1
|
Cheng Y, Chen YX, Gao JN, Chen J, Huang J, Qiao X. Multiple Mutations in the β1 Subunit of the Nicotinic Acetylcholine Receptor Confer Resistance to Neonicotinoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:12176-12183. [PMID: 40353574 DOI: 10.1021/acs.jafc.5c01017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
The evolution of resistance to neonicotinoid insecticides threatens global agriculture. To elucidate its molecular basis, we employed Drosophila melanogaster as a model system to investigate resistance-associated mutations in the β1 subunit of nicotinic acetylcholine receptors (nAChRs). Using a CRISPR/Cas9-mediated allele replacement, we generated homozygous knock-in mutants (V62I, V101I, R81E, and A60T,R81E) without apparent fitness costs. Toxicity bioassays revealed that these mutations confer varying resistance levels, with the R81E mutation exhibiting over 225-fold resistance to thiamethoxam, clothianidin, and dinotefuran. A heteropentameric α1β1 nAChR model, generated using an AI-based protein-ligand prediction (Chai-1), showed that imidacloprid binds at the orthosteric site, where R81 forms a critical electrostatic interaction. Residues A60, V62, and V101, positioned further from the binding site, showed spatial distances correlated with their resistance ratios. These findings provide genetic and structural insights into neonicotinoid resistance mechanisms, offering a foundation for the design of next-generation insecticides and resistance management strategies.
Collapse
Affiliation(s)
- Yang Cheng
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu-Xin Chen
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jia-Nan Gao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Chen
- Collaborative Innovation Center of Green Pesticide, National Joint Local Engineering Laboratory of Biopesticide Preparation, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Jia Huang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaomu Qiao
- Collaborative Innovation Center of Green Pesticide, National Joint Local Engineering Laboratory of Biopesticide Preparation, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
2
|
He ZC, Zhang T, Lu XF, Li R, Peng W, Mei Q, Wang QZ, Ding F. Assessing the nicotinic acetylcholine receptor-mediated enantioselective neurotoxicity of a neonicotinoid-like pollutant, chiral sulfoxaflor: Insight from the two asymmetric centers. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138468. [PMID: 40318584 DOI: 10.1016/j.jhazmat.2025.138468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/10/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Chiral sulfoxaflor is widely present in environmental matrices; however, the health hazards of this neonicotinoid-like pollutant remain poorly understood. This study investigated the nicotinic acetylcholine receptor (nAChR)-mediated neurotoxicity of sulfoxaflor at the enantiomeric level and elucidated the distinct roles of its two chiral centers. Results showed that the toxic response of nAChR to sulfoxaflor exhibits significant enantioselectivity and the affinity of α7 nAChR with (R,S)-/(S,S)-sulfoxaflor (-35.34/-34.84 kcal mol-1) is higher than those of their antipodes (-22.08/-22.76 kcal mol-1). The conjugations of (R,S)-/(S,S)-sulfoxaflor in agonistic mode at the orthosteric site induces crucial residues (e.g., Trp-147, Tyr-186, Leu-117) to shift toward the binding position (RMSF: 0.0968 nm to 0.3959/0.3801 nm), which disturbs the intrinsic conformational flexibility of α7 nAChR (random coil: 18.16-23.65 %/22.15 %), prompting (R,S)-/(S,S)-sulfoxaflor to exhibit enhanced activated efficacy. Furthermore, chirality at the sulfur atom plays a key role in the electrostatic contribution (ΔGele) to be different (-23.55/-22.3/-11.39/-12.73 kcal mol-1), rendering sulfoxaflor a higher enantioselective neurotoxicant. This study could pave away for untangling the health hazards associated with sulfoxaflor and prompt the legislature to develop environmental regulations for pollutants containing multiple chiral centers.
Collapse
Affiliation(s)
- Zhi-Cong He
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Tao Zhang
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Xin-Fang Lu
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Rui Li
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Wei Peng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Qiong Mei
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China; School of Land Engineering, Shaanxi Provincial Key Laboratory of Land Consolidation, Chang'an University, Xi'an 710054, China
| | - Qi-Zhao Wang
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Fei Ding
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China.
| |
Collapse
|
3
|
Peng Z, Li M, Guo C, Zheng H, Wu M, Yin F, Xiao Y, Wang H, Kong X, Zalucki MP, Xie W, Li Z. Field-Based Evaluation of Insecticide Effectiveness on Megalurothrips usitatus in Guangdong, China: Implications for Pest Control Strategies. INSECTS 2025; 16:459. [PMID: 40429172 PMCID: PMC12112036 DOI: 10.3390/insects16050459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025]
Abstract
In southern China, cowpea production is severely threatened by Megalurothrips usitatus due to its fast-evolving resistance to insecticides. The toxicity monitoring of commonly used insecticides against field populations provides key information for the resistance management of pests. In this study, field populations of Megalurothrips usitatus were collected from three locations (QY, YF, MM) in Guangdong, and the sensitivity of these populations against insecticides was determined by using a thrips insecticides bioassay system (TIBS) method. The bioassay results indicated there were sensitivity variances to insecticides between these three field populations. Among these 10 insecticides, spinetoram and spinosad both showed high toxicity against all three field populations. In addition, broflanilide for QY, emamectin benzoate for YF, and emamectin benzoate and cyantraniliprole for MM were suggested as alternate insecticides to alleviate selective pressure from insecticides on field populations. In field experiments, the corrected control efficacy of cyantraniliprole and spinetoram against M. usitatus was over 75% at 7 dpa, which proved to be ideal insecticides for field application. These field-based results provide guidance for chemical control against thrips and can be valuable in proposing appropriate strategies for thrips resistance management.
Collapse
Affiliation(s)
- Zhengke Peng
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China; (Z.P.); (M.L.); (C.G.); (F.Y.); (Y.X.); (H.W.)
| | - Mengni Li
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China; (Z.P.); (M.L.); (C.G.); (F.Y.); (Y.X.); (H.W.)
| | - Chaosong Guo
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China; (Z.P.); (M.L.); (C.G.); (F.Y.); (Y.X.); (H.W.)
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Huixin Zheng
- Key Laboratory of Green Control of Crop Pests in Hunan Higher Education, Hunan University of Humanities, Science and Technology, Loudi 417000, China;
| | - Mingyue Wu
- Sanya Academy of Tropical Agricultural Sciences, Sanya 572000, China; (M.W.); (X.K.)
| | - Fei Yin
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China; (Z.P.); (M.L.); (C.G.); (F.Y.); (Y.X.); (H.W.)
| | - Yong Xiao
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China; (Z.P.); (M.L.); (C.G.); (F.Y.); (Y.X.); (H.W.)
| | - Huanhuan Wang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China; (Z.P.); (M.L.); (C.G.); (F.Y.); (Y.X.); (H.W.)
| | - Xiangyi Kong
- Sanya Academy of Tropical Agricultural Sciences, Sanya 572000, China; (M.W.); (X.K.)
| | - Myron P. Zalucki
- School of the Environment, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Wen Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
- Sanya National Academy of Southern Propagation, Chinese Academy of Agricultural Sciences, Sanya 572019, China
| | - Zhenyu Li
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China; (Z.P.); (M.L.); (C.G.); (F.Y.); (Y.X.); (H.W.)
| |
Collapse
|
4
|
Pei T, Wang L, Zhao Y, Shi S, Gao Y. Toxicity and Efficacy of Thirty Insecticides Against Thrips flavus in Northeast China: Laboratory, Semifield, and Field Trials. INSECTS 2025; 16:405. [PMID: 40332867 PMCID: PMC12027959 DOI: 10.3390/insects16040405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025]
Abstract
In soybean fields across Northeast China, Thrips flavus Schrank (Thysanoptera, Thripidae) populations are increasing, posing a significant threat to soybean production. The aim of this study was to evaluate the toxicity, insecticide efficacy, and field performance of thirty insecticides against T. flavus. Laboratory bioassays revealed that fenthion (LC50 = 2.26 mg/L), sulfoxaflor (LC50 = 4.28 mg/L), cyetpyrafen (LC50 = 4.94 mg/L), and imidacloprid (LC50 = 6.16 mg/L) exhibited the highest toxicity against T. flavus. Pot experiments were subsequently conducted to assess insecticide efficacy. Seven days after application at the highest tested concentration, the insecticide efficacy of fenthion, sulfoxaflor, chlorantraniliprole, bifenazate, and malathion achieved 100% control efficacy. The four insecticides were selected for field trials based on their high toxicity and insecticide efficacy. Seven days after application, the field efficacy of fenthion at 11.25 g a.i.·hm-2, sulfoxaflor at 1.19 g a.i.·hm-2, cyetpyrafen at 8.10 g a.i.·hm-2, and imidacloprid at 11.25 g a.i.·hm-2 exceeded 80%. Thus, these four insecticides hold strong potential for integrated management of T. flavus. Overall, the findings provide a valuable reference for developing chemical control strategies against this pest.
Collapse
Affiliation(s)
- Tianhao Pei
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Long Wang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Yijin Zhao
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
- Dalian City Investment Asset Management Co., Ltd., Dalian 116021, China
| | - Shusen Shi
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Soybean Disease and Pest Control, Ministry of Agriculture and Rural Affairs, Changchun 130118, China
| | - Yu Gao
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Soybean Disease and Pest Control, Ministry of Agriculture and Rural Affairs, Changchun 130118, China
| |
Collapse
|
5
|
Liang J, Xiao F, Ojo J, Chao WH, Ahmad B, Alam A, Abbas S, Abdelhafez MM, Rahman N, Khan KA, Ghramh HA, Ali J, Chen R. Insect Resistance to Insecticides: Causes, Mechanisms, and Exploring Potential Solutions. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2025; 118:e70045. [PMID: 40001298 DOI: 10.1002/arch.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/27/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025]
Abstract
Insecticides play a crucial role as the primary means of controlling agricultural pests, preventing significant damage to crops. However, the misuse of these insecticides has led to the development of resistance in insect pests against major classes of these chemicals. The emergence of resistance poses a serious threat, especially when alternative options for crop protection are limited for farmers. Addressing this challenge and developing new, effective, and sustainable pest management approaches is not merely essential but also critically important. In the absence of alternative solutions, understanding the root causes behind the development of resistance in insects becomes a critical necessity. Without this understanding, the formulation of effective approaches to combat resistance remains elusive. With insecticides playing a vital role in global food security and public health, understanding and mitigating resistance are paramount. Given the growing concern over insect resistance to insecticides, this review addresses a crucial research gap by thoroughly examining the causes, mechanisms, and potential solutions. The review examines factors driving resistance, such as evolutionary pressure and excessive pesticide use, and provides a detailed analysis of mechanisms, including detoxifying enzyme overproduction and target site mutations. Providing an analysis of potential solutions, it discusses integrated pest management, strategic insecticide rotation, and the use of new pest control technologies and biological agents. Emphasizing the urgency of a multifaceted approach, the review provides a concise roadmap for sustainable pest management, guiding future research and applications.
Collapse
Affiliation(s)
- Jiyun Liang
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Feng Xiao
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - James Ojo
- Department of Crop Production, Kawara State University, Malete, Nigeria
| | - Wu Hai Chao
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Bilal Ahmad
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Aleena Alam
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Sohail Abbas
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Mogeda M Abdelhafez
- Plant Protection Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Nadeemur Rahman
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Khalid Ali Khan
- Center of Bee Research and its Products and Research Centre for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Applied College, King Khalid University, Abha, Saudi Arabia
| | - Hamed A Ghramh
- Center of Bee Research and its Products and Research Centre for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Jamin Ali
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Rizhao Chen
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| |
Collapse
|
6
|
Zhao X, Chen X, He M, Wu S, Shi Y, Luo D, Zhang H, Wang Z, Wan H, Li R, Li J, Li M, Liao X. miRNAs modulate altered expression of cytochrome P450s and nicotinic acetylcholine receptor subunits conferring both metabolic and target resistance to sulfoxaflor in Nilaparvata lugens (Stål). Int J Biol Macromol 2025; 290:138992. [PMID: 39708853 DOI: 10.1016/j.ijbiomac.2024.138992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/26/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Understanding the insecticide resistance mechanisms and their underlying regulatory pathways is essential for pest management. Previous findings indicated that the overexpression of P450 gene, CYP6ER1, was a key mechanism for sulfoxaflor metabolic resistance in Nilaparvata lugens. However, it remains unclear whether quantitative changes in the target nicotinic acetylcholine receptors (nAChRs) contribute to sulfoxaflor resistance and the underlying regulatory mechanisms involved. Here, qRT-PCR, pairwise correlation analyses and RNAi confirmed that the down-regulation of Nlα4, along with the up-regulation of Nlα10 and Nlβ1, were linked to sulfoxaflor resistance in N. lugens. Four microRNAs, novel-m0262-5p, novel-m0071-3p and novel-m0196-3p, and miR-10471-x were found to target CYP6ER1, Nlα4 and Nlβ1, respectively. Subsequently, the binding activity between these miRNAs and their target genes was verified by dual fluorescence in vitro. Over-supplementation of novel-m0262-5p and miR-10471-x via miRNA agomir injections suppressed the expression of CYP6ER1 and Nlβ1, and decreased nymph resistance to sulfoxaflor. Conversely, novel-m0262-5p and miR-10471-x antagomirs treatment induced the expression of CYP6ER1 and Nlβ1, thereby enhancing sulfoxaflor resistance. Additionally, overexpression of novel-m0071-3p and novel-m0196-3p inhibited Nlα4 expression and increased sulfoxaflor resistance. These findings indicate that miRNAs regulate the differential expression of P450s and nAChRs, mediating both metabolic and target resistance to sulfoxaflor in N. lugens.
Collapse
Affiliation(s)
- Xueyi Zhao
- Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Xingyu Chen
- Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Minrong He
- Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Shuai Wu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Yiyan Shi
- Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Dan Luo
- Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Hongli Zhang
- Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Zhenchao Wang
- College of Pharmacy, Guizhou University, Guiyang 550025, PR China
| | - Hu Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Rongyu Li
- Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ming Li
- Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Xun Liao
- Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
7
|
Fouet C, Pinch MJ, Ashu FA, Ambadiang MM, Bouaka C, Batronie AJ, Hernandez CA, Rios DE, Penlap-Beng V, Kamdem C. Field-evolved resistance to neonicotinoids in the mosquito, Anopheles gambiae, is associated with mutations of nicotinic acetylcholine receptor subunits combined with cytochrome P450-mediated detoxification. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106205. [PMID: 39672618 DOI: 10.1016/j.pestbp.2024.106205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/28/2024] [Accepted: 11/03/2024] [Indexed: 12/15/2024]
Abstract
New insecticides prequalified for malaria control interventions include modulators of nicotinic acetylcholine receptors that act selectively on different subunits leading to variable sensitivity among arthropods. This study aimed to investigate the molecular mechanisms underlying contrasting susceptibility to neonicotinoids observed in wild populations of two mosquito sibling species. Bioassays and a synergist test with piperonyl butoxide revealed that the sister taxa, Anopheles gambiae and An. coluzzii, from Yaounde, Cameroon, both have the potential to develop resistance to acetamiprid through cytochrome P450-mediated detoxification. However, contrary to An. coluzzii, An. gambiae populations are evolving cross-resistance to several active ingredients facilitated by mutations of nicotinic acetylcholine receptors (nAChRs). We sequenced coding regions on the β1 and α6 nAChR subunits where variants associated with resistance to neonicotinoids or to spinosyns have been found in agricultural pests and detected no mutation in An. coluzzii. By contrast, six nucleotide substitutions including an amino acid change in one of the loops that modulate ligand binding and affect sensitivity were present in the resistant species, An. gambiae. Allele frequency distributions were consistent with the spread of beneficial mutations that likely reduce the affinity of An. gambiae nAChRs for synthetic modulators. Our findings provide critical information for the application and resistance management of nAChR modulators in malaria prevention.
Collapse
Affiliation(s)
- Caroline Fouet
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Matthew J Pinch
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Fred A Ashu
- Department of Entomology, Centre for Research in Infectious Diseases, Yaounde, Cameroon; Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaounde, Cameroon
| | - Marilene M Ambadiang
- Department of Entomology, Centre for Research in Infectious Diseases, Yaounde, Cameroon; Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaounde, Cameroon
| | - Calmes Bouaka
- Department of Vector Biology, Liverpool School of Tropical Medicine, UK
| | - Anthoni J Batronie
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Cesar A Hernandez
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Desiree E Rios
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Véronique Penlap-Beng
- Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaounde, Cameroon
| | - Colince Kamdem
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA.
| |
Collapse
|
8
|
Terajima T, Matsumoto Y, Uehara K, Shimomura K, Tomizawa M. Molecular Recognition Properties of Nicotinic Ligands Determining Selectivity Between Insect and Mammalian Receptors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39361838 DOI: 10.1021/acs.jafc.4c07271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
This investigation defines the roles of various amino acids, neighboring key conserved amino acids in loops C and D of the nicotinic acetylcholine (ACh) receptor (nAChR), in the selective molecular recognition of nicotinic ligands with diverse pharmacophores using Aplysia californica ACh binding protein Y55W (Ac-AChBP) mutants (+Q57R; + Q57R+S189 V; + Q57R+S189E; + Q57T; + Q57T+S189 V; + Q57T+S189E) and Lymnaea stagnalis AChBP (Ls-AChBP) mutants (Q55T; Q55T+S186E; Q55R) as insect and mammalian nAChR structural surrogates, respectively. N-nitro/cyanoimine insecticides show high affinity to four Ac-AChBPs containing Arg57 or Thr57 and Ser189 or Val189, except for those with Glu189. Pyrazinoyl compound selectively interacts with the three Ac-AChBPs containing Arg57 and Ser189, Val189, or Glu189. Cationic ligands prefer three Ac-AChBPs with Thr57 and Ser189, Val189, or Glu189 and two Ls-AChBPs providing Thr55 ± Glu186 over the four Ac- and Ls-AChBPs with Arg57/55. Accordingly, loop C contributes to N-nitro/cyanoimine insecticide action, and loop D controls the affinity of the pyrazinoyl or cationic ligand.
Collapse
Affiliation(s)
- Takehito Terajima
- Chemical Biology Laboratory, Department of Chemistry, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Yutsuki Matsumoto
- Chemical Biology Laboratory, Department of Chemistry, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Kana Uehara
- Chemical Biology Laboratory, Department of Chemistry, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Kenji Shimomura
- Chemical Biology Laboratory, Department of Chemistry, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Motohiro Tomizawa
- Chemical Biology Laboratory, Department of Chemistry, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| |
Collapse
|