1
|
Gupta SK, Santisree P, Gupta P, Kilambi HV, Sreelakshmi Y, Sharma R. A tomato ethylene-resistant mutant displays altered growth and higher β-carotene levels in fruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109373. [PMID: 39644684 DOI: 10.1016/j.plaphy.2024.109373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
The mutants resistant to ethylene are helpful in deciphering the role of ethylene in plant development. We isolated an ethylene-resistant tomato (Solanum lycopersicum) mutant by screening for acetylene-resistant (atr-1) seedlings. The atr-1 mutant displayed resistance to kinetin, suggesting attenuation of the ethylene sensing response. atr-1 also exhibited resistance to ABA- and glucose-mediated inhibition of seed germination. Unlike the Never-ripe (Nr) mutant seedlings that were hypersensitive to glucose, atr-1 seedlings were resistant to glucose, indicating ethylene sensing in atr-1 is compromised in a manner distinct from Nr. Metabolically, atr-1 seedlings had lower levels of amino acids but higher levels of several phytohormones, including ABA. atr-1 plants grew faster and produced more flowers, leading to a higher fruit set. However, the atr-1 fruits took a longer duration to reach the red-ripe (RR) stage. The ripened atr-1 fruits retained high β-carotene and lycopene levels post-RR stage and had longer on-vine longevity. The metabolome profiles of post-RR stage atr-1 fruits revealed increased levels of sugars. The atr-1 had a P279L mutation in the GAF domain of the ETR4, a key ethylene receptor regulating tomato ripening. The atr-1 exhibits phenotypic traits distinct from the Sletr4-1 (G154S) mutant, thus represents a new ETR4 allele named Sletr4-2. Our study highlights that novel alleles in ethylene receptors may aid in enhancing the nutritional quality of tomato.
Collapse
Affiliation(s)
- Suresh Kumar Gupta
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India.
| | - Parankusam Santisree
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India.
| | - Prateek Gupta
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India; Department of Biological Sciences, SRM University-AP, Neerukonda, Andhra Pradesh, 522240, India.
| | - Himabindu Vasuki Kilambi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India.
| | - Yellamaraju Sreelakshmi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India.
| | - Rameshwar Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
2
|
Chen D, Liu Y, Chen Y, Li B, Chen T, Tian S. Functions of membrane proteins in regulating fruit ripening and stress responses of horticultural crops. MOLECULAR HORTICULTURE 2024; 4:35. [PMID: 39313804 PMCID: PMC11421178 DOI: 10.1186/s43897-024-00111-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/16/2024] [Indexed: 09/25/2024]
Abstract
Fruit ripening is accompanied by the development of fruit quality traits; however, this process also increases the fruit's susceptibility to various environmental stresses, including pathogen attacks and other stress factors. Therefore, modulating the fruit ripening process and defense responses is crucial for maintaining fruit quality and extending shelf life. Membrane proteins play intricate roles in mediating signal transduction, ion transport, and many other important biological processes, thus attracting extensive research interest. This review mainly focuses on the functions of membrane proteins in regulating fruit ripening and defense responses against biotic and abiotic factors, addresses their potential as targets for improving fruit quality and resistance to environmental challenges, and further highlights some open questions to be addressed.
Collapse
Affiliation(s)
- Daoguo Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhan Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Boqiang Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Tong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| | - Shiping Tian
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Posadinu CM, Rodriguez M, Conte P, Piga A, Attene G. Fruit quality and shelf-life of Sardinian tomato (Solanum lycopersicum L.) landraces. PLoS One 2023; 18:e0290166. [PMID: 38064465 PMCID: PMC10707699 DOI: 10.1371/journal.pone.0290166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/02/2023] [Indexed: 12/18/2023] Open
Abstract
The conservation and characterization of landraces have key roles in the safeguarding and valorization of agrobiodiversity. Indeed, these plant genetic resources represent an important crop heritage with quality and sensory characteristics that can be of great use to consumers and industry. In addition, the preservation of genetic resources from the risk of progressive genetic erosion, and the enhancement of their potential can contribute to food security and improve the nutritional value of food. Accordingly, this study aimed to investigate a collection of Sardinian tomato landraces for parameters that have determinant roles in evaluating their responses to conservation, and therefore to consumer acceptance. Six Sardinian landraces and two commercial varieties were cultivated in a two-years off-season trial, harvested at two different maturity stages (turning, red-ripe) and characterized using 14 fruit-related quality parameters that define the marketability, nutritional value, and flavor of the fruit. Data were collected at intervals of 10 days, starting from the harvest date and over 30 days of storage under refrigeration. The simultaneous analysis of all the qualitative characteristics for the different genotypes allowed to clearly differentiate the local varieties from the commercial varieties and a few landraces emerged for their satisfactory performances, e.g. "Tamatta kaki" ad "Tamatta groga de appiccai". In particular, the "Tamatta groga de appiccai" showed satisfactory lycopene content at marketable stages (average 5.65 mg 100g-1 FF), a peculiar orange-pink color with the highest hue angle values (range: H°T0 = 72.55-H°T30 = 48.26), and the highest firmness among the landraces of the red-ripe group (range: EpT0 = 1.64-EpT30 = 0.54 N mm-1). These results highlight the potential of some of the Sardinian tomato landraces for developing new varieties or promoting their direct valorization in local markets and could considerably increase the effectiveness and efficiency of agrobiodiversity conservation strategies.
Collapse
Affiliation(s)
| | - Monica Rodriguez
- Department of Agriculture, University of Sassari, Sassari, Italy
- Centro Interdipartimentale per la Conservazione e Valorizzazione della Biodiversità Vegetale, University of Sassari, Alghero, Italy
| | - Paola Conte
- Department of Agriculture, University of Sassari, Sassari, Italy
| | - Antonio Piga
- Department of Agriculture, University of Sassari, Sassari, Italy
| | - Giovanna Attene
- Department of Agriculture, University of Sassari, Sassari, Italy
- Centro Interdipartimentale per la Conservazione e Valorizzazione della Biodiversità Vegetale, University of Sassari, Alghero, Italy
| |
Collapse
|
4
|
Szurman-Zubrzycka M, Kurowska M, Till BJ, Szarejko I. Is it the end of TILLING era in plant science? FRONTIERS IN PLANT SCIENCE 2023; 14:1160695. [PMID: 37674734 PMCID: PMC10477672 DOI: 10.3389/fpls.2023.1160695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/19/2023] [Indexed: 09/08/2023]
Abstract
Since its introduction in 2000, the TILLING strategy has been widely used in plant research to create novel genetic diversity. TILLING is based on chemical or physical mutagenesis followed by the rapid identification of mutations within genes of interest. TILLING mutants may be used for functional analysis of genes and being nontransgenic, they may be directly used in pre-breeding programs. Nevertheless, classical mutagenesis is a random process, giving rise to mutations all over the genome. Therefore TILLING mutants carry background mutations, some of which may affect the phenotype and should be eliminated, which is often time-consuming. Recently, new strategies of targeted genome editing, including CRISPR/Cas9-based methods, have been developed and optimized for many plant species. These methods precisely target only genes of interest and produce very few off-targets. Thus, the question arises: is it the end of TILLING era in plant studies? In this review, we recap the basics of the TILLING strategy, summarize the current status of plant TILLING research and present recent TILLING achievements. Based on these reports, we conclude that TILLING still plays an important role in plant research as a valuable tool for generating genetic variation for genomics and breeding projects.
Collapse
Affiliation(s)
- Miriam Szurman-Zubrzycka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Marzena Kurowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Bradley J. Till
- Veterinary Genetics Laboratory, University of California, Davis, Davis, United States
| | - Iwona Szarejko
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
5
|
Mubarok S, Qonit MAH, Rahmat BPN, Budiarto R, Suminar E, Nuraini A. An overview of ethylene insensitive tomato mutants: Advantages and disadvantages for postharvest fruit shelf-life and future perspective. FRONTIERS IN PLANT SCIENCE 2023; 14:1079052. [PMID: 36778710 PMCID: PMC9911886 DOI: 10.3389/fpls.2023.1079052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
The presence of ethylene during postharvest handling of tomatoes can be the main problem in maintaining fruit shelf-life by accelerating the ripening process and causing several quality changes in fruit. Several researchers have studied the methods for improving the postharvest life of tomato fruit by controlling ethylene response, such as by mutation. New ethylene receptor mutants have been identified, namely Sletr1-1, Sletr1-2, Nr (Never ripe), Sletr4-1, and Sletr5-1. This review identifies the favorable and undesirable effects of several ethylene receptor mutants. Also, the impact of those mutations on the metabolite alteration of tomatoes and the future perspectives of those ethylene receptor mutants. The review data is taken from the primary data of our experiment related to ethylene receptor mutants and the secondary data from numerous publications in Google Scholar and other sources pertaining to ethylene physiology. This review concluded that mutation in the SlETR1 gene was more effective than mutation in NR, SLETR4, and SLETR5 genes in generating a new ethylene mutant. Sletr1-2 mutant is a potential ethylene receptor mutant for developing new tomato cultivars with prolonged fruit-shelf life without any undesirable effect. Therefore, that has many challenges to using the Sletr1-2 mutant for future purposes in breeding programs.
Collapse
Affiliation(s)
- Syariful Mubarok
- Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Sumedang, Indonesia
| | - Muhammad Abdilah Hasan Qonit
- Master Program of Agro-Industry Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| | - Bayu Pradana Nur Rahmat
- Master Program of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Sumedang, Indonesia
| | - Rahmat Budiarto
- Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Sumedang, Indonesia
| | - Erni Suminar
- Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Sumedang, Indonesia
| | - Anne Nuraini
- Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
6
|
Mubarok S, Maulida Rahman I, Nuraniya Kamaluddin N, Solihin E. Impact of 1-Methylcyclopropene combined with chitosan on postharvest quality of tropical banana ‘Lady Finger’. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2074028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Syariful Mubarok
- Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Sumedang, Indonesia
| | - Ikrima Maulida Rahman
- Undergraduate Program of Agrotechnology, Faculty of Agriculture, Universitas Padjadjaran, Sumedang, Indonesia
| | | | - Eso Solihin
- Department of Soil Science, Faculty of Agriculture, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
7
|
Brisou G, Piquerez SJM, Minoia S, Marcel F, Cornille A, Carriero F, Boualem A, Bendahmane A. Induced mutations in SlE8 and SlACO1 control tomato fruit maturation and shelf-life. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6920-6932. [PMID: 34369570 DOI: 10.1093/jxb/erab330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Fruit maturation and softening are critical traits that control fruit shelf-life. In the climacteric tomato (Solanum lycopersicum L.) fruit, ethylene plays a key role in fruit ripening and softening. We characterized two related proteins with contrasting impact on ethylene production, ACC oxidase 1 (SlACO1) and SlE8. We found SlACO1 and SlE8 to be highly expressed during fruit ripening. To identify loss-of-function alleles, we analysed the tomato genetic diversity but we did not find any natural mutations impairing the function of these proteins. We also found the two loci evolving under purifying selection. To engineer hypomorphic alleles, we used TILLING (target-induced local lesions in genomes) to screen a tomato ethylmethane sulfonate-mutagenized population. We found 13 mutants that we phenotyped for ethylene production, shelf-life, firmness, conductivity, and soluble solid content in tomato fruits. The data demonstrated that slaco1-1 and slaco1-2 alleles could be used to improve fruit shelf-life, and that sle8-1 and sle8-2 alleles could be used to accelerate ripening. This study highlights further the importance of SlACO1 and SlE8 in ethylene production in tomato fruit and how they might be used for post-harvest fruit preservation or speeding up fruit maturation.
Collapse
Affiliation(s)
- Gwilherm Brisou
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Gautier Semences, Eyragues, France
| | - Sophie J M Piquerez
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Silvia Minoia
- ALSIA Research Center Metapontum Agrobios S.S. Jonica 106 Km 448.2, Metaponto, MT, Italy
| | - Fabien Marcel
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Amandine Cornille
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Gif-sur-Yvette, France
| | - Filomena Carriero
- ALSIA Research Center Metapontum Agrobios S.S. Jonica 106 Km 448.2, Metaponto, MT, Italy
| | - Adnane Boualem
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Abdelhafid Bendahmane
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| |
Collapse
|
8
|
Alaguero-Cordovilla A, Gran-Gómez FJ, Jadczak P, Mhimdi M, Ibáñez S, Bres C, Just D, Rothan C, Pérez-Pérez JM. A quick protocol for the identification and characterization of early growth mutants in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110673. [PMID: 33218638 DOI: 10.1016/j.plantsci.2020.110673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Root system architecture (RSA) manipulation may improve water and nutrient capture by plants under normal and extreme climate conditions. With the aim of initiating the genetic dissection of RSA in tomato, we established a defined ontology that allowed the curated annotation of the observed phenotypes on 12 traits at four consecutive growth stages. In addition, we established a quick approach for the molecular identification of the mutations associated with the trait-of-interest by using a whole-genome sequencing approach that does not require the building of an additional mapping population. As a proof-of-concept, we screened 4543 seedlings from 300 tomato M3 lines (Solanum lycopersicum L. cv. Micro-Tom) generated by chemical mutagenesis with ethyl methanesulfonate. We studied the growth and early development of both the root system (primary and lateral roots) and the aerial part of the seedlings as well as the wound-induced adventitious roots emerging from the hypocotyl. We identified 659 individuals (belonging to 203 M3 lines) whose early seedling and RSA phenotypes differed from those of their reference background. We confirmed the genetic segregation of the mutant phenotypes affecting primary root length, seedling viability and early RSA in 31 M4 families derived from 15 M3 lines selected in our screen. Finally, we identified a missense mutation in the SlCESA3 gene causing a seedling-lethal phenotype with short roots. Our results validated the experimental approach used for the identification of tomato mutants during early growth, which will allow the molecular identification of the genes involved.
Collapse
Affiliation(s)
| | | | - Paula Jadczak
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain.
| | - Mariem Mhimdi
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain.
| | - Sergio Ibáñez
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain.
| | - Cécile Bres
- INRAE and University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, France.
| | - Daniel Just
- INRAE and University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, France.
| | - Christophe Rothan
- INRAE and University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, France.
| | | |
Collapse
|
9
|
Abstract
Ethylene is a gaseous phytohormone and the first of this hormone class to be discovered. It is the simplest olefin gas and is biosynthesized by plants to regulate plant development, growth, and stress responses via a well-studied signaling pathway. One of the earliest reported responses to ethylene is the triple response. This response is common in eudicot seedlings grown in the dark and is characterized by reduced growth of the root and hypocotyl, an exaggerated apical hook, and a thickening of the hypocotyl. This proved a useful assay for genetic screens and enabled the identification of many components of the ethylene-signaling pathway. These components include a family of ethylene receptors in the membrane of the endoplasmic reticulum (ER); a protein kinase, called constitutive triple response 1 (CTR1); an ER-localized transmembrane protein of unknown biochemical activity, called ethylene-insensitive 2 (EIN2); and transcription factors such as EIN3, EIN3-like (EIL), and ethylene response factors (ERFs). These studies led to a linear model, according to which in the absence of ethylene, its cognate receptors signal to CTR1, which inhibits EIN2 and prevents downstream signaling. Ethylene acts as an inverse agonist by inhibiting its receptors, resulting in lower CTR1 activity, which releases EIN2 inhibition. EIN2 alters transcription and translation, leading to most ethylene responses. Although this canonical pathway is the predominant signaling cascade, alternative pathways also affect ethylene responses. This review summarizes our current understanding of ethylene signaling, including these alternative pathways, and discusses how ethylene signaling has been manipulated for agricultural and horticultural applications.
Collapse
Affiliation(s)
- Brad M Binder
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
10
|
Data on the yield and quality of organically hybrids of tropical tomato fruits at two stages of fruit maturation. Data Brief 2019; 25:104031. [PMID: 31249850 PMCID: PMC6586725 DOI: 10.1016/j.dib.2019.104031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/02/2019] [Accepted: 05/14/2019] [Indexed: 11/20/2022] Open
Abstract
Organic and traditional cultivation techniques significantly affect the yield and quality of tomato fruit. To achieve the highest possible production of hybrid lines, the appropriate cultivation system is needed. The application of different cultivation systems was expected to improve the yield and fruit quality of three new tropical hybrid tomatoes varieties that prolong fruit shelf life. This experiment was conducted to identify the effect of the different cultivation systems on the yield and fruit quality of three hybrid tomatoes from different tropical parental backgrounds (‘Mutiara’, ‘Intan’ and ‘Ratna’). Those hybrid lines were cultivated with two farming systems (organic and conventional cultivation system), and the fruit quality was analysed at two stages of fruit maturation (Breaker and Red).
Collapse
|
11
|
Mubarok S, Dahlania S, Suwali N. Dataset on the change of postharvest quality of Physalis peruviana L. as an effect of ethylene inhibitor. Data Brief 2019; 24:103849. [PMID: 30993155 PMCID: PMC6449778 DOI: 10.1016/j.dib.2019.103849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 11/23/2022] Open
Abstract
Ethylene will be a major problem in postharvest quality of fresh fruit such as Physalis peruviana L. that belongs to an important medicinal plant. This data article describes the alteration of fruit quality of P. peruviana L. during 21 days of postharvest storage as an effect of ethylene inhibitor, 1-Methylcyclopropene (1-MCP), at different concentration and duration of application. Nutritional parameters and fruit shelf life from 1-MCP treated fruit with three level concentrations (0.5, 1.0, and 2.0 μL L−1) and three level of durations application (6, 12 and 24 hours) were analyzed.
Collapse
Affiliation(s)
- Syariful Mubarok
- Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Bandung, 45363 Indonesia
| | - Salma Dahlania
- Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Bandung, 45363 Indonesia
| | - Nursuhud Suwali
- Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Bandung, 45363 Indonesia
| |
Collapse
|
12
|
Li L, Zhao W, Feng X, Chen L, Zhang L, Zhao L. Changes in Fruit Firmness, Cell Wall Composition, and Transcriptional Profile in the yellow fruit tomato 1 ( yft1) Mutant. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:463-472. [PMID: 30545217 DOI: 10.1021/acs.jafc.8b04611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fruit firmness is an important trait in tomato ( Solanum lycopersicum), associated with shelf life and economic value; however, the precise mechanism determining fruit softening remains elusive. A yellow fruit tomato 1 ( yft1) mutant harbors a genetic lesion in the YFT1 gene and has significantly firmer fruit than those of the cv. M82 wild type at a red ripe stage, 54 days post-anthesis (dpa). When softening was further dissected, it was found that the yft1 firm fruit phenotype correlated with a difference in cellulose, hemicellulose, and pectin deposition in the primary cell wall (PCW) compared to cv. M82. Alterations in the structure of the pericarp cells, chemical components, hydrolase activities, and expression of genes encoding these hydrolases were all hypothesized to be a result of the loss of YFT1 function. This was further affirmed by RNA-seq analysis, where a total of 183 differentially expressed genes (DEGs, 50/133 down-/upregulated) were identified between yft1 and cv. M82. These DEGs were mainly annotated as participating in ethylene- and auxin-related signal transduction, sugar metabolism, and photosynthesis. This study provides new insights into the mechanism underlying the control of fruit softening.
Collapse
|
13
|
Chen Y, Rofidal V, Hem S, Gil J, Nosarzewska J, Berger N, Demolombe V, Bouzayen M, Azhar BJ, Shakeel SN, Schaller GE, Binder BM, Santoni V, Chervin C. Targeted Proteomics Allows Quantification of Ethylene Receptors and Reveals SlETR3 Accumulation in Never-Ripe Tomatoes. FRONTIERS IN PLANT SCIENCE 2019; 10:1054. [PMID: 31555314 PMCID: PMC6727826 DOI: 10.3389/fpls.2019.01054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/29/2019] [Indexed: 05/04/2023]
Abstract
Ethylene regulates fruit ripening and several plant functions (germination, plant growth, plant-microbe interactions). Protein quantification of ethylene receptors (ETRs) is essential to study their functions, but is impaired by low resolution tools such as antibodies that are mostly nonspecific, or the lack of sensitivity of shotgun proteomic approaches. We developed a targeted proteomic method, to quantify low-abundance proteins such as ETRs, and coupled this to mRNAs analyses, in two tomato lines: Wild Type (WT) and Never-Ripe (NR) which is insensitive to ethylene because of a gain-of-function mutation in ETR3. We obtained mRNA and protein abundance profiles for each ETR over the fruit development period. Despite a limiting number of replicates, we propose Pearson correlations between mRNA and protein profiles as interesting indicators to discriminate the two genotypes: such correlations are mostly positive in the WT and are affected by the NR mutation. The influence of putative post-transcriptional and post-translational changes are discussed. In NR fruits, the observed accumulation of the mutated ETR3 protein between ripening stages (Mature Green and Breaker + 8 days) may be a cause of NR tomatoes to stay orange. The label-free quantitative proteomics analysis of membrane proteins, concomitant to Parallel Reaction Monitoring analysis, may be a resource to study changes over tomato fruit development. These results could lead to studies about ETR subfunctions and interconnections over fruit development. Variations of RNA-protein correlations may open new fields of research in ETR regulation. Finally, similar approaches may be developed to study ETRs in whole plant development and plant-microorganism interactions.
Collapse
Affiliation(s)
- Yi Chen
- GBF, Université de Toulouse, INRA, Toulouse, France
| | - Valérie Rofidal
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Sonia Hem
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Julie Gil
- GBF, Université de Toulouse, INRA, Toulouse, France
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | - Nathalie Berger
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Vincent Demolombe
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | - Beenish J. Azhar
- Department of Biochemistry, Quaid-i-azam University, Islamabad, Pakistan
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
| | - Samina N. Shakeel
- Department of Biochemistry, Quaid-i-azam University, Islamabad, Pakistan
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
| | - G. Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
| | - Brad M. Binder
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Véronique Santoni
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- *Correspondence: Véronique Santoni, ; Christian Chervin,
| | - Christian Chervin
- GBF, Université de Toulouse, INRA, Toulouse, France
- *Correspondence: Véronique Santoni, ; Christian Chervin,
| |
Collapse
|
14
|
Mubarok S, Hoshikawa K, Okabe Y, Yano R, Tri MD, Ariizumi T, Ezura H. Evidence of the functional role of the ethylene receptor genes SlETR4 and SlETR5 in ethylene signal transduction in tomato. Mol Genet Genomics 2018; 294:301-313. [PMID: 30382349 DOI: 10.1007/s00438-018-1505-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 10/21/2018] [Indexed: 12/24/2022]
Abstract
Ethylene receptors are key factors for ethylene signal transduction. In tomato, six ethylene receptor genes (SlETR1-SlETR6) have been identified. Mutations in different ethylene receptor genes result in different phenotypes that are useful for elucidating the roles of each gene. In this study, we screened mutants of two ethylene receptor genes, SLETR4 and SLETR5, from a Micro-Tom mutant library generated by TILLING. We identified two ethylene receptor mutants with altered phenotypes and named them Sletr4-1 and Sletr5-1. Sletr4-1 has a mutation between the transmembrane and GAF domains, while Sletr5-1 has a mutation within the GAF domain. Sletr4-1 showed increased hypocotyl and root lengths, compared to those of wild type plants, under ethylene exposure. Moreover, the fruit shelf life of this mutant was extended, titratable acidity was increased and total soluble solids were decreased, suggesting a reduced ethylene sensitivity. In contrast, in the absence of exogenous ethylene, the hypocotyl and root lengths of Sletr5-1 were shorter than those of the wild type, and the fruit shelf life was shorter, suggesting that these mutants have increased ethylene sensitivity. Gene expression analysis showed that SlNR was up-regulated in the Sletr5-1 mutant line, in contrast to the down-regulation observed in the Sletr4-1 mutant line, while the down-regulation of SlCTR1, SlEIN2, SlEIL1, SlEIL3, and SlERF.E4 was observed in Sletr4-1 mutant allele, suggesting that these two ethylene receptors have functional roles in ethylene signalling and demonstrating, for the first time, a function of the GAF domain of ethylene receptors. These results suggest that the Sletr4-1 and Sletr5-1 mutants are useful for elucidating the complex mechanisms of ethylene signalling through the analysis of ethylene receptors in tomato.
Collapse
Affiliation(s)
- Syariful Mubarok
- Department of Agronomy, Faculty of Agriculture, Padjadjaran University, Bandung, 45363, Indonesia.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Ken Hoshikawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan.,Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Yoshihiro Okabe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan.,Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Ryoichi Yano
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | | | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan.,Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan. .,Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, 305-8572, Japan.
| |
Collapse
|
15
|
Takayama M, Matsukura C, Ariizumi T, Ezura H. Activating glutamate decarboxylase activity by removing the autoinhibitory domain leads to hyper γ-aminobutyric acid (GABA) accumulation in tomato fruit. PLANT CELL REPORTS 2017; 36:103-116. [PMID: 27704232 DOI: 10.1007/s00299-016-2061-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/26/2016] [Indexed: 05/05/2023]
Abstract
The C-terminal extension region of SlGAD3 is likely involved in autoinhibition, and removing this domain increases GABA levels in tomato fruits. γ-Aminobutyric acid (GABA) is a ubiquitous non-protein amino acid with several health-promoting benefits. In many plants including tomato, GABA is synthesized via decarboxylation of glutamate in a reaction catalyzed by glutamate decarboxylase (GAD), which generally contains a C-terminal autoinhibitory domain. We previously generated transgenic tomato plants in which tomato GAD3 (SlGAD3) was expressed using the 35S promoter/NOS terminator expression cassette (35S-SlGAD3-NOS), yielding a four- to fivefold increase in GABA levels in red-ripe fruits compared to the control. In this study, to further increase GABA accumulation in tomato fruits, we expressed SlGAD3 with (SlGAD3 OX ) or without (SlGAD3ΔC OX ) a putative autoinhibitory domain in tomato using the fruit ripening-specific E8 promoter and the Arabidopsis heat shock protein 18.2 (HSP) terminator. Although the GABA levels in SlGAD3 OX fruits were equivalent to those in 35S-SlGAD3-NOS fruits, GABA levels in SlGAD3ΔC OX fruits increased by 11- to 18-fold compared to control plants, indicating that removing the autoinhibitory domain increases GABA biosynthesis activity. Furthermore, the increased GABA levels were accompanied by a drastic reduction in glutamate and aspartate levels, indicating that enhanced GABA biosynthesis affects amino acid metabolism in ripe-fruits. Moreover, SlGAD3ΔC OX fruits exhibited an orange-ripe phenotype, which was associated with reduced levels of both carotenoid and mRNA transcripts of ethylene-responsive carotenogenic genes, suggesting that over activation of GAD influences ethylene sensitivity. Our strategy utilizing the E8 promoter and HSP terminator expression cassette, together with SlGAD3 C-terminal deletion, would facilitate the production of tomato fruits with increased GABA levels.
Collapse
Affiliation(s)
- Mariko Takayama
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Chiaki Matsukura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
16
|
Shikata M, Hoshikawa K, Ariizumi T, Fukuda N, Yamazaki Y, Ezura H. TOMATOMA Update: Phenotypic and Metabolite Information in the Micro-Tom Mutant Resource. PLANT & CELL PHYSIOLOGY 2016; 57:e11. [PMID: 26719120 DOI: 10.1093/pcp/pcv194] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/23/2015] [Indexed: 05/19/2023]
Abstract
TOMATOMA (http://tomatoma.nbrp.jp/) is a tomato mutant database providing visible phenotypic data of tomato mutant lines generated by ethylmethane sulfonate (EMS) treatment or γ-ray irradiation in the genetic background of Micro-Tom, a small and rapidly growing variety. To increase mutation efficiency further, mutagenized M3 seeds were subjected to a second round of EMS treatment; M3M1 populations were generated. These plants were self-pollinated, and 4,952 lines of M3M2 mutagenized seeds were generated. We checked for visible phenotypes in the M3M2 plants, and 618 mutant lines with 1,194 phenotypic categories were identified. In addition to the phenotypic information, we investigated Brix values and carotenoid contents in the fruits of individual mutants. Of 466 samples from 171 mutant lines, Brix values and carotenoid contents were between 3.2% and 11.6% and 6.9 and 37.3 µg g(-1) FW, respectively. This metabolite information concerning the mutant fruits would be useful in breeding programs as well as for the elucidation of metabolic regulation. Researchers are able to browse and search this phenotypic and metabolite information and order seeds of individual mutants via TOMATOMA. Our new Micro-Tom double-mutagenized populations and the metabolic information could provide a valuable genetic toolkit to accelerate tomato research and potential breeding programs.
Collapse
Affiliation(s)
- Masahito Shikata
- Gene Research Center, Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572 Japan
| | - Ken Hoshikawa
- Gene Research Center, Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572 Japan
| | - Tohru Ariizumi
- Gene Research Center, Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572 Japan
| | - Naoya Fukuda
- Agricultural and Forestry Research Center, Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | | | - Hiroshi Ezura
- Gene Research Center, Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572 Japan
| |
Collapse
|