United States
| | - Yu Mao
- Department of Biosystems Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
6
|
Li R, Cui S, Song T, Zhang J, Zhang H, Wang J. Research Progress on Cereal Protein-Based Films: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4483-4496. [PMID: 39960453 DOI: 10.1021/acs.jafc.4c11712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Recently, to address plastic pollution and food safety issues, the development of biodegradable materials has become a research hotspot. Cereal proteins have been widely used in natural biodegradable packaging films due to their excellent hydrophobicity and film-forming ability, including wheat gluten protein, zein, rice protein, and oat protein. Although pure cereal protein-based films have the disadvantages of insufficient stability and lack of functionality, a variety of measures have been taken to enhance the performance of the films to expand the application range of cereal protein-based films. This Review briefly reviews the fabrication process of cereal protein-based films. The interaction of various additives (plasticizers, biopolymers, nanoparticles, bioactive ingredients, and indicators) with cereal proteins is highlighted. Four methods for fabricating cereal protein-based films (casting, extrusion, electrospinning, and 3D printing) are summarized. Additionally, the impact of several novel technologies on the performance improvement of cereal protein-based films, including ultrasonic, cold plasma, and high-pressure treatment, is discussed. Finally, the application scenarios of cereal protein-based films in active and smart food packaging are discussed, and the challenges of stability and safety of these packaging films are pointed out. In conclusion, this Review identifies the development potential of cereal protein-based films in food packaging fields.
Collapse
Affiliation(s)
- Rumeng Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-products), Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
| | - Sa Cui
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-products), Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
| | - Tiancong Song
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-products), Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
| | - Junhui Zhang
- COFCO Nutrition and Health Research Institute Co. Ltd., Beijing 102209, China
| | - Huijuan Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-products), Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
| | - Jing Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-products), Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
7
|
García-Anaya MC, Sepúlveda DR, Acosta-Muñiz CH. Contributing factors to the migration of antimicrobials in active packaging films. Food Res Int 2025; 200:115514. [PMID: 39779145 DOI: 10.1016/j.foodres.2024.115514] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
Antimicrobial active packaging plays a key role in food quality and safety. The addition of antimicrobial agents in packaging production aims to release these agents from film to food, thereby preventing, reducing, or eliminating the contamination caused by pathogens or food spoilage microorganisms. This review provides an overview of the antimicrobial active packaging and gives an insight of the antimicrobials that have been used to manufacture antimicrobial active films. Additionally, it discusses the findings of studies that have developed active films, identifying the related factors with the release of antimicrobials from film to packaged food, as well as their possible mechanisms of release. Four interrelated factors that affect the release of antimicrobial agents have been identified. The first one addresses the film properties, the second one corresponds to food characteristics, the third one environmental condition, and the last one the attributes of the antimicrobial agent itself. There have been reported two mechanisms for explaining the antimicrobial release. The first mechanism addresses the water as the main regulator, and the second implies a natural diffusion of antimicrobials. The identification of related factors with the release can contribute to optimizing new methods in the design of antimicrobial active packaging.
Collapse
Affiliation(s)
- Mayra C García-Anaya
- Centro de Investigación en Alimentación y Desarrollo, A. C. Departamento de Microbiología y Biología Molecular. Av, Río Conchos S/N Parque Industrial. Z.C. 31570. Cd. Cuauhtémoc, Chihuahua, México
| | - David R Sepúlveda
- Centro de Investigación en Alimentación y Desarrollo, A. C. Departamento de Microbiología y Biología Molecular. Av, Río Conchos S/N Parque Industrial. Z.C. 31570. Cd. Cuauhtémoc, Chihuahua, México
| | - Carlos H Acosta-Muñiz
- Centro de Investigación en Alimentación y Desarrollo, A. C. Departamento de Microbiología y Biología Molecular. Av, Río Conchos S/N Parque Industrial. Z.C. 31570. Cd. Cuauhtémoc, Chihuahua, México.
| |
Collapse
|
8
|
Wu Z, Li H, Li S, Chen G, Tang X, Liu S, Wang Y. Molecular mechanism underlying coencapsulating chrysophanol and hesperidin in octenylsuccinated β-glucan aggregates for improving their corelease and bioaccessibility. Int J Biol Macromol 2024; 276:133902. [PMID: 39029835 DOI: 10.1016/j.ijbiomac.2024.133902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
Chrysophanol and hesperidin are natural nutraceuticals that exhibit synergistic bioactivities, but their hydrophobicity limits their applications, and it is unclear whether coencapsulation can improve their solubility and release behaviors. The objective of this work was to coencapsulate chrysophanol and hesperidin by octenylsuccinated β-glucan aggregates (OSβG-Agg) and to reveal how coencapsulation improves their release and bioaccessibility. Mechanisms underlying the hypothesis of beneficial effects in coloading, corelease and bioaccessibility were revealed. The solubilization of OSβG-Agg was due to hydrogen-bonding among β-glucan moieties of OSβG and hydroxyl groups of chrysophanol and hesperidin and hydrophobic interactions among octenyl chains of OSβG and hydrophobic moieties of chrysophanol and hesperidin. Structural analyses confirmed the hypothesis that chrysophanol molecules were nearly embedded deeper into the interior of hydrophobic domains, and most of hesperidin molecules were incorporated into the exterior of the hydrophobic domains of OSβG-Agg due to the strength of these interactions, but they interacted in OSβG-Agg with a dense and compact structure rather than existing in isolation. The combined effects delayed their release and enhanced their bioaccessibility because of dynamic equilibrium between the favorable interactions and unfavorable structural erosion and relaxation of OSβG-Agg. Overall, OSβG-Agg is effective at codelivering hydrophobic phenolics for functional foods and pharmaceuticals.
Collapse
Affiliation(s)
- Zhen Wu
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, PR China; Chongqing Key Laboratory of Innovative Chinese Medicine and Health Intervention, Chongqing 400065, PR China.
| | - Hong Li
- National Key Laboratory of Market Supervision (Condiment Supervision Technology), Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China
| | - Sheng Li
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, PR China; Chongqing Key Laboratory of Innovative Chinese Medicine and Health Intervention, Chongqing 400065, PR China
| | - Gang Chen
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, PR China; Chongqing Key Laboratory of Innovative Chinese Medicine and Health Intervention, Chongqing 400065, PR China
| | - Xin Tang
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, PR China; Chongqing Key Laboratory of Innovative Chinese Medicine and Health Intervention, Chongqing 400065, PR China
| | - Simei Liu
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, PR China
| | - Yongde Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, PR China; Chongqing Key Laboratory of Innovative Chinese Medicine and Health Intervention, Chongqing 400065, PR China.
| |
Collapse
|
9
|
Wu Y, Zhang J, Hu X, Huang X, Zhang X, Zou X, Shi J. Preparation of edible antibacterial films based on corn starch /carbon nanodots for bioactive food packaging. Food Chem 2024; 444:138467. [PMID: 38309078 DOI: 10.1016/j.foodchem.2024.138467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/29/2023] [Accepted: 01/15/2024] [Indexed: 02/05/2024]
Abstract
Packaging plays an important role in protecting food from environmental impacts. However, traditional petroleum-based packaging has difficulty in meeting the antimicrobial and antioxidant requirements of prepared foods. This study introduced carbon dots (CDs), prepared by using carrot as a precursor, into corn starch (CS) to construct a bio-friendly composite film with high freshness retention properties. The scavenging of DPPH radicals reached 92.77 % at a CDs concentration of 512 µg/mL, and the antimicrobial activity of CS/5% CDs against Escherichia coli and Staphylococcus aureus was increased to 99.9 %. Notably, the homogeneous doping of CDs creates a dense surface and high carbon content inside the film, which promotes the elasticity and thermal stability of the composite film. Finally, we encapsulated deep-fried meatballs in CS-CDs films. The results showed that the CS-CDs films effectively protected the quality of deep-fried meatballs, and have excellent potential for application in food preservation.
Collapse
Affiliation(s)
- Yuqing Wu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Junjun Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xuetao Hu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xinai Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
10
|
Wu CS, Wang SS, Wu DY, Ke CY. A sustainable packaging composite of waste paper and poly(butylene succinate-co-lactate) with high biodegradability. Int J Biol Macromol 2024; 262:129911. [PMID: 38320640 DOI: 10.1016/j.ijbiomac.2024.129911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/08/2024]
Abstract
The challenge of global climate change has drawn people's attention to the issue of carbon emissions. Reducing the use of petroleum-derived materials and increasing the use of biodegradable materials is a current focus of research, especially in the packaging materials industry. This study focused on the use of environmentally friendly plastics and waste paper as the main materials for packaging films. Poly(butylene succinate-co-lactate) (PBSL) was modified with maleic anhydride (MA) to form a biobased compatibilizer (MPBSL), which was then blended with a mixture (WPS) of waste-paper powder (WP) and silica aerogel powder (SP) to form the designed composite (MPBSL/WPS). The modification of PBSL with MA improved interfacial adhesion between PBSL and WPS. The structure, thermal, and mechanical properties, water vapor/oxygen barrier, toxicity, freshness, and biodegradability of MPBSL/WPS films were evaluated. Compared with the PBSL/WP film, the MPBSL/WPS film exhibited increased tensile strength at break of 4-13.5 MPa, increased initial decomposition loss at 5 wt% of 14-35 °C, and decreased water/oxygen permeabilities of 18-105 cm3/m2·d·Pa. In the water absorption test, the MPBSL/WPS film displayed about 2-6 % lower water absorption than that of the PBSL/WP film. In the cytocompatibility test, both MPBSL/WPS and PBSL/WP membrane were nontoxic. In addition, compared with PBSL/WP film and the control, the MPBSL/WPS film significantly reduced moisture loss, extended the shelf life, and prevented microbial growth in vegetable and meat preservation tests. Both MPBSL/WPS and PBSL/WP films were biodegradable in a 60-day soil biodegradation test; the degradation rate was 50 % when the WP or WPS content was 40 wt%. Our findings indicate that the composites would be suitable for environmentally sustainable packaging materials.
Collapse
Affiliation(s)
- Chin-San Wu
- Department of Cosmetology and Health Care, Kao Yuan University, Kaohsiung County 82101, Taiwan.
| | - Shan-Shue Wang
- Department of Cosmetology and Health Care, Kao Yuan University, Kaohsiung County 82101, Taiwan
| | - Dung-Yi Wu
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Chu-Yun Ke
- Department of Chemical Engineering, I Shou University, Kaohsiung County 84001, Taiwan
| |
Collapse
|
11
|
Luo L, Wang M, Su W, Zhuo J, Zhang L, Zhu W, Zhang W, Wang R, Wang J. Thermal-Driven Curcumin Release Film with Dual-Mode Synergistic Antibacterial Behavior for Efficient Tangerine Preservation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1756-1767. [PMID: 38214269 DOI: 10.1021/acs.jafc.3c07572] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Antimicrobial packing showed great potential in extending the shelf life of food. However, developing a new biocomposite film with an intelligent and efficient antimicrobial performance is still desirable. Herein, a Fe-MoOx encapsulated with curcumin (Cur) filled chitosan-based composite film (CCF films) was prepared by solvent casting method. The total color differences of the CCF films were less than 30%, and satisfactory surface color, transparency, hydrophobicity, and thermal stability were also obtained. Besides, the UV-light/water/oxygen barrier capability and mechanical properties were enhanced with the incorporation of Cur@Fe-MoOx. Moreover, CCF films showed photothermal performance and thermal-controlled curcumin release ability, which endowed the CCF0.15 film with excellent antibacterial capability toward E. coli (≥99.95%) and S. aureus (≥99.96%) due to the synergistic antibacterial effect. Fe-MoOx exhibited high cell viability and less than 5% hemolysis even under the concentration of 500 μg mL-1. Based on those unique characteristics, the CCF0.15 film was chosen for tangerine preservation. The CCF0.15 film could prolong the shelf life of tangerine by at least 9 days compared with the unpacking group, and the tangerines could maintain the freshness characteristics over a 24 day storage period. Such thermal-mediated antibacterial film proposed by our work showed promising potential in food packaging.
Collapse
Affiliation(s)
- Linpin Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Meilin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Wenqiao Su
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Junchen Zhuo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Liang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Wenxin Zhu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Rong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi China
| |
Collapse
|
12
|
Zueva OS, Khair T, Kazantseva MA, Latypova L, Zuev YF. Ions-Induced Alginate Gelation According to Elemental Analysis and a Combinatorial Approach. Int J Mol Sci 2023; 24:16201. [PMID: 38003391 PMCID: PMC10671519 DOI: 10.3390/ijms242216201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
This study considers the potential of elemental analysis of polysaccharide ionotropic gels in elucidating the junction zones for different divalent cations. The developed algorithm ensures the correct separation of contributions from physically adsorbed and structure-forming ionic compounds, with the obtained results scaled to alginate C12 block. Possible versions of chain association into dimers and their subsequent integration into flat junction zones were analyzed within the framework of the "egg-box" model. The application of combinatorial analysis made it possible to derive theoretical relations to find the probability of various types of egg-box cell occurrences for alginate chains with arbitrary monomeric units ratio μ = M/G, which makes it possible to compare experimental data for alginates of different origins. Based on literature data and obtained chemical formulas, the possible correspondence of concrete biopolymer cells to those most preferable for filling by alkaline earth cations was established. The identified features of elemental composition suggest the formation of composite hydrated complexes with the participation of transition metal cations. The possibility of quantitatively assessing ordered secondary structures formed due to the physical sorption of ions and molecules from environment, correlating with the sorption capabilities of Me2+ alginate, was established.
Collapse
Affiliation(s)
- Olga S. Zueva
- Institute of Electric Power Engineering and Electronics, Kazan State Power Engineering University, 51 Krasnoselskaya Street, 420066 Kazan, Russia; (O.S.Z.); (T.K.)
| | - Tahar Khair
- Institute of Electric Power Engineering and Electronics, Kazan State Power Engineering University, 51 Krasnoselskaya Street, 420066 Kazan, Russia; (O.S.Z.); (T.K.)
| | - Mariia A. Kazantseva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia;
- School of Applied Mathematics, HSE University, 34 Tallinskaya Street, 123458 Moscow, Russia
| | - Larisa Latypova
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China;
| | - Yuriy F. Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia;
| |
Collapse
|