1
|
Tlhapi D, Ramaite I, Anokwuru C, van Ree T, Madala N, Hoppe H. Effects of seasonal variation on phytochemicals contributing to the antimalarial and antitrypanosomal activities of Breonadia salicina using a metabolomic approach. Heliyon 2024; 10:e24068. [PMID: 38298618 PMCID: PMC10827688 DOI: 10.1016/j.heliyon.2024.e24068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/17/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
This study involves the investigation of various plant parts of Breonadia salicina (Vahl) Hepper and J.R.I. Wood across multiple consecutive seasons. It aims to delve into the phytochemistry of these different plant parts and establish connections between the findings and their biological activities. This comprehensive approach employs metabolomics techniques, with the ultimate goal of exploring the potential for drug development. Samples were collected in Fondwe, a village in Limpopo (South Africa), based on local reports of the efficacy of this plant used by traditional healers in the area. The antimalarial and antitrypanosomal activities of samples collected over the seasons were determined with the parasite lactate dehydrogenase (pLDH) and specific Trypanosoma brucei assays, respectively. Consequently, a total of 24 compounds were tentatively identified through ultra-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). Chemical profiles of the different plant parts of Breonadia salicina collected in different seasons produced contrasting metabolic profiles. Chemometric analysis of the UPLC-QTOF-MS data enabled us to determine the chemical variability of the crude stem bark, root and leaf extracts (n = 48) collected over four consecutive seasons by evaluating the metabolomics fingerprinting of the samples using an untargeted approach. Principal component analysis (PCA), hierarchical cluster analysis (HCA), and partial least squares discriminant analysis (PLS-DA) indicated the existence of two key clusters that are linked to the root, stem bark, and leaves. The stem and root chemistry differed from that of the leaves. Seasonal variations were noted in each plant part, with autumn and winter samples closely grouped compared to spring and summer samples in the methanol leaf extracts. Biochemometric analysis could not relate specific compounds to the antimalarial and antitrypanosomal activities of the active extracts, underscoring the intricate interactions among the secondary metabolites. This study further confirms the optimal plant parts to collect in each season for the most effective antimalarial and antitrypanosomal activities.
Collapse
Affiliation(s)
- Dorcas Tlhapi
- Department of Chemistry, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Isaiah Ramaite
- Department of Chemistry, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Chinedu Anokwuru
- Department of Basic Sciences, School of Science and Technology, Babcock University, Nigeria
| | - Teunis van Ree
- Department of Chemistry, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Ntakadzeni Madala
- Department of Biochemistry, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Heinrich Hoppe
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| |
Collapse
|
2
|
Kim NY, Won KJ, Kim DY, Lee DK, Kim YY, Lee HM. Lespedeza maximowiczii flower absolute promotes skin epithelization, barrier properties, and moisturization-related beneficial responses in human keratinocytes. Heliyon 2024; 10:e24434. [PMID: 38293355 PMCID: PMC10826324 DOI: 10.1016/j.heliyon.2024.e24434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
Lespedeza maximowiczii (LM), a member of the legume family, has tyrosinase inhibitory and estrogenic activities. However, its effects on skin-related biological activities remain unclear. Therefore, the present study aimed to explore the effects of LM flower absolute (LMFAb) on skin-related biological events, especially skin re-epithelization, barrier and moisturizing-related keratinocyte (HaCaT cell) responses. In this study, LMFAb was isolated from LM flowers via solvent extraction and its chemical composition analysis was performed using gas chromatography/mass spectrometry. 5-bromo-2'-deoxyuridine incorporation, Boyden chamber, sprout outgrowth, enzyme-linked immunosorbent, and Western blot assay were used to analyze the biological effects of LMFAb on HaCaT cells (a human epidermal keratinocyte cell line). Twelve components were identified in LMFAb. LMFAb promoted cell proliferation, migration, and sprout outgrowth in HaCaT cells. The absolute enhanced the activations of MAPKs (ERK1/2, JNK, and p38), PI3K and AKT proteins in HaCaT cells and elevated collagen type I and IV levels in HaCaT cell conditioned medium. In addition, LMFAb induced an increase in the expression levels of epidermal barrier proteins (filaggrin and involucrin) in HaCaT cells. Furthermore, LMFAb increased hyaluronan (HA) production and expression of HA synthases (HAS-1, HAS-2, and HAS-3) but decreased HYBID (HA binding protein involved in HA depolymerization) level in HaCaT cells. These findings demonstrate that LMFAb might promote skin re-epithelization, barrier and moisturizing-related beneficial responses in keratinocytes. This study suggests that LMFAb should be considered a potential starting material for the development of cosmetic or pharmaceutical agents that restore the functions of damaged skin.
Collapse
Affiliation(s)
- Nan Young Kim
- Division of Cosmetic and Biotechnology, College of Life and Health Sciences, Hoseo University, Asan, 31499, Republic of Korea
| | - Kyung Jong Won
- Department of Physiology and Medical Science, College of Medicine, Konkuk University, Chungju, 27478, Republic of Korea
| | - Do Yoon Kim
- Division of Cosmetic and Biotechnology, College of Life and Health Sciences, Hoseo University, Asan, 31499, Republic of Korea
- Korea Essential Oil Resource Research Institute, Hoseo University, Asan, 31499, Republic of Korea
| | - Da Kyoung Lee
- Division of Cosmetic and Biotechnology, College of Life and Health Sciences, Hoseo University, Asan, 31499, Republic of Korea
| | - Yoon Yi Kim
- Division of Cosmetic and Biotechnology, College of Life and Health Sciences, Hoseo University, Asan, 31499, Republic of Korea
| | - Hwan Myung Lee
- Division of Cosmetic and Biotechnology, College of Life and Health Sciences, Hoseo University, Asan, 31499, Republic of Korea
- Korea Essential Oil Resource Research Institute, Hoseo University, Asan, 31499, Republic of Korea
| |
Collapse
|
3
|
Zhang Y, Yang L, Yang J, Hu H, Wei G, Cui J, Xu J. Transcriptome and Metabolome Analyses Reveal Differences in Terpenoid and Flavonoid Biosynthesis in Cryptomeria fortunei Needles Across Different Seasons. FRONTIERS IN PLANT SCIENCE 2022; 13:862746. [PMID: 35937363 PMCID: PMC9355645 DOI: 10.3389/fpls.2022.862746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Cryptomeria fortunei (Chinese cedar) has outstanding medicinal value due to its abundant flavonoid and terpenoid contents. The metabolite contents of C. fortunei needles differ across different seasons. However, the biosynthetic mechanism of these differentially synthesized metabolites (DSMs) is poorly understood. To improve our understanding of this process, we performed integrated non-targeted metabolomic liquid chromatography and gas chromatography mass spectrometry (LC-MS and GC-MS), and transcriptomic analyses of summer and winter needles. In winter, the C. fortunei needle ultrastructure was damaged, and the chlorophyll content and F v/F m were significantly (p < 0.05) reduced. Based on GC-MS and LC-MS, we obtained 106 and 413 DSMs, respectively; based on transcriptome analysis, we obtained a total of 41.17 Gb of clean data and assembled 33,063 unigenes, including 14,057 differentially expressed unigenes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that these DSMs/DEGs were significantly (p < 0.05) enriched in many biosynthesis pathways, such as terpenoids, photosynthates, and flavonoids. Integrated transcriptomic and metabonomic analyses showed that seasonal changes have the greatest impact on photosynthesis pathways, followed by terpenoid and flavonoid biosynthesis pathways. In summer Chinese cedar (SCC) needles, DXS, DXR, and ispH in the 2-methyl-pentaerythritol 4-phosphate (MEP) pathway and GGPS were highly expressed and promoted the accumulation of terpenoids, especially diterpenoids. In winter Chinese cedar (WCC) needles, 9 genes (HCT, CHS, CHI, F3H, F3'H, F3'5'H, FLS, DFR, and LAR) involved in flavonoid biosynthesis were highly expressed and promoted flavonoid accumulation. This study broadens our understanding of the metabolic and transcriptomic changes in C. fortunei needles caused by seasonal changes and provides a reference regarding the adaptive mechanisms of C. fortunei and the extraction of its metabolites.
Collapse
|
4
|
Perng W, Aslibekyan S. Find the Needle in the Haystack, Then Find It Again: Replication and Validation in the 'Omics Era. Metabolites 2020; 10:metabo10070286. [PMID: 32664690 PMCID: PMC7408356 DOI: 10.3390/metabo10070286] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/01/2020] [Accepted: 07/10/2020] [Indexed: 01/25/2023] Open
Abstract
Advancements in high-throughput technologies have made it feasible to study thousands of biological pathways simultaneously for a holistic assessment of health and disease risk via ‘omics platforms. A major challenge in ‘omics research revolves around the reproducibility of findings—a feat that hinges upon balancing false-positive associations with generalizability. Given the foundational role of reproducibility in scientific inference, replication and validation of ‘omics findings are cornerstones of this effort. In this narrative review, we define key terms relevant to replication and validation, present issues surrounding each concept with historical and contemporary examples from genomics (the most well-established and upstream ‘omics), discuss special issues and unique considerations for replication and validation in metabolomics (an emerging field and most downstream ‘omics for which best practices remain yet to be established), and make suggestions for future research leveraging multiple ‘omics datasets.
Collapse
Affiliation(s)
- Wei Perng
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
- Correspondence:
| | - Stella Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
5
|
Lee S, Oh DG, Singh D, Lee HJ, Kim GR, Lee S, Lee JS, Lee CH. Untargeted Metabolomics Toward Systematic Characterization of Antioxidant Compounds in Betulaceae Family Plant Extracts. Metabolites 2019; 9:metabo9090186. [PMID: 31527409 PMCID: PMC6780370 DOI: 10.3390/metabo9090186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/10/2019] [Accepted: 09/15/2019] [Indexed: 11/17/2022] Open
Abstract
Plant species have traditionally been revered for their unparalleled pharmacognostic applications. We outline a non-iterative multi-parallel metabolomic-cum-bioassay-guided methodology toward the functional characterization of ethanol extracts from the Betulaceae family plants (n = 10). We performed mass spectrometry (MS)-based multivariate analyses and bioassay-guided (ABTS antioxidant activity and cytoprotective effects against H2O2-induced cell damage) analyses of SPE fractions. A clearly distinct metabolomic pattern coupled with significantly higher bioactivities was observed for 40% methanol SPE eluate. Further, the 40% SPE eluate was subjected to preparative high-performance liquid chromatography (prep-HPLC) analysis, yielding 72 sub-fractions (1 min−1), with the highest antioxidant activities observed for the 15 min and 31 min sub-fractions. We simultaneously performed hyphenated-MS-based metabolite characterization of bioactive components for both the 40% methanol SPE fraction and its prep-HPLC sub-fraction (15 min and 31 min). Altogether, 19 candidate metabolites were mainly observed to contribute toward the observed bioactivities. In particular, ethyl gallate was mainly observed to affect the antioxidant activities of SPE and prep-HPLC fractions of Alnus firma extracts. We propose an integrated metabolomic-cum-bioassay-guided approach for the expeditious selection and characterization of discriminant metabolites with desired phenotypes or bioactivities.
Collapse
Affiliation(s)
- Sunmin Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Dong-Gu Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Digar Singh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Hye Jin Lee
- Department of Biological Resources Utilization, National Institute of Biological Resources, Environmental Research Complex, Incheon 22755, Korea.
| | - Ga Ryun Kim
- Department of Biological Resources Utilization, National Institute of Biological Resources, Environmental Research Complex, Incheon 22755, Korea.
| | - Sarah Lee
- Department of Biological Resources Utilization, National Institute of Biological Resources, Environmental Research Complex, Incheon 22755, Korea.
| | - Jong Seok Lee
- Department of Biological Resources Utilization, National Institute of Biological Resources, Environmental Research Complex, Incheon 22755, Korea.
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
6
|
Do MH, Lee JH, Wahedi HM, Pak C, Lee CH, Yeo EJ, Lim Y, Ha SK, Choi I, Kim SY. Lespedeza bicolor ameliorates endothelial dysfunction induced by methylglyoxal glucotoxicity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 36:26-36. [PMID: 29157823 DOI: 10.1016/j.phymed.2017.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 06/26/2017] [Accepted: 09/21/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Lespedeza species have been used as a traditional medicine to treat nephritis, azotemia, inflammation, energy depletion, diabetes, and diuresis. PURPOSE The purpose of this study is to screen the most potent Lespedeza species against methylglyoxal (MGO)-induced glucotoxicity, and to elucidate the mechanisms of action. Also, we will attempt to identify small chemical metabolites that might be responsible for such anti-glucotoxicity effects. METHODS Firstly, the protective effect of 26 different Lespedeza species against MGO-induced toxicity in human umbilical vein endothelial cells was investigated. The chemical metabolites of the most potent species (Lespedeza bicolor 1 (LB1) were identified by high pressure liquid chromatography quadrupole time-of-flight tandem mass spectrometry (HPLC-Q-TOF-MS/MS), then quantified by HPLC. The effects of LB1 on MGO-induced apoptosis were measured by annexin V-FITC staining and western blot. Inhibitory effects of LB1 on MGO-induced ROS generation, and effect of LB1 on advanced glycation end products (AGEs) inhibitor or a glycated cross-link breaker are also measured. RESULTS Among different Lespedeza species, LB1 extract was shown to reduce intracellular reactive oxidative species, exhibit anti-apoptotic effects, strongly inhibit all the mitogen-activated protein kinase signals, inhibit MGO-induced AGEs formation, and break down preformed AGEs. We tentatively identified 17 chemical constituents of LB1 by HPLC-Q-TOF-MS/MS. Among those, some components, such as genistein and quercetin, significantly reduced the AGEs formation and increased the AGEs-breaking activity, resulting in the reduction of glucotoxicity. CONCLUSION LB1 extract has shown to be effective in preventing or treating MGO-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Moon Ho Do
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Jae Hyuk Lee
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Hussain Mustatab Wahedi
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Chaeho Pak
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Eui-Ju Yeo
- Department of Biochemistry, Gachon University College of Medicine, #155 Gaetbeal-ro, Yeonsu-gu, Incheon 21999, Republic of Korea
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Sang Keun Ha
- Division of Functional Food Research, Korea Food Research Institute, Sungnam, Gyeonggi-do, Republic of Korea
| | - Inwook Choi
- Division of Functional Food Research, Korea Food Research Institute, Sungnam, Gyeonggi-do, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Science, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Medical Research Institute, Gil Medical Center, 21, Namdong-daero 774beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea.
| |
Collapse
|
7
|
Son SY, Kim NK, Lee S, Singh D, Kim GR, Lee JS, Yang HS, Yeo J, Lee S, Lee CH. Metabolite fingerprinting, pathway analyses, and bioactivity correlations for plant species belonging to the Cornaceae, Fabaceae, and Rosaceae families. PLANT CELL REPORTS 2016; 35:1917-31. [PMID: 27344340 DOI: 10.1007/s00299-016-2006-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/26/2016] [Indexed: 05/12/2023]
Abstract
A multi-parallel approach gauging the mass spectrometry-based metabolite fingerprinting coupled with bioactivity and pathway evaluations could serve as an efficacious tool for inferring plant taxonomic orders. Thirty-four species from three plant families, namely Cornaceae (7), Fabaceae (9), and Rosaceae (18) were subjected to metabolite profiling using gas chromatography-time-of-flight-mass spectrometry (GC-TOF-MS) and ultrahigh performance liquid chromatography-linear trap quadrupole-ion trap-mass spectrometry (UHPLC-LTQ-IT-MS/MS), followed by multivariate analyses to determine the metabolites characteristic of these families. The partial least squares discriminant analysis (PLS-DA) revealed the distinct clustering pattern of metabolites for each family. The pathway analysis further highlighted the relatively higher proportions of flavonols and ellagitannins in the Cornaceae family than in the other two families. Higher levels of phenolic acids and flavan-3-ols were observed among species from the Rosaceae family, while amino acids, flavones, and isoflavones were more abundant among the Fabaceae family members. The antioxidant activities of plant extracts were measured using ABTS, DPPH, and FRAP assays, and indicated that extracts from the Rosaceae family had the highest activity, followed by those from Cornaceae and Fabaceae. The correlation map analysis positively links the proportional concentration of metabolites with their relative antioxidant activities, particularly in Cornaceae and Rosaceae. This work highlights the pre-eminence of the multi-parallel approach involving metabolite profiling and bioactivity evaluations coupled with metabolic pathways as an efficient methodology for the evaluation of plant phylogenies.
Collapse
Affiliation(s)
- Su Young Son
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Na Kyung Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Sunmin Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Digar Singh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Ga Ryun Kim
- National Institute of Biological Resources, Environmental Research Complex, Inchon, 22689, Korea
| | - Jong Seok Lee
- National Institute of Biological Resources, Environmental Research Complex, Inchon, 22689, Korea
| | - Hee-Sun Yang
- National Institute of Biological Resources, Environmental Research Complex, Inchon, 22689, Korea
| | - Joohong Yeo
- National Institute of Biological Resources, Environmental Research Complex, Inchon, 22689, Korea
| | - Sarah Lee
- National Institute of Biological Resources, Environmental Research Complex, Inchon, 22689, Korea.
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Korea.
| |
Collapse
|
8
|
Morgan AMA, Jeon MN, Jeong MH, Yang SY, Kim YH. Chemical Components from the Stems ofPueraria lobataand Their Tyrosinase Inhibitory Activity. ACTA ACUST UNITED AC 2016. [DOI: 10.20307/nps.2016.22.2.111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Mi Ni Jeon
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea
| | - Min Hye Jeong
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea
| |
Collapse
|