1
|
Liu X, Zhang Y, Qi X, Zhao D, Rao H, Zhao X, Li Y, Liu J, Qin Z, Hao J, Liu X. Advances of microbial xylanases in the application of flour industries: A comprehensive review. Int J Biol Macromol 2024; 282:137205. [PMID: 39489265 DOI: 10.1016/j.ijbiomac.2024.137205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Microbial xylanase has a wide range of applications, and many researchers favoring its utilization as an alternative to improve flour products. Wheat flour is the main raw material of flour products, although the content of arabinoxylan is not high in flour products, but it has a great influence on the quality of flour products, microbial xylanase can act on wheat arabinoxylan, so as to play the role of flour product improvement. This review carries out a description of the research progress on the application of xylanases in flour products in terms of xylanase properties, different families of xylanases and improvement mechanisms of xylanases in flour products. According to the properties of various microbial sources of xylanases, the suitable xylanase can be added to flour products, and the effect of xylanase towards wheat arabinoxylan in flour can be used to improve the quality of flour products. The molecular modification based on the properties of xylanase and the crystal structure of different families of xylanase and their substrate specificity toward wheat arabinoxylan are discussed. The article reviews the information about microbial xylanases in order to achieve better results in flour products and to provide a theoretical basis for their industrial application.
Collapse
Affiliation(s)
- Xingyu Liu
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Yuxi Zhang
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Xiaoya Qi
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Dandan Zhao
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Huan Rao
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Xia Zhao
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Yanxiao Li
- College of Engineering, China Agricultural University, Haidian District, No. 17 Qinghua East Road, Beijing 100083, People's Republic of China
| | - Jun Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, No. 17 Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Zhen Qin
- School of Life Sciences, Shanghai University, Baoshan District, No. 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Jianxiong Hao
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China.
| | - Xueqiang Liu
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China.
| |
Collapse
|
2
|
Mu D, Li P, Ma T, Wei D, Montalbán-López M, Ai Y, Wu X, Wang Y, Li X, Li X. Advances in the understanding of the production, modification and applications of xylanases in the food industry. Enzyme Microb Technol 2024; 179:110473. [PMID: 38917734 DOI: 10.1016/j.enzmictec.2024.110473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/25/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Xylanases have broad applications in the food industry to decompose the complex carbohydrate xylan. This is applicable to enhance juice clarity, improve dough softness, or reduce beer turbidity. It can also be used to produce prebiotics and increase the nutritional value in foodstuff. However, the low yield and poor stability of most natural xylanases hinders their further applications. Therefore, it is imperative to explore higher-quality xylanases to address the potential challenges that appear in the food industry and to comprehensively improve the production, modification, and utilization of xylanases. Xylanases, due to their various sources, exhibit diverse characteristics that affect production and activity. Most fungi are suitable for solid-state fermentation to produce xylanases, but in liquid fermentation, microbial metabolism is more vigorous, resulting in higher yield. Fungi produce higher xylanase activity, but bacterial xylanases perform better than fungal ones under certain extreme conditions (high temperature, extreme pH). Gene and protein engineering technology helps to improve the production efficiency of xylanases and enhances their thermal stability and catalytic properties.
Collapse
Affiliation(s)
- Dongdong Mu
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Gongda Biotech (Huangshan) Limited Company, Huangshan 245400, China.
| | - Penglong Li
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Tiange Ma
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Dehua Wei
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Manuel Montalbán-López
- Institute of Biotechnology and Department of Microbiology, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Yaqian Ai
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Xuefeng Wu
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yifeng Wang
- Anhui Yunshang Cultural Tourism Development Group, Anqing 246600, China
| | - Xu Li
- Anhui Wanyue Xinhe Project Management Company Limited, Anqing 246600, China
| | - Xingjiang Li
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Gongda Biotech (Huangshan) Limited Company, Huangshan 245400, China.
| |
Collapse
|
3
|
Chen J, Qin H, You C, Long L. Improved secretory expression and characterization of thermostable xylanase and β-xylosidase from Pseudothermotoga thermarum and their application in synergistic degradation of lignocellulose. Front Bioeng Biotechnol 2023; 11:1270805. [PMID: 37790249 PMCID: PMC10544939 DOI: 10.3389/fbioe.2023.1270805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
Xylanase and β-xylosidase are the key enzymes for hemicellulose hydrolysis. To further improve hydrolysis efficacy, high temperature hydrolysis with thermostable hemicellulases showed promise. In this study, thermostable xylanase (Xyn) and β-xylosidase (XynB) genes from Pseudothermotoga thermarum were cloned and secretory expressed in Bacillu subtilis. Compared with Escherichia coli expression host, B. subtilis resulted in a 1.5 time increase of enzymatic activity for both recombinant enzymes. The optimal temperature and pH were 95°C and 6.5 for Xyn, and 95°C and 6.0 for XynB. Thermostability of both recombinant enzymes was observed between the temperature range of 75-85°C. Molecular docking analysis through AutoDock showed the involvement of Glu525, Asn526, Trp774 and Arg784 in Xyn-ligand interaction, and Val237, Lys238, Val761 and Asn76 in XynB-ligand interaction, respectively. The recombinant Xyn and XynB exhibited synergistic hydrolysis of beechwood xylan and pretreated lignocellulose, where Xyn and XynB pre-hydrolysis achieved a better improvement of pretreated lignocellulose hydrolysis by commercial cellulase. The observed stability of the enzymes at high temperature and the synergistic effect on lignocellulosic substrates suggested possible application of these enzymes in the field of saccharification process.
Collapse
Affiliation(s)
- Jinkang Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hao Qin
- Eco-Materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, China
- Little Swan Electric Co., Ltd., Midea Group, Wuxi, China
| | - Chaoqun You
- Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomas, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Lingfeng Long
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Zheng F, Basit A, Zhuang H, Chen J, Zhang J, Chen W. Biochemical characterization of a novel acidophilic β-xylanase from Trichoderma asperellum ND-1 and its synergistic hydrolysis of beechwood xylan. Front Microbiol 2022; 13:998160. [PMID: 36199370 PMCID: PMC9527580 DOI: 10.3389/fmicb.2022.998160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Acidophilic β-xylanases have attracted considerable attention due to their excellent activity under extreme acidic environments and potential industrial utilizations. In this study, a novel β-xylanase gene (Xyl11) of glycoside hydrolase family 11, was cloned from Trichoderma asperellum ND-1 and efficiently expressed in Pichia pastoris (a 2.0-fold increase). Xyl11 displayed a maximum activity of 121.99 U/ml at pH 3.0 and 50°C, and exhibited strict substrate specificity toward beechwood xylan (Km = 9.06 mg/ml, Vmax = 608.65 μmol/min/mg). The Xyl11 retained over 80% activity at pH 2.0–5.0 after pretreatment at 4°C for 1 h. Analysis of the hydrolytic pattern revealed that Xyl11 could rapidly convert xylan to xylobiose via hydrolysis activity as well as transglycosylation. Moreover, the results of site-directed mutagenesis suggested that the Xyl11 residues, Glu127, Glu164, and Glu216, are essential catalytic sites, with Asp138 having an auxiliary function. Additionally, a high degree of synergy (15.02) was observed when Xyl11 was used in association with commercial β-xylosidase. This study provided a novel acidophilic β-xylanase that exhibits excellent characteristics and can, therefore, be considered a suitable candidate for extensive applications, especially in food and animal feed industries.
Collapse
Affiliation(s)
- Fengzhen Zheng
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
- *Correspondence: Fengzhen Zheng,
| | - Abdul Basit
- Department of Microbiology, University of Jhang, Jhang, Pakistan
| | - Huan Zhuang
- Department of ENT and Head & Neck Surgery, The Children’s Hospital Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Jun Chen
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, China
| | - Jianfen Zhang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Weiqing Chen
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
5
|
Cloning, expression, and characterization of a recombinant xylanase from Bacillus sonorensis T6. PLoS One 2022; 17:e0265647. [PMID: 35298551 PMCID: PMC8929556 DOI: 10.1371/journal.pone.0265647] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/05/2022] [Indexed: 11/19/2022] Open
Abstract
Xylanase is one of industrial enzymes with diverse applications including the paper-bleaching industry and feed additives. Here, a strain having xylanolytic activity and identified as Bacillus sonorensis T6 was isolated from soil. A secretory enzyme was identified by mass-spectrometry as a xylanase of glycosyl hydrolase family 11, with a molecular weight of 23.3 kDa. The xylanase gene of Bacillus sonorensis T6 was cloned and expressed in Escherichia coli (yielding an enzyme designated as rXynT6-E) and in Pichia pastoris (yielding rXynT6-P). The recombinant xylanases were found to have optimal activity at 47–55°C and pH 6.0–7.0. The recombinant xylanase expressed in P. pastoris has 40% higher thermal stability than that expressed in E. coli. The recombinant xylanases retained 100% of activity after 10 h incubation in the pH range 3–11 and 68% of activity after 1 h at pH 2.0. The xylanase activities of rXynT6-E and rXynT6-P under optimal conditions were 1030.2 and 873.8 U/mg, respectively. The good stability in a wide range of pH and moderate temperatures may make the xylanase from Bacillus sonorensis T6 useful for various biotechnological applications, e.g., as an enzyme additive in the feed industry.
Collapse
|
6
|
Islam MS, Mohamed G, Polash SA, Hasan MA, Sultana R, Saiara N, Dong W. Antimicrobial Peptides from Plants: A cDNA-Library Based Isolation, Purification, Characterization Approach and Elucidating Their Modes of Action. Int J Mol Sci 2021; 22:8712. [PMID: 34445412 PMCID: PMC8395713 DOI: 10.3390/ijms22168712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/19/2022] Open
Abstract
Even in a natural ecosystem, plants are continuously threatened by various microbial diseases. To save themselves from these diverse infections, plants build a robust, multilayered immune system through their natural chemical compounds. Among the several crucial bioactive compounds possessed by plants' immune systems, antimicrobial peptides (AMPs) rank in the first tier. These AMPs are environmentally friendly, anti-pathogenic, and do not bring harm to humans. Antimicrobial peptides can be isolated in several ways, but recombinant protein production has become increasingly popular in recent years, with the Escherichia coli expression system being the most widely used. However, the efficacy of this expression system is compromised due to the difficulty of removing endotoxin from its system. Therefore, this review suggests a high-throughput cDNA library-based plant-derived AMP isolation technique using the Bacillus subtilis expression system. This method can be performed for large-scale screening of plant sources to classify unique or homologous AMPs for the agronomic and applied field of plant studies. Furthermore, this review also focuses on the efficacy of plant AMPs, which are dependent on their numerous modes of action and exceptional structural stability to function against a wide range of invaders. To conclude, the findings from this study will be useful in investigating how novel AMPs are distributed among plants and provide detailed guidelines for an effective screening strategy of AMPs.
Collapse
Affiliation(s)
- Md. Samiul Islam
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (M.S.I.); (G.M.)
| | - Gamarelanbia Mohamed
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (M.S.I.); (G.M.)
| | | | - Md. Amit Hasan
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh;
| | - Razia Sultana
- State Key Laboratory of Agricultural Microbiology, Department of Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Noshin Saiara
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh;
| | - Wubei Dong
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (M.S.I.); (G.M.)
| |
Collapse
|
7
|
Wu M, Jiang Y, Liu Y, Mou L, Zhang W, Xin F, Jiang M. Microbial application of thermophilic Thermoanaerobacterium species in lignocellulosic biorefinery. Appl Microbiol Biotechnol 2021; 105:5739-5749. [PMID: 34283269 DOI: 10.1007/s00253-021-11450-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
Recently, thermophilic Thermoanaerobacterium species have attracted increasing attentions in consolidated bioprocessing (CBP), which can directly utilize lignocellulosic materials for biofuels production. Compared to the mesophilic process, thermophilic process shows greater prospects in CBP due to its relatively highly efficiency of lignocellulose degradation. In addition, thermophilic conditions can avoid microbial contamination, reduce the cooling costs, and further facilitate the downstream product recovery. However, only few reviews specifically focused on the microbial applications of thermophilic Thermoanaerobacterium species in lignocellulosic biorefinery. Accordingly, this review will comprehensively summarize the recent advances of Thermoanaerobacterium species in lignocellulosic biorefinery, including their secreted xylanases and bioenergy production. Furthermore, the co-culture can significantly reduce the metabolic burden and achieve the more complex work, which will be discussed as the further perspectives. KEY POINTS: • Thermoanaerobacterium species, promising chassis for lignocellulosic biorefinery. • Potential capability of hemicellulose degradation for Thermoanaerobacterium species. • Efficient bioenergy production by Thermoanaerobacterium species through metabolic engineering.
Collapse
Affiliation(s)
- Mengdi Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Yansong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Lu Mou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China
| |
Collapse
|
8
|
Wu F, Ma J, Cha Y, Lu D, Li Z, Zhuo M, Luo X, Li S, Zhu M. Using inexpensive substrate to achieve high-level lipase A secretion by Bacillus subtilis through signal peptide and promoter screening. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Liu L, Xu M, Cao Y, Wang H, Shao J, Xu M, Zhang Y, Wang Y, Zhang W, Meng X, Liu W. Biochemical Characterization of Xylanases from Streptomyces sp. B6 and Their Application in the Xylooligosaccharide Production from Viscose Fiber Production Waste. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3184-3194. [PMID: 32105462 DOI: 10.1021/acs.jafc.9b06704] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Enzymatic hydrolysis of xylan represents a promising way to produce xylooligosaccharide (XOS), which is a novel ingredient in functional food. However, the recalcitrance of xylan in natural lignocellulosic biomass entails effective and robust xylanases. In the present study, we reported the isolation of a thermophilic Streptomyces sp. B6 from mushroom compost producing high xylanase activity. Two xylanases of Streptomyces sp. B6 belonging to GH10 (XynST10) and GH11 (XynST11) families were thus identified and biochemically characterized to be robust enzymes with high alkaline- and thermostability. Direct hydrolysis of neutralized viscose fiber production waste using XynST10 and XynST11 showed that while XynST10 produced 23.22 g/L XOS with a degree of polymerization (DP) of 2-4 and 9.27 g/L xylose, XynST11 produced much less xylose (1.19 g/L) and a higher amounts of XOS with a DP = 2-4 (28.29 g/L). Thus, XynST11 holds great potential for the production of XOS from agricultural and industrial waste.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, People's Republic of China
| | - Mingyuan Xu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, People's Republic of China
| | - Yanli Cao
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, People's Republic of China
| | - Hai Wang
- Qingdao Vland Biotech Company Group, No. 29 Miaoling Road, Qingdao 266061, People's Republic of China
| | - Jing Shao
- Qingdao Vland Biotech Company Group, No. 29 Miaoling Road, Qingdao 266061, People's Republic of China
| | - Meiqing Xu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, People's Republic of China
| | - Yuancheng Zhang
- Leling Shengli New Energy Company, Limited, Yangan, Leling, Dezhou 253614, People's Republic of China
| | - Yunhe Wang
- Leling Shengli New Energy Company, Limited, Yangan, Leling, Dezhou 253614, People's Republic of China
| | - Weixin Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, People's Republic of China
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, People's Republic of China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, People's Republic of China
| |
Collapse
|
10
|
Zhu M, Zhang L, Yang F, Cha Y, Li S, Zhuo M, Huang S, Li J. A Recombinant β-Mannanase from Thermoanaerobacterium aotearoense SCUT27: Biochemical Characterization and Its Thermostability Improvement. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:818-825. [PMID: 31845578 DOI: 10.1021/acs.jafc.9b06246] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
β-Mannanase was expressed in Thermoanaerobacterium aotearoense SCUT27 induced by locust bean gum (LBG). The open reading frame encoding a GH26 β-mannanase was identified and encoded a preprotein of 515 amino acids with a putative signal peptide. The enzyme without a signal sequence (Man25) was overexpressed in Escherichia coli with a specific activity of 1286.2 U/mg. Moreover, a facile method for β-mannanase activity screening was established based on agar plates. The optimum temperature for the purified Man25 using LBG as a substrate was 55 °C. The catalytic activity and thermostability of Man25 displayed a strong dependence on calcium ions. Through saturation mutagenesis at the putative Ca2+ binding sites in Man25, the best mutant ManM3-3 (D143A) presented improvements in thermostability with 3.6-fold extended half-life at 55 °C compared with that of the wild-type. The results suggest that mutagenesis at metal binding sites could be an efficient approach to increase enzyme thermostability.
Collapse
Affiliation(s)
- Muzi Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology , Guangdong Academy of Sciences , Guangzhou 510070 , China
| | | | - Fang Yang
- Integrative Microbiology Research Centre , South China Agricultural University , Guangzhou 510642 , China
| | | | | | | | | | - Jianjun Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology , Guangdong Academy of Sciences , Guangzhou 510070 , China
| |
Collapse
|
11
|
Jia X, Han Y. The extracellular endo-β-1,4-xylanase with multidomain from the extreme thermophile Caldicellulosiruptor lactoaceticus is specific for insoluble xylan degradation. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:143. [PMID: 31198440 PMCID: PMC6556019 DOI: 10.1186/s13068-019-1480-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The extremely thermophilic bacterium Caldicellulosiruptor lactoaceticus can degrade and metabolize untreated lignocellulosic biomass containing xylan. The mechanism of the bacterium for degradation of insoluble xylan in untreated biomass has not been revealed. RESULTS In the present study, the only annotated extracellular endo-β-1,4-xylanase (Xyn10B) with multidomain structures in C. lactoaceticus genome was biochemically characterized. Xyn10B contains three N-terminal consecutive family 22 carbohydrate-binding modules (CBMs), one GH10 catalytic domain (CD), two family 9 CBMs and two S-layer homology (SLH) modules in the C-terminal. CBM22a shares 27.1% and 27.2% sequence homology with CBM22b and CBM22c, respectively. The sequence homology between two CBM9 s and two SLHs is 26.8% and 25.6%, respectively. To elucidate the effect of multiple domains on the enzymatic properties of Xyn10B, the truncated variants of which (Xyn10B-TM1: CBM22a-CBM22b-CBM22c-CD10; Xyn10B-TM2: CBM22c-CD10; Xyn10B-TM3: CBM22c-CD10-CBM9a; and Xyn10B-TM4: CD10-CBM9a) were separately reconstructed, recombinantly expressed and biochemically characterized. Enzymatic properties studies showed that the optimal temperature for all four Xyn10B truncations was 65 °C. Compared to Xyn10B-TM3 and Xyn10B-TM4, Xyn10B-TM1 and Xyn10B-TM2 had higher hydrolytic activity, thermostability and affinity on insoluble substrates. It is noteworthy that Xyn10B-TM1 and Xyn10B-TM2 have higher enzymatic activity on insoluble xylan than the soluble counterparts, whereas Xyn10B-TM3 and Xyn10B-TM4 showed opposite characteristics. The kinetic parameters analysis of Xyn10B-TM1 on xylan showed V max was 5740, 1300, 1033, and 3925 U/μmol on insoluble oat spelt xylan (OSX), soluble beechwood xylan (BWX), soluble sugar cane xylan (SCX), and soluble corncob xylan (CCX), respectively. The results indicated that CBM22s especially CBM22c promoted the hydrolytic activity, thermostability and affinity on insoluble substrates of the Xyn10B truncations. The functions of CBM22, CBM9, CD and SLH are different, while contribute synergetically to the thermostability, protein structure integrity, substrate binding, and high hydrolytic activity on insoluble xylan of untreated lignocellulosic biomass. The domains of CBM22, CBM9, CD and SLH have different characteristics, which synergistically promote the thermostability, protein structure integrity, affinity on insoluble substrates and enzymatic activity properties of Xyn10B. CONCLUSIONS The extracellular endo-β-1,4-xylanase with multidomain structures of CBM, CD and SLH promote the biodegradation of insoluble xylan in untreated lignocellulosic biomass by thermophilic C. lactoaceticus.
Collapse
Affiliation(s)
- Xiaojing Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing, 100048 China
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yejun Han
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
| |
Collapse
|
12
|
Chadha BS, Kaur B, Basotra N, Tsang A, Pandey A. Thermostable xylanases from thermophilic fungi and bacteria: Current perspective. BIORESOURCE TECHNOLOGY 2019; 277:195-203. [PMID: 30679061 DOI: 10.1016/j.biortech.2019.01.044] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/06/2019] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Thermostable xylanases from thermophilic fungi and bacteria have a wide commercial acceptability in feed, food, paper and pulp and bioconversion of lignocellulosics with an estimated annual market of USD 500 Million. The genome wide analysis of thermophilic fungi clearly shows the presence of elaborate genetic information coding for multiple xylanases primarily coding for GH10, GH11 in addition to GH7 and GH30 xylanases. The transcriptomics and proteome profiling has given insight into the differential expression of these xylanases in some of the thermophilic fungi. Bioprospecting has resulted in identification of novel thermophilic xylanases that have been endorsed by the industrial houses for heterologous over- expression and formulations. The future use of xylanases is expected to increase exponentially for their role in biorefineries. The discovery of new and improvement of existing xylanases using molecular tools such as directed evolution is expected to be the mainstay to meet increasing demand of thermostable xylanases.
Collapse
Affiliation(s)
- B S Chadha
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143 005, India.
| | - Baljit Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143 005, India
| | - Neha Basotra
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143 005, India
| | - Adrian Tsang
- Center for Structural and Functional Genomics, Concordia University, Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada.
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India.
| |
Collapse
|
13
|
Kim CC, Healey GR, Kelly WJ, Patchett ML, Jordens Z, Tannock GW, Sims IM, Bell TJ, Hedderley D, Henrissat B, Rosendale DI. Genomic insights from Monoglobus pectinilyticus: a pectin-degrading specialist bacterium in the human colon. ISME JOURNAL 2019; 13:1437-1456. [PMID: 30728469 PMCID: PMC6776006 DOI: 10.1038/s41396-019-0363-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 01/07/2019] [Accepted: 01/19/2019] [Indexed: 12/16/2022]
Abstract
Pectin is abundant in modern day diets, as it comprises the middle lamellae and one-third of the dry carbohydrate weight of fruit and vegetable cell walls. Currently there is no specialized model organism for studying pectin fermentation in the human colon, as our collective understanding is informed by versatile glycan-degrading bacteria rather than by specialist pectin degraders. Here we show that the genome of Monoglobus pectinilyticus possesses a highly specialized glycobiome for pectin degradation, unique amongst Firmicutes known to be in the human gut. Its genome encodes a simple set of metabolic pathways relevant to pectin sugar utilization, and its predicted glycobiome comprises an unusual distribution of carbohydrate-active enzymes (CAZymes) with numerous extracellular methyl/acetyl esterases and pectate lyases. We predict the M. pectinilyticus degradative process is facilitated by cell-surface S-layer homology (SLH) domain-containing proteins, which proteomics analysis shows are differentially expressed in response to pectin. Some of these abundant cell surface proteins of M. pectinilyticus share unique modular organizations rarely observed in human gut bacteria, featuring pectin-specific CAZyme domains and the cell wall-anchoring SLH motifs. We observed M. pectinilyticus degrades various pectins, RG-I, and galactan to produce polysaccharide degradation products (PDPs) which are presumably shared with other inhabitants of the human gut microbiome (HGM). This strain occupies a new ecological niche for a primary degrader specialized in foraging a habitually consumed plant glycan, thereby enriching our understanding of the diverse community profile of the HGM.
Collapse
Affiliation(s)
- Caroline C Kim
- The New Zealand Institute for Plant and Food Research, Palmerston North, 4474, New Zealand. .,Institute of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand.
| | - Genelle R Healey
- The New Zealand Institute for Plant and Food Research, Palmerston North, 4474, New Zealand.,Massey Institute of Food Science and Technology, School of Food and Nutrition, Massey University, Palmerston North, New Zealand
| | | | - Mark L Patchett
- Institute of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand
| | - Zoe Jordens
- Institute of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand
| | - Gerald W Tannock
- Department of Microbiology and Immunology, Microbiome Otago, University of Otago, Dunedin, 9016, New Zealand
| | - Ian M Sims
- Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, Lower Hutt, 5040, New Zealand
| | - Tracey J Bell
- Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, Lower Hutt, 5040, New Zealand
| | - Duncan Hedderley
- The New Zealand Institute for Plant and Food Research, Palmerston North, 4474, New Zealand
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, Marseille, F-13288, France.,Institut National de la Recherche Agronomique, USC1408 Architecture et Fonction des Macromolécules Biologiques, Marseille, F-13288, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Douglas I Rosendale
- The New Zealand Institute for Plant and Food Research, Palmerston North, 4474, New Zealand.
| |
Collapse
|
14
|
Singh R, Bennett JP, Gupta M, Sharma M, Eqbal D, Alessi AM, Dowle AA, McQueen-Mason SJ, Bruce NC, Yazdani SS. Mining the biomass deconstructing capabilities of rice yellow stem borer symbionts. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:265. [PMID: 31719844 PMCID: PMC6839054 DOI: 10.1186/s13068-019-1603-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/25/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Efficient deconstruction of lignocellulosic biomass into simple sugars in an economically viable manner is a prerequisite for its global acceptance as a feedstock in bioethanol production. This is achieved in nature by suites of enzymes with the capability of efficiently depolymerizing all the components of lignocellulose. Here, we provide detailed insight into the repertoire of enzymes produced by microorganisms enriched from the gut of the crop pathogen rice yellow stem borer (Scirpophaga incertulas). RESULTS A microbial community was enriched from the gut of the rice yellow stem borer for enhanced rice straw degradation by sub-culturing every 10 days, for 1 year, in minimal medium with rice straw as the main carbon source. The enriched culture demonstrated high cellulolytic and xylanolytic activity in the culture supernatant. Metatranscriptomic and metaexoproteomic analysis revealed a large array of enzymes potentially involved in rice straw deconstruction. The consortium was found to encode genes ascribed to all five classes of carbohydrate-active enzymes (GHs, GTs, CEs, PLs, and AAs), including carbohydrate-binding modules (CBMs), categorized in the carbohydrate-active enzymes (CAZy) database. The GHs were the most abundant class of CAZymes. Predicted enzymes from these CAZy classes have the potential to digest each cell-wall components of rice straw, i.e., cellulose, hemicellulose, pectin, callose, and lignin. Several identified CAZy proteins appeared novel, having an unknown or hypothetical catalytic counterpart with a known class of CBM. To validate the findings, one of the identified enzymes that belong to the GH10 family was functionally characterized. The enzyme expressed in E. coli efficiently hydrolyzed beechwood xylan, and pretreated and untreated rice straw. CONCLUSIONS This is the first report describing the enrichment of lignocellulose degrading bacteria from the gut of the rice yellow stem borer to deconstruct rice straw, identifying a plethora of enzymes secreted by the microbial community when growing on rice straw as a carbon source. These enzymes could be important candidates for biorefineries to overcome the current bottlenecks in biomass processing.
Collapse
Affiliation(s)
- Rahul Singh
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Joseph P. Bennett
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, UK
| | - Mayank Gupta
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Medha Sharma
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Danish Eqbal
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Anna M. Alessi
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, UK
| | - Adam A. Dowle
- Department of Biology, Bioscience Technology Facility, University of York, York, UK
| | - Simon J. McQueen-Mason
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, UK
| | - Neil C. Bruce
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, UK
| | - Syed Shams Yazdani
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
15
|
Huang X, Cao L, Qin Z, Li S, Kong W, Liu Y. Tat-Independent Secretion of Polyethylene Terephthalate Hydrolase PETase in Bacillus subtilis 168 Mediated by Its Native Signal Peptide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13217-13227. [PMID: 30465427 DOI: 10.1021/acs.jafc.8b05038] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Widespread utilization of polyethylene terephthalate (PET) has caused critical environmental pollution. The enzymatic degradation of PET is a promising solution to this problem. In this study, PETase, which exhibits much higher PET-hydrolytic activity than other enzymes, was successfully secreted into extracellular milieu from Bacillus subtilis 168 under the direction of its native signal peptide (named SPPETase). SPPETase is predicted to be a twin-arginine signal peptide. Intriguingly, inactivation of twin-arginine translocation (Tat) complexes improved the secretion amount by 3.8-fold, indicating that PETase was exported via Tat-independent pathway. To the best of our knowledge, this is the first report on the improvement of Tat-independent secretion by inactivating Tat components of B. subtilis 168 in LB medium. Furthermore, PET film degradation assay showed that the secreted PETase was fully active. This study paves the first step to construct an efficient engineered strain for PET degradation.
Collapse
Affiliation(s)
- Xin Huang
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Lichuang Cao
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Zongmin Qin
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Shuifeng Li
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Wei Kong
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Yuhuan Liu
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| |
Collapse
|
16
|
Guo Y, Gao Z, Xu J, Chang S, Wu B, He B. A family 30 glucurono-xylanase from Bacillus subtilis LC9: Expression, characterization and its application in Chinese bread making. Int J Biol Macromol 2018; 117:377-384. [PMID: 29792964 DOI: 10.1016/j.ijbiomac.2018.05.143] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/10/2018] [Accepted: 05/21/2018] [Indexed: 11/19/2022]
Abstract
A GH30-8 endoxylanase was identified from an environmental Bacillus subtilis isolate following growth selection on aspen wood glucuronoxylan. The putative endoxylanase was cloned for protein expression and characterization in the Gram-positive protease deficient protein expression host B. subtilis WB800. The extracellular activity obtained was 55 U/mL, which was 14.5-fold higher than that obtained with the native species. The apparent molecular mass of BsXyn30 was estimated as 43 kDa by SDS-PAGE. BsXyn30 showed an optimal activity at pH 7.0 and 60 °C. Recombinant BsXyn30 displayed maximum activity against aspen wood xylan, followed by beechwood xylan but showed no catalytic activity on arabinose-substituted xylans. Analysis of hydrolyzed products of beechwood xylan by thin-layer chromatography and mass spectroscopy revealed the presence of xylooligosaccharides with a single methyl-glucuronic acid residue. BsXyn30 exhibited very low activity for hydrolysis xylotetraose and xylopentaose, but had no detectable activity against xylobiose and xylotriose. Using BsXyn30 as an additive in breadmaking, a decrease in water-holding capacity, an increase in dough expansion as well as improvements in volume and specific volume of the bread were recorded. Thus, the present study provided the basis for the application of GH30 xylanase in breadmaking.
Collapse
Affiliation(s)
- Yalan Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, Jiangsu, China
| | - Zhen Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, Jiangsu, China
| | - Jiaxing Xu
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Huaiyin Normal University, Huaian 223300, Jiangsu, China
| | - Siyuan Chang
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, Jiangsu, China
| | - Bin Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, Jiangsu, China.
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, Jiangsu, China
| |
Collapse
|
17
|
Xu T, Huang X, Li Z, Ki Lin CS, Li S. Enhanced Purification Efficiency and Thermal Tolerance of Thermoanaerobacterium aotearoense β-Xylosidase through Aggregation Triggered by Short Peptides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4182-4188. [PMID: 29633613 DOI: 10.1021/acs.jafc.8b00551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To simplify purification and improve heat tolerance of a thermostable β-xylosidase (ThXylC), a short ELK16 peptide was attached to its C-terminus, which is designated as ThXylC-ELK. Wild-type ThXylC was normally expressed in soluble form. However, ThXylC-ELK assembled into aggregates with 98.6% of total β-xylosidase activity. After simple centrifugation and buffer washing, the ThXylC-ELK particles were collected with 92.57% activity recovery and 95% purity, respectively. Meanwhile, the wild-type ThXylC recovery yield was less than 55% after heat inactivation, affinity and desalting chromatography followed by HRV 3C protease cleavage purification. Catalytic efficiency ( Kcat/ Km) was increased from 21.31 mM-1 s-1 for ThXylC to 32.19 mM-1 s-1 for ThXylC-ELK accompanied by a small increase in Km value. Heat tolerance of ThXylC-ELK at high temperatures was also increased. The ELK16 peptide attachment resulted in 6.2-fold increase of half-life at 65 °C. Released reducing sugars were raised 1.3-fold during sugar cane bagasse hydrolysis when ThXylC-ELK was supplemented into the combination of XynAΔSLH and Cellic CTec2.
Collapse
Affiliation(s)
- Tianwang Xu
- Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering , South China University of Technology , Guangzhou 510006 , China
| | - Xiongliang Huang
- Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering , South China University of Technology , Guangzhou 510006 , China
| | - Zhe Li
- Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering , South China University of Technology , Guangzhou 510006 , China
| | - Carol Sze Ki Lin
- School of Energy and Environment , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong
| | - Shuang Li
- Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering , South China University of Technology , Guangzhou 510006 , China
| |
Collapse
|
18
|
Li L, Mu L, Wang X, Yu J, Hu R, Li Z. A novel expression vector for the secretion of abaecin in Bacillus subtilis. Braz J Microbiol 2017; 48:809-814. [PMID: 28651889 PMCID: PMC5628310 DOI: 10.1016/j.bjm.2017.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/03/2017] [Accepted: 01/31/2017] [Indexed: 11/03/2022] Open
Abstract
This study aimed to describe a Bacillus subtilis expression system based on genetically modified B. subtilis. Abaecin, an antimicrobial peptide obtained from Apis mellifera, can enhance the effect of pore-forming peptides from other species on the inhibition of bacterial growth. For the exogenous expression, the abaecin gene was fused with a tobacco etch virus protease cleavage site, a promoter Pglv, and a mature beta-glucanase signal peptide. Also, a B. subtilis expression system was constructed. The recombinant abaecin gene was expressed and purified as a recombinant protein in the culture supernatant. The purified abaecin did not inhibit the growth of Escherichia coli strain K88. Cecropin A and hymenoptaecin exhibited potent bactericidal activities at concentrations of 1 and 1.5μM. Combinatorial assays revealed that cecropin A and hymenoptaecin had sublethal concentrations of 0.3 and 0.5μM. This potentiating functional interaction represents a promising therapeutic strategy. It provides an opportunity to address the rising threat of multidrug-resistant pathogens that are recalcitrant to conventional antibiotics.
Collapse
Affiliation(s)
- Li Li
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| | - Lan Mu
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xiaojuan Wang
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Jingfeng Yu
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Ruiping Hu
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| | - Zhen Li
- College of Horticulture, China Agricultural University, Haidian District, Beijing, China
| |
Collapse
|
19
|
Gifre L, Arís A, Bach À, Garcia-Fruitós E. Trends in recombinant protein use in animal production. Microb Cell Fact 2017; 16:40. [PMID: 28259156 PMCID: PMC5336677 DOI: 10.1186/s12934-017-0654-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 02/26/2017] [Indexed: 02/06/2023] Open
Abstract
Recombinant technologies have made possible the production of a broad catalogue of proteins of interest, including those used for animal production. The most widely studied proteins for the animal sector are those with an important role in reproduction, feed efficiency, and health. Nowadays, mammalian cells and fungi are the preferred choice for recombinant production of hormones for reproductive purposes and fibrolytic enzymes to enhance animal performance, respectively. However, the development of low-cost products is a priority, particularly in livestock. The study of cell factories such as yeast and bacteria has notably increased in the last decades to make the new developed reproductive hormones and fibrolytic enzymes a real alternative to the marketed ones. Important efforts have also been invested to developing new recombinant strategies for prevention and therapy, including passive immunization and modulation of the immune system. This offers the possibility to reduce the use of antibiotics by controlling physiological processes and improve the efficacy of preventing infections. Thus, nowadays different recombinant fibrolytic enzymes, hormones, and therapeutic molecules with optimized properties have been successfully produced through cost-effective processes using microbial cell factories. However, despite the important achievements for reducing protein production expenses, alternative strategies to further reduce these costs are still required. In this context, it is necessary to make a giant leap towards the use of novel strategies, such as nanotechnology, that combined with recombinant technology would make recombinant molecules affordable for animal industry.
Collapse
Affiliation(s)
- Laia Gifre
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140 Caldes de Montbui, Spain
| | - Anna Arís
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140 Caldes de Montbui, Spain
| | - Àlex Bach
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140 Caldes de Montbui, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140 Caldes de Montbui, Spain
| |
Collapse
|
20
|
Wang G, Wu J, Yan R, Lin J, Ye X. A Novel Multi-domain High Molecular, Salt-Stable Alkaline Xylanase from Alkalibacterium sp. SL3. Front Microbiol 2017; 7:2120. [PMID: 28101084 PMCID: PMC5209378 DOI: 10.3389/fmicb.2016.02120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/15/2016] [Indexed: 11/13/2022] Open
Abstract
A novel multi-domain high molecular xylanase coding gene (xynSL3) was cloned from Alkalibacterium sp. SL3, an alkaliphilic bacterial strain isolated from the sediment of soda lake Dabusu. The deduced XynSL3 is composed of a putative signal peptide, three tandem domains of carbohydrate binding module (CBM) family 22, a catalytic domain of glycosyl hydrolase (GH) family 10 and a domain of CBM9. XynSL3 shares the highest identity of 66% to a hypothetical protein from Alkalibacterium sp. AK22 and has low identities (33-45%) with other functionally characterized xylanases. The gene xynSL3 was expressed heterologously in Escherichia coli and the recombinant enzyme demonstrated some particular characteristics. Purified recombinant XynSL3 (rXynSL3) was highly active and stable over the neutral and alkaline pH ranges from 7.0 to 12.0, with maximum activity at pH 9.0 and around 45% activity at pH 12.0. It had an apparent temperature optimum of 55°C and was stable at 50°C. The rXynSL3 was highly halotolerant, retaining more than 60% activity with 3 M NaCl and was stable at up to a 4 M concentration of NaCl. The hydrolysis products of rXynSL3 from corncob xylan were mainly xylobiose and xylotetraose. The activity of rXynSL3 was enhanced by Ca2+ and it has strong resistance to sodium dodecyl sulfate (SDS). This multi-domain, alkaline and salt-tolerant enzyme has great potential for basic research and industrial applications such as the biobleaching of paper pulp and production of xylo-oligosaccharides (XOS).
Collapse
Affiliation(s)
- Guozeng Wang
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFuzhou, China; College of Biological Science and Technology, Fuzhou UniversityFuzhou, China
| | - Jingjing Wu
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFuzhou, China; College of Biological Science and Technology, Fuzhou UniversityFuzhou, China
| | - Renxiang Yan
- College of Biological Science and Technology, Fuzhou University Fuzhou, China
| | - Juan Lin
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFuzhou, China; College of Biological Science and Technology, Fuzhou UniversityFuzhou, China
| | - Xiuyun Ye
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFuzhou, China; College of Biological Science and Technology, Fuzhou UniversityFuzhou, China
| |
Collapse
|
21
|
Conway JM, Pierce WS, Le JH, Harper GW, Wright JH, Tucker AL, Zurawski JV, Lee LL, Blumer-Schuette SE, Kelly RM. Multidomain, Surface Layer-associated Glycoside Hydrolases Contribute to Plant Polysaccharide Degradation by Caldicellulosiruptor Species. J Biol Chem 2016; 291:6732-47. [PMID: 26814128 DOI: 10.1074/jbc.m115.707810] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Indexed: 01/08/2023] Open
Abstract
The genome of the extremely thermophilic bacterium Caldicellulosiruptor kronotskyensisencodes 19 surface layer (S-layer) homology (SLH) domain-containing proteins, the most in any Caldicellulosiruptorspecies genome sequenced to date. These SLH proteins include five glycoside hydrolases (GHs) and one polysaccharide lyase, the genes for which were transcribed at high levels during growth on plant biomass. The largest GH identified so far in this genus, Calkro_0111 (2,435 amino acids), is completely unique toC. kronotskyensisand contains SLH domains. Calkro_0111 was produced recombinantly inEscherichia colias two pieces, containing the GH16 and GH55 domains, respectively, as well as putative binding and spacer domains. These displayed endo- and exoglucanase activity on the β-1,3-1,6-glucan laminarin. A series of additional truncation mutants of Calkro_0111 revealed the essential architectural features required for catalytic function. Calkro_0402, another of the SLH domain GHs inC. kronotskyensis, when produced inE. coli, was active on a variety of xylans and β-glucans. Unlike Calkro_0111, Calkro_0402 is highly conserved in the genus Caldicellulosiruptorand among other biomass-degrading Firmicutes but missing from Caldicellulosiruptor bescii As such, the gene encoding Calkro_0402 was inserted into the C. besciigenome, creating a mutant strain with its S-layer extensively decorated with Calkro_0402. This strain consequently degraded xylans more extensively than wild-typeC. bescii The results here provide new insights into the architecture and role of SLH domain GHs and demonstrate that hemicellulose degradation can be enhanced through non-native SLH domain GHs engineered into the genomes of Caldicellulosiruptorspecies.
Collapse
Affiliation(s)
- Jonathan M Conway
- From the Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695
| | - William S Pierce
- From the Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695
| | - Jaycee H Le
- From the Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695
| | - George W Harper
- From the Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695
| | - John H Wright
- From the Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695
| | - Allyson L Tucker
- From the Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695
| | - Jeffrey V Zurawski
- From the Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695
| | - Laura L Lee
- From the Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695
| | - Sara E Blumer-Schuette
- From the Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695
| | - Robert M Kelly
- From the Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|