1
|
Galbusera V, Lattuada B, Pinto A, Barbiroli A, Borgonovo G, Ragg EM. Fagopyrins from Buckwheat Flowers: Structural and Stereochemical Characterization Through Combined NMR/CD Spectroscopy and Theoretical Calculations. Chemistry 2024; 30:e202400082. [PMID: 38628039 DOI: 10.1002/chem.202400082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Indexed: 05/18/2024]
Abstract
Fagopyrins are phenantroperylenequinones present in the flowers of Fagopyrum esculentum (buckwheat) endowed with photodynamic activity. It has been reported that fagopyrin extracts actually contain a complex mixture of closely related compounds, differing only on the nature of the perylenequinone substituents. We report our systematic and detailed study on the chemical composition of fagopyrin extracts by a combination of preparative and analytical techniques. The combined use of 1H-NMR and CD spectroscopy was found to be particularly suited to fully characterize all stereochemical aspects of the extracted fagopyrins. For the first time nine isomers have been structurally characterized and their stereochemistry fully elucidated. The presence of two different heterocyclic ring substituents, two stereogenic centers and the inherent axial chirality of the aromatic system provides a complex stereochemical relationships among isomers, thus giving account of the high level of molecular multiplicity found in the extract.
Collapse
Affiliation(s)
- Valerio Galbusera
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133, Milano, Italy
| | - Benedetta Lattuada
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133, Milano, Italy
| | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133, Milano, Italy
| | - Alberto Barbiroli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133, Milano, Italy
| | - Gigliola Borgonovo
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133, Milano, Italy
| | - Enzio M Ragg
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133, Milano, Italy
| |
Collapse
|
2
|
Merin Rinky K, Gayathri Devi D, Priya VK. Fagopyrin F fraction from Fagopyrum tataricum demonstrates photodynamic inactivation of skin infecting bacterium and squamous cell carcinoma (A431) cells. Photochem Photobiol Sci 2024; 23:1011-1029. [PMID: 38753286 DOI: 10.1007/s43630-024-00571-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/02/2024] [Indexed: 06/11/2024]
Abstract
Photodynamic therapy (PDT) stands out as a noteworthy development as an alternative targeted treatment against skin ailments. While PDT has advanced significantly, research into photo-activatable "Green drugs" derived from plants which are less toxic than the synthetic drugs has not kept pace. This study investigates the potential of Fagopyrin F Containing Fraction (FCF) derived from Fagopyrum tataricum in mediating PDT against Staphylococcus aureus and skin cancer cells (A431). FCF was isolated from the plant extract using thin-layer chromatography, followed by identification of the compound through high-performance liquid chromatography and high-resolution liquid chromatography-mass spectrometry. FCF was tested to determine its antibacterial and anticancer efficacy. Results revealed that FCF-mediated PDT exhibited potent action against S. aureus, significantly reducing bacterial viability (MIC 19.5 μg/100 μL). Moreover, FCF-mediated PDT showed good efficacy against A431 cells, resulting in a notable reduction in cell viability (IC50 29.08 μg/mL). Given the known association between S. aureus and squamous cell carcinoma (SCC), FCF shows the potential to effectively target and eradicate both SCC and the related S. aureus present within the lesions. In silico study reveals that Fagopyrin F effectively binds with the epidermal growth factor (EGFR), one among the highly expressed proteins in the A431 cells, with a binding energy of - 9.6 kcal/mol. The affinity of Fagopyrin F for EGFR on A431 cancer cells along with its cytotoxicity against skin cancer cells while safeguarding the normal cells (L929) plays a major part in the way it targets cancer cells. However, its safety, efficacy, and long-term advantages in treating skin conditions require more investigation, including in vivo investigations and clinical trials.
Collapse
Affiliation(s)
- K Merin Rinky
- Department of Life Sciences, University of Calicut, Malappuram, Kerala, 673635, India
| | - D Gayathri Devi
- Department of Life Sciences, University of Calicut, Malappuram, Kerala, 673635, India.
| | - V K Priya
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| |
Collapse
|
3
|
Kreft I, Germ M, Golob A, Vombergar B, Vollmannová A, Kreft S, Luthar Z. Phytochemistry, Bioactivities of Metabolites, and Traditional Uses of Fagopyrum tataricum. Molecules 2022; 27:7101. [PMID: 36296694 PMCID: PMC9611693 DOI: 10.3390/molecules27207101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 09/02/2023] Open
Abstract
In Tartary buckwheat (Fagopyrum tataricum), the edible parts are mainly grain and sprouts. Tartary buckwheat contains protecting substances, which make it possible for plants to survive on high altitudes and under strong natural ultraviolet radiation. The diversity and high content of phenolic substances are important for Tartary buckwheat to grow and reproduce under unfriendly environmental effects, diseases, and grazing. These substances are mainly flavonoids (rutin, quercetin, quercitrin, vitexin, catechin, epicatechin and epicatechin gallate), phenolic acids, fagopyrins, and emodin. Synthesis of protecting substances depends on genetic layout and on the environmental conditions, mainly UV radiation and temperature. Flavonoids and their glycosides are among Tartary buckwheat plants bioactive metabolites. Flavonoids are compounds of special interest due to their antioxidant properties and potential in preventing tiredness, diabetes mellitus, oxidative stress, and neurodegenerative disorders such as Parkinson's disease. During the processing and production of food items, Tartary buckwheat metabolites are subjected to molecular transformations. The main Tartary buckwheat traditional food products are bread, groats, and sprouts.
Collapse
Affiliation(s)
- Ivan Kreft
- Nutrition Institute, Tržaška 40, SI-1000 Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Aleksandra Golob
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Blanka Vombergar
- The Education Centre Piramida Maribor, SI-2000 Maribor, Slovenia
| | - Alena Vollmannová
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Samo Kreft
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Zlata Luthar
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Bongaerts GPA, Williams RM, van der Wielen MWJ, Feiters MC. (Photo-)chemical roadmap to strategic antimicrobial photodynamic and photothermal therapies. J PORPHYR PHTHALOCYA 2022. [DOI: 10.1142/s1088424622500493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Kreft I, Vollmannová A, Lidiková J, Musilová J, Germ M, Golob A, Vombergar B, Kocjan Ačko D, Luthar Z. Molecular Shield for Protection of Buckwheat Plants from UV-B Radiation. Molecules 2022; 27:molecules27175577. [PMID: 36080352 PMCID: PMC9457819 DOI: 10.3390/molecules27175577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) and common buckwheat (Fagopyrum esculentum Moench) are adapted to growing in harsh conditions of high altitudes. Ultraviolet radiation at high altitudes strongly impacts plant growth and development. Under the influence of ultraviolet radiation, protecting substances are synthesized in plants. The synthesis of UV-B defense metabolites is genetically conditioned, and their quantity depends on the intensity of the ultraviolet radiation to which the plants and plant parts are exposed. These substances include flavonoids, and especially rutin. Other substances with aromatic rings of six carbon atoms have a similar function, including fagopyrin, the metabolite specific for buckwheat. Defensive substances are formed in the leaves and flowers of common and Tartary buckwheat, up to about the same concentration in both species. In comparison, the concentration of rutin in the grain of Tartary buckwheat is much higher than in common buckwheat. Flavonoids also have other functions in plants so that they can protect them from pests and diseases. After crushing the grains, rutin is exposed to contact with the molecules of rutin-degrading enzymes. In an environment with the necessary humidity, rutin is turned into bitter quercetin under the action of rutin-degrading enzymes. This bitterness has a deterrent effect against pests. Moreover, flavonoids have important functions in human nutrition to prevent several chronic diseases, including obesity, cardiovascular diseases, gallstone formation, and hypertension.
Collapse
Affiliation(s)
- Ivan Kreft
- Nutrition Institute, Tržaška 40, SI-1000 Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Alena Vollmannová
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Judita Lidiková
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Janette Musilová
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Aleksandra Golob
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Blanka Vombergar
- The Education Centre Piramida Maribor, SI-2000 Maribor, Slovenia
| | - Darja Kocjan Ačko
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Zlata Luthar
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
6
|
Szymański S, Majerz I. Theoretical Studies on the Structure and Intramolecular Interactions of Fagopyrins-Natural Photosensitizers of Fagopyrum. Molecules 2022; 27:molecules27123689. [PMID: 35744813 PMCID: PMC9230917 DOI: 10.3390/molecules27123689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The study determines the spatial structure and intramolecular interactions of fagopyrins—natural photosensitizers of Fagopyrum species. In silico calculations show many fagopyrin conformers characterized by the formation of strong intramolecular interactions. Abstract Compounds characterized by a double-anthrone moiety are found in many plant species. One of them are fagopyrins—naturally occurring photosensitizers of Fagopyrum. The photosensitizing properties of fagopyrins are related to the selective absorption of light, which is a direct result of their spatial and electronic structure and many intramolecular interactions. The nature of the interactions varies in different parts of the molecule. The aim of this study is to determine the structure and intramolecular interactions of fagopyrin molecules. For this purpose, in silico calculations were used to perform geometry optimization in the gas phase. QTAIM and NCI analysis suggest the formation of the possible conformers in the fagopyrin molecules. The presence of a strong OHO hydrogen bond was shown in the anthrone moiety of fagopyrin. The minimum energy difference for selected conformers of fagopyrins was 1.1 kcal∙mol−1, which suggested that the fagopyrin structure may exist in a different conformation in plant material. Similar interactions were observed in previously studied structures of hypericin and sennidin; however, only fagopyrin showed the possibility of brake the strong OHO hydrogen bond in favor of forming a new OHN hydrogen bond.
Collapse
|
7
|
Biological characteristics of the gluten-free sourdough system fermented by Lactobacillus plantarum ST-III and its effect on dough quality and nutritional value during freezing. Food Chem X 2022; 14:100350. [PMID: 35669455 PMCID: PMC9163690 DOI: 10.1016/j.fochx.2022.100350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/08/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022] Open
|
8
|
Determination and photochemical conversion of protofagopyrins and fagopyrins in buckwheat plants. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Kim J, Kim S, Lee K, Kim RH, Hwang KT. Antibacterial Photodynamic Inactivation of Fagopyrin F from Tartary Buckwheat ( Fagopyrum tataricum) Flower against Streptococcus mutans and Its Biofilm. Int J Mol Sci 2021; 22:6205. [PMID: 34201389 PMCID: PMC8226997 DOI: 10.3390/ijms22126205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 01/10/2023] Open
Abstract
The objective of this study was to determine reactive oxygen species (ROS) produced by fagopyrin F-rich fraction (FFF) separated from Tartary buckwheat flower extract exposed to lights and to investigate its antibacterial photodynamic inactivation (PDI) against Streptococcus mutans and its biofilm. ROS producing mechanisms involving FFF with light exposure were determined using a spectrophotometer and a fluorometer. S. mutans and its biofilm inactivation after PDI treatment of FFF using blue light (BL; 450 nm) were determined by plate count method and crystal violet assay, respectively. The biofilm destruction by ROS produced from FFF after exposure to BL was visualized using confocal laser scanning microscopy (CLSM) and field emission scanning electron microscope (FE-SEM). BL among 3 light sources produced type 1 ROS the most when applying FFF as a photosensitizer. FFF exposed to BL (5 and 10 J/cm2) significantly more inhibited S. mutans viability and biofilm formation than FFF without the light exposure (p < 0.05). In the PDI of FFF exposed to BL (10 J/cm2), an apparent destruction of S. mutans and its biofilm were observed by the CLSM and FE-SEM. Antibacterial PDI effect of FFF was determined for the first time in this study.
Collapse
Affiliation(s)
- Jaecheol Kim
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea; (J.K.); (K.L.); (R.H.K.)
- BK21 FOUR Education and Research Team for Sustainable Food & Nutrition, Seoul National University, Seoul 08826, Korea
| | - Suna Kim
- Division of Human Ecology, College of Natural Science, Korea National Open University, Seoul 03078, Korea;
| | - Kiuk Lee
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea; (J.K.); (K.L.); (R.H.K.)
| | - Ryun Hee Kim
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea; (J.K.); (K.L.); (R.H.K.)
- BK21 FOUR Education and Research Team for Sustainable Food & Nutrition, Seoul National University, Seoul 08826, Korea
| | - Keum Taek Hwang
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea; (J.K.); (K.L.); (R.H.K.)
- BK21 FOUR Education and Research Team for Sustainable Food & Nutrition, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
10
|
Vollmannová A, Musilová J, Lidiková J, Árvay J, Šnirc M, Tóth T, Bojňanská T, Čičová I, Kreft I, Germ M. Concentrations of Phenolic Acids Are Differently Genetically Determined in Leaves, Flowers, and Grain of Common Buckwheat ( Fagopyrum esculentum Moench). PLANTS 2021; 10:plants10061142. [PMID: 34205223 PMCID: PMC8228752 DOI: 10.3390/plants10061142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022]
Abstract
Common buckwheat (Fagopyrum esculentum Moench) is a valuable source of proteins, B vitamins, manganese, tryptophan, phytochemicals with an antioxidant effect, and the natural flavonoid rutin. Due to its composition, buckwheat supports the human immune system, regulates blood cholesterol, and is suitable for patients with diabetes or celiac disease. The study aimed to compare the allocation of selected phenolic acids (neochlorogenic acid, chlorogenic acid, trans-caffeic acid, trans-p-coumaric acid, trans-sinapic acid, trans-ferulic acid) and flavonoids (rutin, vitexin, quercetin, kaempferol) in the leaves, flowers, and grain of buckwheat cultivars of different origin. The content of individual phenolics was determined by the HPLC-DAD method. The results confirmed the determining role of cultivar on the relative content of chlorogenic acid, trans-caffeic acid, trans-sinapic acid, vitexin, and kaempferol in buckwheat plants. A significantly negative correlation among concentrations of phenolic acids in different common buckwheat plant parts shows that there are different mechanisms of genetic influences on the concentration of phenolic substances in common buckwheat flowers, leaves, and grain. These differences should be taken into account when breeding buckwheat for a high concentration of selected phenolic substances.
Collapse
Affiliation(s)
- Alena Vollmannová
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (J.M.); (J.L.); (J.Á.); (M.Š.); (T.T.); (T.B.)
- Correspondence:
| | - Janette Musilová
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (J.M.); (J.L.); (J.Á.); (M.Š.); (T.T.); (T.B.)
| | - Judita Lidiková
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (J.M.); (J.L.); (J.Á.); (M.Š.); (T.T.); (T.B.)
| | - Július Árvay
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (J.M.); (J.L.); (J.Á.); (M.Š.); (T.T.); (T.B.)
| | - Marek Šnirc
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (J.M.); (J.L.); (J.Á.); (M.Š.); (T.T.); (T.B.)
| | - Tomáš Tóth
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (J.M.); (J.L.); (J.Á.); (M.Š.); (T.T.); (T.B.)
| | - Tatiana Bojňanská
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (J.M.); (J.L.); (J.Á.); (M.Š.); (T.T.); (T.B.)
| | - Iveta Čičová
- Research Institute of Plant Production, Bratislavska 2795/122, 921 01 Piestany, Slovakia;
| | - Ivan Kreft
- Nutrition Institute, Tržaška cesta 40, Sl-1000 Ljubljana, Slovenia;
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Sl-1000 Ljubljana, Slovenia;
| |
Collapse
|
11
|
Changes in Agricultural Performance of Common Buckwheat Induced by Seed Treatment with Cold Plasma and Electromagnetic Field. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104391] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aim of this study was to determine the effects of pre-sowing seed treatment with cold plasma (CP) and an electromagnetic field (EMF) on the agricultural performance of two cultivars of common buckwheat (Fagopyrum esculentum Moench)—‘VB Vokiai’ and ‘VB Nojai’. For this, the effects of CP and EMF on seed germination, plant growth in the field, photosynthetic efficiency, biomass production, seed yield, and the amount of secondary metabolites and minerals in the harvested seeds were estimated. Although the percentage of seedlings that emerged under field conditions decreased by 11–20%, seed treatments strongly improved buckwheat growth and yield. Irrespective of differences in the dynamics of changes in the growth and photosynthetic activity between the two cultivars, the weight of seeds collected per plant for both cultivars was significantly higher (up to 70–97%) compared to the control. The biochemical composition of the harvested seeds (Fe, Zn, quercetin content) was also altered by seed treatments. Thus, pre-sowing treatment of buckwheat seeds with CP and EMF substantially stimulated plant growth in the field, increased biomass production, seed yield and nutritional quality. The results obtained strongly support the idea that plant seed treatment with physical stressors has great potential for use in agriculture.
Collapse
|
12
|
Kosyan A, Sytar O. Implications of Fagopyrin Formation In Vitro by UV Spectroscopic Analysis. Molecules 2021; 26:molecules26072013. [PMID: 33916126 PMCID: PMC8037420 DOI: 10.3390/molecules26072013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
The present work aims at studying the possible biosynthesis of fagopyrin in buckwheat plants with an attempt to address the existing gaps. The developed method of differential spectrophotometry can be used for identification of naphthodianthrones fagopyrins. It was found that in the vegetative mass of buckwheat plants, fagopyrin precursor-2-(piperidine-2-yl)-emodindianthron could be present. As fagopyrin can be produced by light effect, the temperature factor may influence the formation of protofagopyrin in vitro. An optimum temperature range was estimated for protofagopyrin formation. A possible fagopyrin biosynthesis under in vitro conditions was suggested.
Collapse
Affiliation(s)
- Anatolij Kosyan
- Department of Plant Biology, Educational and Scientific Center “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Hlushkova Avenue, 2, 03127 Kyiv, Ukraine;
| | - Oksana Sytar
- Department of Plant Biology, Educational and Scientific Center “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Hlushkova Avenue, 2, 03127 Kyiv, Ukraine;
- Department of Plant Physiology, Slovak University of Agriculture in Nitra, A. Hlinku 2, 94976 Nitra, Slovakia
- Correspondence:
| |
Collapse
|
13
|
Fagopyrins in different parts of common buckwheat (Fagopyrum esculentum) and Tartary buckwheat (F. tataricum) during growth. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2019.103354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Antioxidant and Rutin Content Analysis of Leaves of the Common Buckwheat ( Fagopyrum esculentum Moench) Grown in the United Kingdom: A Case Study. Antioxidants (Basel) 2019; 8:antiox8060160. [PMID: 31163698 PMCID: PMC6617123 DOI: 10.3390/antiox8060160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 11/18/2022] Open
Abstract
The common buckwheat, Fagopyrum esculentum Moench (Polygonaceae) is a gluten-free pseudocereal that has been gaining in popularity in recent years as a low-calorie and nutrient-rich healthy food option. Buckwheat farming is common in Eastern European countries and the Far East, while in the UK and other Western European countries, the plant has limited medicinal or food applications. The vegetative parts, particularly the leaves and flowers, are among the best-known sources of the bioactive compound, rutin. Hence, functional foods originated from buckwheat leaves are common, although the scope of such applications is limited by phototoxicity associated with the fagopyrin composition. Here, the antioxidant and rutin composition of the leaves of the plant grown in the UK are assessed. The methanol extract of the leaves displayed a potent DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging effect along with reducing power. Quantitative High Performance Liquid Chromatography (HPLC)-based analysis showed the rutin content of the leaves as 3417 mg/100g (on dry weight (DW) basis). The identity of rutin was also confirmed by isolation and structural elucidation based on spectroscopic studies. From the chemical content analysis, including fagopyrin levels and the antioxidant assays, UK-grown buckwheat has potential as a commercial source of rutin or as a functional food.
Collapse
|
15
|
Einhorn L, Hofstetter G, Brandt S, Hainisch EK, Fukuda I, Kusano K, Scheynius A, Mittermann I, Resch-Marat Y, Vrtala S, Valenta R, Marti E, Rhyner C, Crameri R, Satoh R, Teshima R, Tanaka A, Sato H, Matsuda H, Pali-Schöll I, Jensen-Jarolim E. Molecular allergen profiling in horses by microarray reveals Fag e 2 from buckwheat as a frequent sensitizer. Allergy 2018; 73:1436-1446. [PMID: 29350763 PMCID: PMC6032949 DOI: 10.1111/all.13417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2018] [Indexed: 12/13/2022]
Abstract
Background Companion animals are also affected by IgE‐mediated allergies, but the eliciting molecules are largely unknown. We aimed at refining an allergen microarray to explore sensitization in horses and compare it to the human IgE reactivity profiles. Methods Custom‐designed allergen microarray was produced on the basis of the ImmunoCAP ISAC technology containing 131 allergens. Sera from 51 horses derived from Europe or Japan were tested for specific IgE reactivity. The included horse patients were diagnosed for eczema due to insect bite hypersensitivity, chronic coughing, recurrent airway obstruction and urticaria or were clinically asymptomatic. Results Horses showed individual IgE‐binding patterns irrespective of their health status, indicating sensitization. In contrast to European and Japanese human sensitization patterns, frequently recognized allergens were Aln g 1 from alder and Cyn d 1 from Bermuda grass, likely due to specific respiratory exposure around paddocks and near the ground. The most prevalent allergen for 72.5% of the tested horses (37/51) was the 2S‐albumin Fag e 2 from buckwheat, which recently gained importance not only in human but also in horse diet. Conclusion In line with the One Health concept, covering human health, animal health and environmental health, allergen microarrays provide novel information on the allergen sensitization patterns of the companion animals around us, which may form a basis for allergen‐specific preventive and therapeutic concepts.
Collapse
Affiliation(s)
- L. Einhorn
- The interuniversity Messerli Research Institute; University of Veterinary Medicine Vienna; Medical University Vienna and University Vienna; Vienna Austria
- Institute of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - G. Hofstetter
- The interuniversity Messerli Research Institute; University of Veterinary Medicine Vienna; Medical University Vienna and University Vienna; Vienna Austria
| | - S. Brandt
- Research Group Oncology; Equine Clinic; University of Veterinary Medicine Vienna; Vienna Austria
| | - E. K. Hainisch
- Research Group Oncology; Equine Clinic; University of Veterinary Medicine Vienna; Vienna Austria
| | - I. Fukuda
- Racehorse Hospital; Miho Training Center; Japan Racing Association; Mikoma Japan
| | - K. Kusano
- Racehorse Hospital; Miho Training Center; Japan Racing Association; Mikoma Japan
| | - A. Scheynius
- Science for Life Laboratory; Department of Clinical Science and Education; Karolinska Institutet, and Sachs’ Children and Youth Hospital; Södersjukhuset; Stockholm Sweden
| | - I. Mittermann
- Institute of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - Y. Resch-Marat
- Institute of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - S. Vrtala
- Institute of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - R. Valenta
- Institute of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - E. Marti
- Department of Clinical Research and Veterinary Public Health; Vetsuisse Faculty; University of Bern; Bern Switzerland
| | - C. Rhyner
- Swiss Institute for Allergy and Asthma Research (SIAF); Davos Switzerland
| | - R. Crameri
- Swiss Institute for Allergy and Asthma Research (SIAF); Davos Switzerland
| | - R. Satoh
- Division of Food Function Research; Food Research Institute; National Agriculture and Food Research Organization; Tsukuba Japan
| | - R. Teshima
- National Institute of Health Sciences; Tokyo Japan
| | - A. Tanaka
- Laboratory of Comparative Animal Medicine; Division of Animal Life Science; Tokyo University of Agriculture and Technology; Fuchu Japan
| | - H. Sato
- Laboratory of Veterinary Molecular Pathology and Therapeutics; Division of Animal Life Science; Tokyo University of Agriculture and Technology; Fuchu Japan
| | - H. Matsuda
- Laboratory of Veterinary Molecular Pathology and Therapeutics; Division of Animal Life Science; Tokyo University of Agriculture and Technology; Fuchu Japan
| | - I. Pali-Schöll
- The interuniversity Messerli Research Institute; University of Veterinary Medicine Vienna; Medical University Vienna and University Vienna; Vienna Austria
- Institute of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - E. Jensen-Jarolim
- The interuniversity Messerli Research Institute; University of Veterinary Medicine Vienna; Medical University Vienna and University Vienna; Vienna Austria
- Institute of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
- AllergyCare; Allergy Diagnosis and Study Center; Vienna Austria
| |
Collapse
|
16
|
Kim DS, Kim MB, Lim SB. Enhancement of Phenolic Production and Antioxidant Activity from Buckwheat Leaves by Subcritical Water Extraction. Prev Nutr Food Sci 2017; 22:345-352. [PMID: 29333388 PMCID: PMC5758099 DOI: 10.3746/pnf.2017.22.4.345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/19/2017] [Indexed: 12/22/2022] Open
Abstract
To enhance the production of phenolic compounds with high antioxidant activity and reduce the level of phototoxic fagopyrin, buckwheat leaves were extracted with subcritical water (SW) at 100~220°C for 10~50 min. The major phenolic compounds were quercetin, gallic acid, and protocatechuic acid. The cumulative amount of individual phenolic compounds increased with increasing extraction temperature from 100°C to 180°C and did not change significantly at 200°C and 220°C. The highest yield of individual phenolic compounds was 1,632.2 μg/g dry sample at 180°C, which was 4.7-fold higher than that (348.4 μg/g dry sample) at 100°C. Total phenolic content and total flavonoid content increased with increasing extraction temperature and decreased with increasing extraction time, and peaked at 41.1 mg gallic acid equivalents/g and 26.9 mg quercetin equivalents/g at 180°C/10 min, respectively. 2,2-Diphenyl-1-picrylhydrazyl free radical scavenging activity and ferric reducing ability of plasma reached 46.4 mg ascorbic acid equivalents/g and 72.3 mmol Fe2+/100 g at 180°C/10 min, respectively. The fagopyrin contents were reduced by 92.5~95.7%. Color values L* and b* decreased, and a* increased with increasing extraction temperature. SW extraction enhanced the yield of phenolic compounds with high antioxidant activity and reduced the fagopyrin content from buckwheat leaves.
Collapse
Affiliation(s)
- Dong-Shin Kim
- Department of Food Bioengineering, Jeju National University, Jeju 63243, Korea
| | - Mi-Bo Kim
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Sang-Bin Lim
- Department of Food Bioengineering, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
17
|
Kočevar Glavač N, Stojilkovski K, Kreft S, Park CH, Kreft I. Determination of fagopyrins, rutin, and quercetin in Tartary buckwheat products. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.01.068] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Abstract
AbstractBuckwheat (Fagopyrum esculentum Moench, F. tataricum Gaertner) groats and flour have been established globally as nutritional foods because of their high levels of proteins, polyphenols and minerals. In some regions, buckwheat herb is used as a functional food. In the present study, reports of in vitro studies, preclinical and clinical trials dealing with the effect of buckwheat and its metabolites were reviewed. There are numerous reports of potential health benefits of consuming buckwheat, which may be in the form of food, dietary supplements, home remedies or possibly pharmaceutical drugs; however, adverse effects, including those resulting from contamination, must be considered. There are reports of antioxidative activity of buckwheat, which contains high levels of rutin and quercetin. On the other hand, both cytotoxic and antigenotoxic effects have been shown. Reduction of hyperlipidaemia, reduction of blood pressure and improved weight regulation have been suggested. Consuming buckwheat may have a beneficial effect on diabetes, since lower postprandial blood glucose and insulin response have been reported. In addition, buckwheat metabolites, such as rutin, may have intrinsic protective effects in preserving insulin signalling. Rutin has also been suggested to have potential therapeutic applications for the treatment of Alzheimer’s disease. The literature indicates that buckwheat is safe to consume and may have various beneficial effects on human health.
Collapse
|