1
|
Chhikara A, Kumari P, Dalal J, Kumari K. Protein degradation patterns as biomarkers for post-mortem interval estimation: A comprehensive review of proteomic approaches in forensic science. J Proteomics 2025; 310:105326. [PMID: 39384102 DOI: 10.1016/j.jprot.2024.105326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
The determination of post-mortem interval (PMI) is a critical process for forensic medical-legal investigations. Proteomic techniques are gaining prominence in analysing forensic biological samples. After death, studying the proteins present in human bodies could be critical in discovering important new biomarkers that can serve as reliable indicators of various factors. A literature review is conducted on estimating PMI through protein degradation analysis using PubMed, NCBI, SCOPUS, Research Gate, Science Direct, and Google Scholar. A total of 32 studies were identified and studied. It is found that the most commonly studied tissue type is the skeleton muscle (15 studies), followed by others. The kinetics of several proteins and proteases were particularly correlated with PMI. Different proteins degrade differently after death: alpha-actinin, GAPDH, and alpha-tubulin breakdown slowly, but meta-vinculin breaks down early. Tropomyosin does not change for a long time after death, up to 10 days. Certain markers had a positive correlation with PMI, meaning that their amount increased as PMI hours increased, while other markers showed a negative correlation, suggesting that their number decreased with time. The level of several biological markers, such as SERBP1, COX7B, and SOD2, changed gradually and consistently as the PMI increased. The information gathered from this analysis provides new opportunities for precise PMI measurements in legal contexts by expanding the research area's use in human skeletal tissue.
Collapse
Affiliation(s)
- Anjali Chhikara
- Department of Forensic Science, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Pallavi Kumari
- Department of Forensic Science, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Jyoti Dalal
- Department of Forensic Science, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Kiran Kumari
- Department of Forensic Science, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
2
|
Yu Y, Wei Y, Chen S, Wang Y, Huang H, Li C, Wang D, Shi W, Li J, Zhao Y. Correlation analysis of phosphorylation of myofibrillar protein and muscle quality of tilapia during storage in ice. Food Chem 2024; 451:139502. [PMID: 38701732 DOI: 10.1016/j.foodchem.2024.139502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
In this study, the correlation between protein phosphorylation and deterioration in the quality of tilapia during storage in ice was examined by assessing changes in texture, water-holding capacity (WHC), and biochemical characteristics of myofibrillar protein throughout 7 days of storage. The hardness significantly decreased from 471.50 to 252.17 g, whereas cooking and drip losses significantly increased from 26.5% to 32.6% and 2.9% to 9.1%, respectively (P < 0.05). Myofibril fragmentation increased, while myofibrillar protein sulfhydryl content and Ca2+-ATPase activity decreased from 119.33 to 89.29 μmol/g prot and 0.85 to 0.46 μmolPi/mg prot/h, respectively (P < 0.05). Correlation analysis revealed that the myofibrillar protein phosphorylation level was positively correlated with hardness and Ca2+-ATPase activity but negatively correlated with WHC. Myofibrillar protein phosphorylation affects muscle contraction by influencing the dissociation of actomyosin, thereby regulating hardness and WHC. This study provides novel insights for the establishment of quality control strategies for tilapia storage based on protein phosphorylation.
Collapse
Affiliation(s)
- Ye Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Ya Wei
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Hui Huang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Di Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jun Li
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China.
| |
Collapse
|
3
|
Overview of omics applications in elucidating the underlying mechanisms of biochemical and biological factors associated with meat safety and nutrition. J Proteomics 2023; 276:104840. [PMID: 36758853 DOI: 10.1016/j.jprot.2023.104840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023]
Abstract
Over the years, significant technological discoveries have facilitated the improvement of meat-related research. Recent studies of complex and interactive factors contributing to variations in meat safety are increasingly focused on data-driven omics approaches such as proteomics. This review highlighted omics advances in elucidating the biochemical and biological actions on meat safety. Also, the impacts of the nutritional characteristics of meat and meat products on human health are emphasized. Future perspectives should explore multi-omics and in situ investigations to elucidate the implications in microbiological studies, including nutritional and health-related assessments. Also, creating meat safety assessment and prediction models based on biomarkers of meat safety traits will help to mitigate application constraints, thereby evaluating meat quality more accurately. This could provide a scientific basis for increasing the meat industry's profitability and producing high-quality meat and meat products for consumers. SIGNIFICANCE OF THE REVIEW: This review highlighted omics advances in elucidating underlying mechanisms of biochemical and biological factors associated with meat safety. Also, the impacts of meat proteins on human health are emphasized. Future perspectives should explore multi-omics and in situ investigations to elucidate the implications in microbiological studies, including nutritional and health-related assessments. Also, creating meat safety assessment and prediction models based on biomarkers of meat safety traits will help to mitigate application constraints, thereby evaluating meat quality more accurately. This could provide a scientific basis for increasing the meat industry's profitability and producing high-quality meat and meat products for consumers.
Collapse
|
4
|
Li C, Bassey AP, Zhou G. Molecular Changes of Meat Proteins During Processing and Their Impact on Quality and Nutritional Values. Annu Rev Food Sci Technol 2023; 14:85-111. [PMID: 36972162 DOI: 10.1146/annurev-food-052720-124932] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Meats are rich in lipids and proteins, exposing them to rapid oxidative changes. Proteins are essential to the human diet, and changes in the structure and functional attributes can greatly influence the quality and nutritional value of meats. In this article, we review the molecular changes of proteins during processing, their impact on the nutritional value of fresh and processed meat, the digestibility and bioavailability of meat proteins, the risks associated with high meat intake, and the preventive strategies employed to mitigate these risks. This information provides new research directions to reduce or prevent oxidative processes that influence the quality and nutritional values of meat.
Collapse
Affiliation(s)
- Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Collaborative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China;
| | - Anthony Pius Bassey
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Collaborative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China;
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Collaborative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China;
| |
Collapse
|
5
|
Johnson LG, Zhai C, Steadham EM, Reever LM, Prusa KJ, Nair MN, Huff-Lonergan E, Lonergan SM. Distinct myofibrillar sub-proteomic profiles are associated with the instrumental texture of aged pork loin. J Anim Sci 2023; 101:skad327. [PMID: 37751382 PMCID: PMC10629443 DOI: 10.1093/jas/skad327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023] Open
Abstract
Fresh pork tenderness contributes to consumer satisfaction with the eating experience. Postmortem proteolysis of proteins within and between myofibrils has been closely linked with pork tenderness development. A clear understanding of the molecular features associated with pork tenderness development will provide additional targets and open the door to new solutions to improve and make pork tenderness development more consistent. Therefore, the objective was to utilize liquid chromatography and mass spectrometry with tandem mass tag (TMT) multiplexing to evaluate myofibrillar sub-proteome differences between pork chops of different instrumental star probe values. Pork loins (N = 120) were collected from a commercial harvest facility at 24 h postmortem. Quality and sensory attributes were evaluated at 24 h postmortem and after ~2 weeks of postmortem aging. Pork chops were grouped into 4 groups based on instrumental star probe value (group A,x¯ = 4.23 kg, 3.43 to 4.55 kg; group B,x¯ = 4.79 kg, 4.66 to 5.00 kg; group C,x¯ = 5.43 kg, 5.20 to 5.64 kg; group D,x¯ = 6.21 kg, 5.70 to 7.41 kg; n = 25 per group). Myofibrillar proteins from the samples aged ~2 wk were fractionated, washed, and solubilized in 8.3 M urea, 2 M thiourea, and 1% dithiothreitol. Proteins were digested with trypsin, labeled with 11-plex isobaric TMT reagents, and identified and quantified using a Q-Exactive Mass Spectrometer. Between groups A and D, 54 protein groups were differentially abundant (adjusted P < 0.05). Group A had a greater abundance of proteins related to the thick and thin filament and a lesser abundance of Z-line-associated proteins and metabolic enzymes than group D chops. These data highlight that distinct myofibrillar sub-proteomes are associated with pork chops of different tenderness values. Future research should evaluate changes immediately and earlier postmortem to further elucidate myofibrillar sub-proteome differences over the postmortem aging period.
Collapse
Affiliation(s)
- Logan G Johnson
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Chaoyu Zhai
- Department of Animal Science, University of Connecticut, Storrs, CT 06269-4040, USA
| | - Edward M Steadham
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Leah M Reever
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Kenneth J Prusa
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Mahesh N Nair
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Steven M Lonergan
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
6
|
Antonelo DS, Dos Santos-Donado PR, Ferreira CR, Colnago LA, Ocampos FMM, Ribeiro GH, Ventura RV, Gerrard DE, Delgado EF, Contreras-Castillo CJ, Balieiro JCC. Exploratory lipidome and metabolome profiling contributes to understanding differences in high and normal ultimate pH beef. Meat Sci 2022; 194:108978. [PMID: 36116280 DOI: 10.1016/j.meatsci.2022.108978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
The aim of this work was to compare the lipidome and metabolome profiling in the Longissimus thoracis muscle early and late postmortem from high and normal ultimate pH (pHu) beef. Lipid profiling discriminated between high and normal pHu beef based on fatty acid metabolism and mitochondrial beta-oxidation of long chain saturated fatty acids at 30 min postmortem, and phospholipid biosynthesis at 44 h postmortem. Metabolite profiling also discriminated between high and normal pHu beef, mainly through glutathione, purine, arginine and proline, and glycine, serine and threonine metabolisms at 30 min postmortem, and glycolysis, TCA cycle, glutathione, tyrosine, and pyruvate metabolisms at 44 h postmortem. Lipid and metabolite profiles showed reduced glycolysis and increased use of alternative energy metabolic processes that were central to differentiating high and normal pHu beef. Phospholipid biosynthesis modification suggested high pHu beef experienced greater oxidative stress.
Collapse
Affiliation(s)
- Daniel S Antonelo
- College of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, SP 13635-900, Brazil.
| | | | - Christina R Ferreira
- Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Luiz A Colnago
- EMBRAPA Instrumentation, Sao Carlos, SP 13560-970, Brazil
| | | | | | - Ricardo V Ventura
- College of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, SP 13635-900, Brazil
| | - David E Gerrard
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Eduardo F Delgado
- Department of Animal Science, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | | | - Julio C C Balieiro
- College of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, SP 13635-900, Brazil
| |
Collapse
|
7
|
Sheng H, Guo Y, Zhang L, Zhang J, Miao M, Tan H, Hu D, Li X, Ding X, Li G, Guo H. Proteomic Studies on the Mechanism of Myostatin Regulating Cattle Skeletal Muscle Development. Front Genet 2021; 12:752129. [PMID: 34868225 PMCID: PMC8635237 DOI: 10.3389/fgene.2021.752129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/28/2021] [Indexed: 11/25/2022] Open
Abstract
Myostatin (MSTN) is an important negative regulator of muscle growth and development. In this study, we performed comparatively the proteomics analyses of gluteus tissues from MSTN+/− Mongolian cattle (MG.MSTN+/−) and wild type Mongolian cattle (MG.WT) using a shotgun-based tandem mass tag (TMT) 6-plex labeling method to investigate the regulation mechanism of MSTN on the growth and development of bovine skeletal muscle. A total of 1,950 proteins were identified in MG.MSTN+/− and MG.WT. Compared with MG.WT cattle, a total of 320 differentially expressed proteins were identified in MG.MSTN cattle, including 245 up-regulated differentially expressed proteins and 75 down-regulated differentially expressed proteins. Bioinformatics analysis showed that knockdown of the MSTN gene increased the expression of extracellular matrix and ribosome-related proteins, induced activation of focal adhesion, PI3K-AKT, and Ribosomal pathways. The results of proteomic analysis were verified by muscle tissue Western blot test and in vitro MSTN gene knockdown test, and it was found that knockdown MSTN gene expression could promote the proliferation and myogenic differentiation of bovine skeletal muscle satellite cells (BSMSCs). At the same time, Co-Immunoprecipitation (CO-IP) assay showed that MSTN gene interacted with extracellular matrix related protein type I collagen α 1 (COL1A1), and knocking down the expression of COL1A1 could inhibit the activity of adhesion, PI3K-AKT and ribosome pathway, thus inhibit BSMSCs proliferation. These results suggest that the MSTN gene regulates focal adhesion, PI3K-AKT, and Ribosomal pathway through the COL1A1 gene. In general, this study provides new insights into the regulatory mechanism of MSTN involved in muscle growth and development.
Collapse
Affiliation(s)
- Hui Sheng
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Yiwen Guo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Linlin Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Junxing Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Manning Miao
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Haoyun Tan
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Debao Hu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Xin Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Xiangbin Ding
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Guangpeng Li
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot, China
| | - Hong Guo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
8
|
Acetylation inhibition alleviates energy metabolism in muscles of minipigs varying with the type of muscle fibers. Meat Sci 2021; 184:108699. [PMID: 34700176 DOI: 10.1016/j.meatsci.2021.108699] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/31/2021] [Accepted: 10/16/2021] [Indexed: 11/22/2022]
Abstract
In this study, we investigated whether preslaughter chemical-induced acetylation affected postmortem energy metabolism and pork quality. Thirty pigs were randomly assigned to control, acetyltransferase inhibitor (ATi) or deacetyltransferase inhibitor treatments. Serum, trapezius, longissimus lumborum, psoas major, semimembranosus and semitendinosus muscles were taken for analyses. The results indicated that ATi treatment significantly reduced the activities of lactate dehydrogenase and creatine kinase and heat shock protein 70 in serum (P < 0.05). ATi treatment increased ATP and glycogen content, but decreased lactic acid content in trapezius, psoas major and semitendinosus muscles (P < 0.05). A total of 13 acetylated proteins bands were identified and the deacetylation of creatine kinase may play a key role in slowing down the postmortem energy metabolism in ATi-treated group. In addition, ATi treatment reduced the rate of postmortem glycolysis in muscles with higher oxidative but lower glycolytic fibers. These findings provide a new insight into the underlying mechanism on muscle-specific postmortem changes of pork quality.
Collapse
|
9
|
Zeng X, Li X, Li C. Seasons affect the phosphorylation of pork sarcoplasmic proteins related to meat quality. Anim Biosci 2021; 35:96-104. [PMID: 34474534 PMCID: PMC8738932 DOI: 10.5713/ab.21.0185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/21/2021] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Sarcoplasmic proteins include proteins that play critical roles in biological processes of living organisms. How seasons influence biological processes and meat quality of postmortem muscles through the regulation of protein phosphorylation remain to be investigated. In this study, the phosphorylation of sarcoplasmic proteins in pork longissimus muscle was investigated in four seasons. METHODS Sarcoplasmic proteins were extracted from 40 pork carcasses (10 for each season) and analyzed through ProQ Diamond staining for phosphorylation labeling and Sypro Ruby staining for total protein labeling. The pH of muscle, contents of glycogen and ATP were measured at 45 min, 3 h, and 9 h postmortem and the water (P2b, P21, and P22) was measured at 3 h and 9 h. RESULTS A total of 21 bands were detected. Band 8 (heat shock cognate 71 kDa protein; heat shock 70 kDa protein 1B) had higher phosphorylation level in summer than that in other seasons at 45 min postmortem. The phosphorylation levels of 3 Bands were significantly different between fast and normal pH decline groups (p<0.05). The phosphorylation levels of 4 bands showed negative associations with immobilized water (P21) and positive association with free water (P22). CONCLUSION The phosphorylation levels of sarcoplasmic proteins involved in energy metabolism and heat stress response at early postmortem time differed depending on the seasons. These proteins include heat shock protein 70, pyruvate kinase, phosphoglucomutase-1, glucose-6-phosphate isomerase, and carbonic anhydrase 3. High temperatures in summer might result in the phosphorylation of those proteins, leading to pH decline and low water holding capacity.
Collapse
Affiliation(s)
- Xianming Zeng
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing, 210095, China.,Key Laboratory of Animal Products Processing, MOA, Nanjing, 210095, China.,Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control, Nanjing, 210095, China.,College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing, 210095, China.,Key Laboratory of Animal Products Processing, MOA, Nanjing, 210095, China.,Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control, Nanjing, 210095, China.,College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing, 210095, China.,Key Laboratory of Animal Products Processing, MOA, Nanjing, 210095, China.,Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control, Nanjing, 210095, China.,College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
10
|
Li X, Zhang D, Ren C, Bai Y, Ijaz M, Hou C, Chen L. Effects of protein posttranslational modifications on meat quality: A review. Compr Rev Food Sci Food Saf 2020; 20:289-331. [PMID: 33443799 DOI: 10.1111/1541-4337.12668] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/14/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
Meat quality plays an important role in the purchase decision of consumers, affecting producers and retailers. The formation mechanisms determining meat quality are intricate, as several endogenous and exogenous factors contribute during antemortem and postmortem periods. Abundant research has been performed on meat quality; however, unexpected variation in meat quality remains an issue in the meat industry. Protein posttranslational modifications (PTMs) regulate structures and functions of proteins in living tissues, and recent reports confirmed their importance in meat quality. The objective of this review was to provide a summary of the research on the effects of PTMs on meat quality. The effects of four common PTMs, namely, protein phosphorylation, acetylation, S-nitrosylation, and ubiquitination, on meat quality were discussed, with emphasis on the effects of protein phosphorylation on meat tenderness, color, and water holding capacity. The mechanisms and factors that may affect the function of protein phosphorylation are also discussed. The current research confirms that meat quality traits are regulated by multiple PTMs. Cross talk between different PTMs and interactions of PTMs with postmortem biochemical processes need to be explored to improve our understanding on factors affecting meat quality.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dequan Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chi Ren
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuqiang Bai
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muawuz Ijaz
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengli Hou
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Chen
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Zou B, Zhao D, He G, Nian Y, Da D, Yan J, Li C. Acetylation and Phosphorylation of Proteins Affect Energy Metabolism and Pork Quality. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7259-7268. [PMID: 32543862 DOI: 10.1021/acs.jafc.0c01822] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Preslaughter handling has been shown to significantly affect meat quality, but the mechanisms are not fully understood. In this study, we investigated protein phosphorylation and acetylation in pig muscles at early postmortem time and their associations with meat quality attributes. Thirty pigs were randomly assigned to traditional (TH, n = 15) or mild handling (MH, n = 15). Compared with TH, MH reduced the incidence of pale, soft, and exudative (PSE) or dark, firm, and dry (DFD) pork. MH induced 65 and 20 peptides that match with 39 and 12 proteins to be more highly phosphorylated and acetylated, respectively. Creatine kinase, β-enolase, α-1,4-glucan phosphorylase, tropomyosin, and myosin heavy chain isoforms 1, 4, and 7 were found to be simultaneously phosphorylated and acetylated, which may involve glycolysis, tight junctions, and muscle contraction. The phosphorylation and acetylation levels of differential proteins showed significant correlations with meat quality traits. These findings indicate that preslaughter MH can improve meat quality by regulating protein phosphorylation and acetylation involving energy metabolism in muscle.
Collapse
Affiliation(s)
- Bo Zou
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Guangjie He
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Yingqun Nian
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Dandan Da
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jing Yan
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| |
Collapse
|
12
|
Phosphoproteome analysis of sarcoplasmic and myofibrillar proteins in stress-induced dysfunctional broiler pectoralis major muscle. Food Chem 2020; 319:126531. [DOI: 10.1016/j.foodchem.2020.126531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/19/2020] [Accepted: 02/29/2020] [Indexed: 12/14/2022]
|
13
|
Ren C, Hou C, Li Z, Li X, Bai Y, Zhang D. Effects of temperature on protein phosphorylation in postmortem muscle. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:551-559. [PMID: 31587285 DOI: 10.1002/jsfa.10045] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/29/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Phosphorylation is one of the most important post-translational modifications. Currently, many postmortem protein phosphorylation studies in muscle have been related to meat quality such as tenderness and color stability. However, the effects of various storage temperatures (25, 15, 4 and -1.5 °C) on the phosphorylation level of protein are poorly understood. Changes in the protein phosphorylation levels in postmortem ovine muscle at various storage temperatures were determined in this study. RESULTS The obtained data showed that pH decline rate was significantly inhibited at -1.5 °C from 12 h to 7 days postmortem (P < 0.05). The ATP consumption rate was higher at 25 °C than that at other three temperatures (P < 0.05). Analysis of the temperature, pH and ATP content revealed that the ATP content was related to the phosphorylation levels of individual protein bands. Phosphorylated myofibrillar and sarcoplasmic proteins, such as myosin binding protein C, troponin T3, myosin light chain 1, glucose-6-phosphate isomerase and pyruvate kinase, were mainly involved in glycolysis and muscle contraction. CONCLUSION The global and specific protein phosphorylation levels can be influenced by the postmortem storage temperature of muscle. Phosphorylation of proteins was correlated with glycolysis and muscle contraction. Certain phosphorylated proteins, such as heat shock proteins, require further study to clarify their effects on meat traits. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chi Ren
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Chengli Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zheng Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yuqiang Bai
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
14
|
Mato A, Rodríguez-Vázquez R, López-Pedrouso M, Bravo S, Franco D, Zapata C. The first evidence of global meat phosphoproteome changes in response to pre-slaughter stress. BMC Genomics 2019; 20:590. [PMID: 31315554 PMCID: PMC6637562 DOI: 10.1186/s12864-019-5943-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/27/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Pre-slaughter stress (PSS) impairs animal welfare and meat quality. Dark, firm and dry (DFD) are terms used to designate poor quality meats induced by PSS. Protein phosphorylation can be a potentially significant mechanism to explain rapid and multiple physiological and biochemical changes linked to PSS-dependent muscle-to-meat conversion. However, the role of reversible phosphorylation in the response to PSS is still little known. In this study, we report a comparative phosphoproteomic analysis of DFD and normal meats at 24 h post-mortem from the longissimus thoracis (LT) bovine muscle of male calves of the Rubia Gallega breed. For this purpose, two-dimensional gel electrophoresis (2-DE), in-gel multiplex identification of phosphoproteins with PRO-Q Diamond phosphoprotein-specific stain, tandem (MALDI-TOF/TOF) mass spectrometry (MS), novel quantitative phosphoproteomic statistics and bioinformatic tools were used. RESULTS Noticeable and statistically significant differences in the extent of protein phosphorylation were detected between sample groups at the qualitative and quantitative levels. Overall phosphorylation rates across significantly changed phosphoproteins were about three times higher in DFD than in normal meat. Significantly changed phosphoproteins involved a variable number of isoforms of 13 myofibrillar and sarcoplasmic nonredundant proteins. However, fast skeletal myosin light chain 2 followed by troponin T, F-actin-capping and small heat shock proteins showed the greatest phosphorylation change, and therefore they were the most important phosphoproteins underlying LT muscle conversion to DFD meat in the Rubia Gallega breed. CONCLUSIONS This is the first study reporting global meat phosphoproteome changes in response to PSS. The results show that reversible phosphorylation is a relevant mechanism underlying PSS response and downstream effects on meat quality. This research opens up novel horizons to unravel the complex molecular puzzle underlying muscle-to-meat conversion in response to PSS.
Collapse
Affiliation(s)
- Ariadna Mato
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Raquel Rodríguez-Vázquez
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María López-Pedrouso
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Susana Bravo
- Proteomics Laboratory, CHUS, 15782 Santiago de Compostela, Spain
| | - Daniel Franco
- Meat Technology Center of Galicia, 32900 Ourense, Spain
| | - Carlos Zapata
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
15
|
Xing T, Gao F, Tume RK, Zhou G, Xu X. Stress Effects on Meat Quality: A Mechanistic Perspective. Compr Rev Food Sci Food Saf 2018; 18:380-401. [PMID: 33336942 DOI: 10.1111/1541-4337.12417] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/31/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022]
Abstract
Stress inevitably occurs from the farm to abattoir in modern livestock husbandry. The effects of stress on the behavioral and physiological status and ultimate meat quality have been well documented. However, reports on the mechanism of stress effects on physiological and biochemical changes and their consequent effects on meat quality attributes have been somewhat disjointed and limited. Furthermore, the causes of variability in meat quality traits among different animal species, muscle fibers within an animal, and even positions within a piece of meat in response to stress are still not entirely clear. This review 1st summarizes the primary stress factors, including heat stress, preslaughter handling stress, oxidative stress, and other stress factors affecting animal welfare; carcass quality; and eating quality. This review further delineates potential stress-induced pathways or mediators, including AMP-activated protein kinase-mediated energy metabolism, crosstalk among calcium signaling pathways and reactive oxygen species, protein modification, apoptosis, calpain and cathepsin proteolytic systems, and heat shock proteins that exert effects that cause biochemical changes during the early postmortem period and affect the subsequent meat quality. To obtain meat of high quality, further studies are needed to unravel the intricate mechanisms involving the aforementioned signaling pathways or mediators and their crosstalk.
Collapse
Affiliation(s)
- Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Ronald K Tume
- College of Food Science and Technology, Nanjing Agricultural Univ., Nanjing, 210095, Jiangsu, China
| | - Guanghong Zhou
- College of Food Science and Technology, Nanjing Agricultural Univ., Nanjing, 210095, Jiangsu, China
| | - Xinglian Xu
- College of Food Science and Technology, Nanjing Agricultural Univ., Nanjing, 210095, Jiangsu, China
| |
Collapse
|
16
|
Li Z, Li M, Li X, Xin J, Wang Y, Shen QW, Zhang D. Quantitative phosphoproteomic analysis among muscles of different color stability using tandem mass tag labeling. Food Chem 2018; 249:8-15. [DOI: 10.1016/j.foodchem.2017.12.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/04/2017] [Accepted: 12/13/2017] [Indexed: 11/15/2022]
|
17
|
Li M, Li Z, Li X, Xin J, Wang Y, Li G, Wu L, Shen QW, Zhang D. Comparative profiling of sarcoplasmic phosphoproteins in ovine muscle with different color stability. Food Chem 2018; 240:104-111. [DOI: 10.1016/j.foodchem.2017.07.097] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 07/11/2017] [Accepted: 07/18/2017] [Indexed: 12/27/2022]
|
18
|
Effects of protein phosphorylation on color stability of ground meat. Food Chem 2017; 219:304-310. [DOI: 10.1016/j.foodchem.2016.09.151] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 08/30/2016] [Accepted: 09/23/2016] [Indexed: 11/17/2022]
|