1
|
Huang J, Wang Y, Hu H, He K, Jiang X, Huang R, Liu T, Hu K, Guo X, Wang J, Zhang D, Li Q, Yang Z, Wei Z. SIRT5 safeguards against T-2 toxin induced liver injury by repressing iron accumulation, oxidative stress, and the activation of NLRP3 inflammasome. Toxicol Appl Pharmacol 2024; 492:117084. [PMID: 39241930 DOI: 10.1016/j.taap.2024.117084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
T-2 toxin, a highly toxic trichothecene mycotoxin widely found in food and feed, poses a significant threat to human health as well as livestock and poultry industry. Liver, being a crucial metabolic organ, is particularly susceptible to T-2 toxin induced damage characterized by inflammation and oxidative stress. Despite the role of Sirtuin 5 (SIRT5) in mitigating liver injury has been confirmed, its specific impact on T-2 toxin induced liver injury remains to be elucidated. The objective of this study was to investigate the protective role of SIRT5 against T-2 toxin induced liver injury in mice. Following the oral administration of 1 mg/kg.bw of T-2 toxin for 21 consecutive days to SIRT5 knockout (SIRT5-/-) and wild-type (WT) male mice, liver assessments were conducted. Our findings demonstrated that aggravated hepatic pathological injury was observed in SIRT5-/- mice, accompanied by elevated malondialdehyde (MDA) and Fe levels, as well as enhanced expression of glutathione peroxidase 4 (GPX4), NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, Gasdermin-D (GSDMD), tumour necrosis factor-alpha (TNF-α), and interleukin-1beta (IL-1β). These results indicated that SIRT5 alleviated hepatic structural damage and dysfunction, while inhibiting oxidative stress, iron accumulation, and NLRP3 inflammasome activation. Analysis revealed a positive correlation among NLRP3 inflammasome activation, iron accumulation, and oxidative stress. Overall, our study demonstrated that SIRT5 mitigated liver injury induced by T-2 toxin through inhibiting iron accumulation, oxidative stress, and NLRP3 inflammasome activation, providing novel insights into the management and prevention of T-2 toxin poisoning.
Collapse
Affiliation(s)
- Jing Huang
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Yiwen Wang
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Han Hu
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Kaifeng He
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Xi Jiang
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Rongsheng Huang
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Tingting Liu
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Kairao Hu
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Xin Guo
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Jiaxuan Wang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Dezhi Zhang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Qianyong Li
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China.
| | - Zhengkai Wei
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Kulcsár S, Turbók J, Kövér G, Balogh K, Zándoki E, Ali O, Szabó A, Mézes M. Exposure to a Combination of Fusarium Mycotoxins Leads to Lipid Peroxidation and Influences Antioxidant Defenses, Fatty Acid Composition of Phospholipids, and Renal Histology in Laying Hens. Toxins (Basel) 2024; 16:226. [PMID: 38787078 PMCID: PMC11125972 DOI: 10.3390/toxins16050226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
The effects of combined short-term (3 days) exposure to Fusarium mycotoxins at both the EU recommended limit (T-2/HT-2 toxin: 0.25 mg/kg; DON/3-AcDON/15-AcDON: 5 mg/kg; FB1: 20 mg/kg) and twice the dose (T-2/HT-2 toxin: 0.5 mg/kg, DON/3-AcDON/15-AcDON: 10 mg/kg, and FB1: 40 mg/kg feed) on the kidneys of laying hens were examined. Our study aimed to investigate how these mycotoxins interacted with membrane lipid fatty acid (FA) composition and lipid peroxidation processes. It was observed that the levels of conjugated dienes and trienes were higher than the control in the low-mix group on day 3, and malondialdehyde concentration was higher on days 2 and 3. The proportion of phospholipid (PL) FAs showed that saturated and monounsaturated FAs increased. Still, both n3 and n6 polyunsaturated FAs decreased significantly on day 2 of exposure in the high-mix group. Among the n3 FAs, the level of docosahexaenoic (C22:6 n3) and among n6 FAs, arachidonic (C20:4 n6) acids decreased mainly on day 2 in the high-mix group. The results suggest that the combined exposure to Fusarium mycotoxins induced lipid peroxidation in the kidneys of laying hens, which resulted in marked changes in the PL FA profile. Histological examination revealed time- and dose-dependent increases as consequences of mycotoxin exposure.
Collapse
Affiliation(s)
- Szabina Kulcsár
- Department of Feed Safety, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő Campus, H-2100 Gödöllő, Hungary;
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary; (E.Z.); (A.S.)
| | - Janka Turbók
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary; (J.T.); (O.A.)
| | - György Kövér
- Department of Animal Science, Institute of Animal Breeding Sciences, Hungarian University of Agricultural and Life Sciences, H-7400 Kaposvár, Hungary;
| | - Krisztián Balogh
- Department of Feed Safety, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő Campus, H-2100 Gödöllő, Hungary;
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary; (E.Z.); (A.S.)
| | - Erika Zándoki
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary; (E.Z.); (A.S.)
| | - Omeralfaroug Ali
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary; (J.T.); (O.A.)
| | - András Szabó
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary; (E.Z.); (A.S.)
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary; (J.T.); (O.A.)
| | - Miklós Mézes
- Department of Feed Safety, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő Campus, H-2100 Gödöllő, Hungary;
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary; (E.Z.); (A.S.)
| |
Collapse
|
3
|
Vörösházi J, Neogrády Z, Mátis G, Mackei M. Pathological consequences, metabolism and toxic effects of trichothecene T-2 toxin in poultry. Poult Sci 2024; 103:103471. [PMID: 38295499 PMCID: PMC10846437 DOI: 10.1016/j.psj.2024.103471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Contamination of feed with mycotoxins has become a severe issue worldwide. Among the most prevalent trichothecene mycotoxins, T-2 toxin is of particular importance for livestock production, including poultry posing a significant threat to animal health and productivity. This review article aims to comprehensively analyze the pathological consequences, metabolism, and toxic effects of T-2 toxin in poultry. Trichothecene mycotoxins, primarily produced by Fusarium species, are notorious for their potent toxicity. T-2 toxin exhibits a broad spectrum of negative effects on poultry species, leading to substantial economic losses as well as concerns about animal welfare and food safety in modern agriculture. T-2 toxin exposure easily results in negative pathological consequences in the gastrointestinal tract, as well as in parenchymal tissues like the liver (as the key organ for its metabolism), kidneys, or reproductive organs. In addition, it also intensely damages immune system-related tissues such as the spleen, the bursa of Fabricius, or the thymus causing immunosuppression and increasing the susceptibility of the animals to infectious diseases, as well as making immunization programs less effective. The toxin also damages cellular processes on the transcriptional and translational levels and induces apoptosis through the activation of numerous cellular signaling cascades. Furthermore, according to recent studies, besides the direct effects on the abovementioned processes, T-2 toxin induces the production of reactive molecules and free radicals resulting in oxidative distress and concomitantly occurring cellular damage. In conclusion, this review article provides a complex and detailed overview of the metabolism, pathological consequences, mechanism of action as well as the immunomodulatory and oxidative stress-related effects of T-2 toxin. Understanding these effects in poultry is crucial for developing strategies to mitigate the impact of the T-2 toxin on avian health and food safety in the future.
Collapse
Affiliation(s)
- Júlia Vörösházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, H-1078, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, H-1078, Hungary
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, H-1078, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, H-1078, Hungary
| | - Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, H-1078, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, H-1078, Hungary.
| |
Collapse
|
4
|
Vörösházi J, Mackei M, Sebők C, Tráj P, Márton RA, Horváth DG, Huber K, Neogrády Z, Mátis G. Investigation of the effects of T-2 toxin in chicken-derived three-dimensional hepatic cell cultures. Sci Rep 2024; 14:1195. [PMID: 38216675 PMCID: PMC10786837 DOI: 10.1038/s41598-024-51689-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024] Open
Abstract
Despite being one of the most common contaminants of poultry feed, the molecular effects of T-2 toxin on the liver of the exposed animals are still not fully elucidated. To gain more accurate understanding, the effects of T-2 toxin were investigated in the present study in chicken-derived three-dimensional (3D) primary hepatic cell cultures. 3D spheroids were treated with three concentrations (100, 500, 1000 nM) of T-2 toxin for 24 h. Cellular metabolic activity declined in all treated groups as reflected by the Cell Counting Kit-8 assay, while extracellular lactate dehydrogenase activity was increased after 500 nM T-2 toxin exposure. The levels of oxidative stress markers malondialdehyde and protein carbonyl were reduced by the toxin, suggesting effective antioxidant compensatory mechanisms of the liver. Concerning the pro-inflammatory cytokines, IL-6 concentration was decreased, while IL-8 concentration was increased by 100 nM T-2 toxin exposure, indicating the multifaceted immunomodulatory action of the toxin. Further, the metabolic profile of hepatic spheroids was also modulated, confirming the altered lipid and amino acid metabolism of toxin-exposed liver cells. Based on these results, T-2 toxin affected cell viability, hepatocellular metabolism and inflammatory response, likely carried out its toxic effects by affecting the oxidative homeostasis of the cells.
Collapse
Affiliation(s)
- Júlia Vörösházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, 1078, Hungary.
| | - Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, 1078, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, 1078, Hungary
| | - Csilla Sebők
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, 1078, Hungary
| | - Patrik Tráj
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, 1078, Hungary
| | - Rege Anna Márton
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, 1078, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, 1078, Hungary
| | - Dávid Géza Horváth
- Department of Pathology, University of Veterinary Medicine, Budapest, 1078, Hungary
| | - Korinna Huber
- Institute of Animal Science, University of Hohenheim, 70599, Stuttgart, Germany
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, 1078, Hungary
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, 1078, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, 1078, Hungary
| |
Collapse
|
5
|
Liu H, Lin X, Chilufya MM, Qiao L, Bao M, Wen X, Xiang R, He H, Li M, Han J. Synergistic effects of T-2 toxin and selenium deficiency exacerbate renal fibrosis through modulation of the ERα/PI3K/Akt signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115748. [PMID: 38029582 DOI: 10.1016/j.ecoenv.2023.115748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023]
Abstract
As common pathogenic agents in the world and widely distributed globally, T-2 toxin and selenium deficiency might exacerbate toxic effects by combined exposure, posing a dramatic health hazard to humans and animals. In this study, we aim to elucidate the underlying mechanisms of renal fibrosis triggered by T-2 toxin and selenium deficiency exposure. A total of thirty-two rats are randomly divided into the normal control, T-2 toxin, selenium deficiency, and combined intervention groups. T-2 toxin (100 ng/g) is intragastric gavaged to the rats in compliance with the body weight. Both the standard (containing selenium 0.20 mg/Kg) and selenium-deficient (containing selenium 0.02 mg/Kg) diets were manufactured adhering to the AIN-93 formula. After 12 weeks of intervention, renal tissue ultrastructural and pathological changes, inflammatory infiltration, epithelial mesenchymal transition (EMT), and extracellular matrix (ECM) deposition are evaluated, respectively. Metabolomics analysis is conducted to explore the underlying pathology of renal fibrosis, followed by the validation of potential mechanisms at gene and protein levels. T-2 toxin and selenium deficiency exposure results in podocyte foot process elongation or fusion, tubular vacuolization and dilatation, and collagen deposition in the kidneys. Additionally, it also increases inflammatory infiltration, EMT conversion, and ECM deposition. Metabolomics analysis suggests that T-2 toxin and selenium deficiency influence amino acid and cholesterol metabolism, respectively, and the estrogen signaling pathway is probably engaged in renal fibrosis progression. Moreover, T-2 toxin and selenium deficiency are found to regulate the expressions of the ERα/PI3K/Akt signaling pathway. In conclusion, T-2 toxin and selenium deficiency synergistically exacerbate renal fibrosis through regulating the ERα/PI3K/Akt signaling pathway, and inflammatory infiltration, EMT and ECM deposition are involved in this process.
Collapse
Affiliation(s)
- Haobiao Liu
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xue Lin
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Mumba Mulutula Chilufya
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Lichun Qiao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Miaoye Bao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xinyue Wen
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Rongqi Xiang
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Huifang He
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Miaoqian Li
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jing Han
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
6
|
Ruan H, Huang Y, Yue B, Zhang Y, Lv J, Miao K, Zhang D, Luo J, Yang M. Insights into the intestinal toxicity of foodborne mycotoxins through gut microbiota: A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:4758-4785. [PMID: 37755064 DOI: 10.1111/1541-4337.13242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023]
Abstract
Mycotoxins, which are fungal metabolites, pose a significant global food safety concern by extensively contaminating food and feed, thereby seriously threatening public health and economic development. Many foodborne mycotoxins exhibit potent intestinal toxicity. However, the mechanisms underlying mycotoxin-induced intestinal toxicity are diverse and complex, and effective prevention or treatment methods for this condition have not yet been established in clinical and animal husbandry practices. In recent years, there has been increasing attention to the role of gut microbiota in the occurrence and development of intestinal diseases. Hence, this review aims to provide a comprehensive summary of the intestinal toxicity mechanisms of six common foodborne mycotoxins. It also explores novel toxicity mechanisms through the "key gut microbiota-key metabolites-key targets" axis, utilizing multiomics and precision toxicology studies with a specific focus on gut microbiota. Additionally, we examine the potential beneficial effects of probiotic supplementation on mycotoxin-induced toxicity based on initial gut microbiota-mediated mycotoxicity. This review offers a systematic description of how mycotoxins impact gut microbiota, metabolites, and genes or proteins, providing valuable insights for subsequent toxicity studies of mycotoxins. Furthermore, it lays a theoretical foundation for preventing and treating intestinal toxicity caused by mycotoxins and advancing food safety practices.
Collapse
Affiliation(s)
- Haonan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Ying Huang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Binyang Yue
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuanyuan Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianxin Lv
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kun Miao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Mandal P, Lanaridi O, Warth B, Ansari KM. Metabolomics as an emerging approach for deciphering the biological impact and toxicity of food contaminants: the case of mycotoxins. Crit Rev Food Sci Nutr 2023; 64:9859-9883. [PMID: 37283072 DOI: 10.1080/10408398.2023.2217451] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Exposure to mycotoxins through the dietary route occurs on a daily basis while their deleterious effects are exhibited in the form of ailments, such as inflammation, cancer, and hormonal imbalance. The negative impact of mycotoxins can be attributed to their interaction with various biomolecules and their interference in metabolic pathways. The activity of biomolecules, such as enzymes/receptors, which engage the intricate mechanism of endogenous metabolism, is more susceptible to disruption by metabolites of high toxicity, which gives rise to adverse health effects. Metabolomics is a useful analytical approach that can assist in unraveling such information. It can simultaneously and comprehensively analyze a large number of endogenous and exogenous molecules present in biofluids and can, thus, reveal biologically relevant perturbations following mycotoxin exposure. Information provided by genome, transcriptome and proteome analyses, which have been utilized for the elucidation of biological mechanisms so far, are further complemented by the addition of metabolomics in the available bioanalytics toolbox. Metabolomics can offer insight into complex biological processes and their respective response to several (co-)exposures. This review focuses on the most extensively studied mycotoxins reported in literature and their respective impact on the metabolome upon exposure.
Collapse
Affiliation(s)
- Payal Mandal
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Olga Lanaridi
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Kausar M Ansari
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| |
Collapse
|
8
|
Gu W, Bao Q, Weng K, Liu J, Luo S, Chen J, Li Z, Cao Z, Zhang Y, Zhang Y, Chen G, Xu Q. Effects of T-2 toxin on growth performance, feather quality, tibia development and blood parameters in Yangzhou goslings. Poult Sci 2022; 102:102382. [PMID: 36535114 PMCID: PMC9791600 DOI: 10.1016/j.psj.2022.102382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
T-2 toxin is a dangerous natural pollutant and widely exists in animal feed, often causing toxic damage to poultry, such as slow growth and development, immunosuppression, and death. Although geese are considered the most sensitive poultry to T-2 toxin, the exact damage caused by T-2 toxin to geese is elusive. In the present study, a total of forty two 1-day-old healthy Yangzhou male goslings were randomly allotted seven diets contaminated with 0, 0.2, 0.4, 0.6, 0.8, 1.0, or 2.0 mg/kg T-2 toxin for 21 d, and the effects of T-2 toxin exposure on growth performance, feather quality, tibia development, and blood parameters were investigated. The results showed that T-2 toxin exposure significantly inhibited feed intake, body weight gain, shank length growth, and organ development (e.g., ileum, cecum, liver, spleen, bursa, and tibia) in a dose-dependent manner. In addition, the more serious feathering abnormalities and feather damage were observed in goslings exposed to a high dose of T-2 toxin (0.8, 1.0, and 2.0 mg/kg), which were mainly sparsely covered with short, dry, rough, curly, and gloss-free feathers on the back. We also found that hypertrophic chondrocytes of the tibial growth plate exhibited abnormal morphology and nuclear consolidation or loss, accompanied by necrosis and excessive apoptosis under 2.0 mg/kg T-2 toxin exposure. Moreover, 2.0 mg/kg T-2 toxin exposure triggered erythropenia, thrombocytosis, alanine aminotransferase, and aspartate aminotransferase activity, as well as high blood urea nitrogen, uric acid, and lactic dehydrogenase levels. Collectively, these data indicate that T-2 toxin had an adverse effect on the growth performance, feather quality, and tibia development, and caused liver and kidney damage and abnormal blood parameters in Yangzhou goslings, providing crucial information toward the prevention and control of T-2 toxin contamination in poultry feed.
Collapse
Affiliation(s)
- Wang Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, PR China
| | - Qiang Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, PR China
| | - Kaiqi Weng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, PR China
| | - Jinlu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, PR China
| | - Shuwen Luo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, PR China
| | - Jianzhou Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, PR China
| | - Zheng Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, PR China
| | - Zhengfeng Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, PR China
| | - Yu Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, PR China
| | - Yang Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, PR China
| | - Guohong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, 225009, PR China; Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Poultry), Ministry of Agriculture and Rural Affairs, PR China
| | - Qi Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, 225009, PR China; Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Poultry), Ministry of Agriculture and Rural Affairs, PR China.
| |
Collapse
|
9
|
Yao Y, Yang Y, Wang H, Jiang Z, Ma H. Dehydroepiandrosterone alleviates oleic acid-induced lipid metabolism disorders through activation of AMPK-mTOR signal pathway in primary chicken hepatocytes. Poult Sci 2022; 102:102385. [PMID: 36565630 PMCID: PMC9800306 DOI: 10.1016/j.psj.2022.102385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/05/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The incident of lipid metabolism disorders has obviously increased under the undue pursuit of efficiency, which had seriously threatened to the health development of poultry industry. As an important cholesterol-derived intermediate, though dehydroepiandrosterone (DHEA) has the fat-reduction effect in animals and humans, but the underlying mechanism still poorly understood. Herein, the present study aimed to investigate the regulatory effects and its molecular mechanism of DHEA on disturbance of lipid metabolism induced by oleic acid (OA) in primary chicken hepatocytes. The hepatocytes were treated with 0, 0.1, 1, 10 μM DHEA for 4 h, and then supplemented with 0 or 0.5 mM OA stimulation for another 24 h. Our findings demonstrated that DHEA treatment effectively reduced TG content and alleviated lipid droplet deposition in OA-induced hepatocytes. DHEA inhibited the lipogenesis related factors (ACC, FAS, SREBP-1c, and ACLY) mRNA level and increased the lipolysis key factors (CPT-1 and PPARα) mRNA levels. In addition, DHEA obviously elevated the protein levels of CPT-1A, p-ACC, and ECHS1; whereas decreased the protein levels of FAS and SREBP-1 in hepatocytes stimulated by OA. Furthermore, DHEA promoted the phosphorylation of AMP-activated protein kinase (AMPK) and inhibited the phosphorylation of mammalian target of rapamycin (mTOR). Mechanistically, the hepatocytes were pre-treated with AMPK inhibitor compound C or AMPK activator AICAR before addition of DHEA treatment, and the results certified that DHEA activated cAMP/AMPK pathway and which subsequently led the inhibition of mTOR signal, which finally reduced the fat excessive accumulation in OA-stimulated hepatocytes. Collectively, our study unveiled that DHEA protects against the lipid metabolism disorders triggered by OA stimulation through activation of AMPK-mTOR signaling pathway, which prompts the value of DHEA as a potential nutritional supplement in regulating the lipid metabolism and its related disease in poultry.
Collapse
Affiliation(s)
- Yao Yao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Yang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huihui Wang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihao Jiang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China,Corresponding author:
| |
Collapse
|
10
|
Zhang X, Li B, Huo S, Du J, Zhang J, Song M, Cui Y, Li Y. T-2 Toxin Induces Kidney Fibrosis via the mtROS-NLRP3-Wnt/β-Catenin Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13765-13777. [PMID: 36239691 DOI: 10.1021/acs.jafc.2c05816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
T-2 toxin causes kidney fibrosis. Wnt/β-catenin signaling promotes kidney fibrosis when sustained and activated. However, whether T-2-induced kidney fibrosis involves Wnt/β-catenin signaling activation has not been explored yet. T-2 toxin causes renal mitochondrial damage, leading to mitochondrial reactive oxygen species (mtROS) overproduction and NLRP3-inflammasome activation. The activated NLRP3-inflammasome can mediate fibrosis. However, whether the NLRP3-inflammasome can be mediated by mtROS and further regulate T-2-induced kidney fibrosis through Wnt/β-catenin signaling is unclear. In this study, first, we confirmed that T-2 toxin caused Wnt/β-catenin signaling activation in mice kidneys and HK-2 cells. Second, we confirmed that mtROS activated the NLRP3-inflammasome in T-2-exposed mice kidneys and HK-2 cells. Third, we confirmed that the NLRP3-inflammasome regulated the Wnt/β-catenin signaling in T-2 toxin-exposed mice kidneys and HK-2 cells. Finally, we confirmed that Wnt/β-catenin signaling regulated fibrosis in T-2 toxin-exposed mice kidneys and HK-2 cells. The above results confirm that T-2 toxin induces kidney fibrosis via the mtROS-NLRP3-Wnt/β-catenin axis.
Collapse
Affiliation(s)
- Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bo Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Siming Huo
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiayu Du
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yilong Cui
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, 028000 Tongliao, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
11
|
Li SJ, Zhang G, Xue B, Ding Q, Han L, Huang JC, Wu F, Li C, Yang C. Toxicity and detoxification of T-2 toxin in poultry. Food Chem Toxicol 2022; 169:113392. [PMID: 36044934 DOI: 10.1016/j.fct.2022.113392] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/14/2022] [Accepted: 08/23/2022] [Indexed: 11/27/2022]
Abstract
This review summarizes the updated knowledge on the toxicity of T-2 on poultry, followed by potential strategies for detoxification of T-2 in poultry diet. The toxic effects of T-2 on poultry include cytotoxicity, genotoxicity, metabolism modulation, immunotoxicity, hepatotoxicity, gastrointestinal toxicity, skeletal toxicity, nephrotoxicity, reproductive toxicity, neurotoxicity, etc. Cytotoxicity is the primary toxicity of T-2, characterized by inhibiting protein and nucleic acid synthesis, altering the cell cycle, inducing oxidative stress, apoptosis and necrosis, which lead to damages of immune organs, liver, digestive tract, bone, kidney, etc., resulting in pathological changes and impaired physiological functions of these organs. Glutathione redox system, superoxide dismutase, catalase and autophagy are protective mechanisms against oxidative stress and apoptosis, and can compensate the pathological changes and physiological functions impaired by T-2 to some degree. T-2 detoxifying agents for poultry feeds include adsorbing agents (e.g., aluminosilicate-based clays and microbial cell wall), biotransforming agents (e.g., Eubacterium sp. BBSH 797 strain), and indirect detoxifying agents (e.g., plant-derived antioxidants). These T-2 detoxifying agents could alleviate different pathological changes to different degrees, and multi-component T-2 detoxifying agents can likely provide more comprehensive protection against the toxicity of T-2.
Collapse
Affiliation(s)
- Shao-Ji Li
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, 510850, China.
| | - Guangzhi Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bin Xue
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, 510850, China
| | - Qiaoling Ding
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, 510850, China
| | - Lu Han
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, 510850, China
| | - Jian-Chu Huang
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, 510850, China
| | - Fuhai Wu
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, 510850, China
| | - Chonggao Li
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, 510850, China
| | - Chunmin Yang
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, 510850, China.
| |
Collapse
|
12
|
Zhang X, Du J, Li B, Huo S, Zhang J, Cui Y, Song M, Shao B, Li Y. PINK1/Parkin-mediated mitophagy mitigates T-2 toxin-induced nephrotoxicity. Food Chem Toxicol 2022; 164:113078. [PMID: 35489469 DOI: 10.1016/j.fct.2022.113078] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/04/2022] [Accepted: 04/23/2022] [Indexed: 11/28/2022]
Abstract
T-2 toxin can cause mitochondrial impairment and subsequent renal damage. PINK1/Parkin-mediated mitophagy can mitigate renal impairment by alleviating mitochondrial damage. Nevertheless, the impact of PINK1/Parkin-mediated mitophagy in T-2 toxin-induced renal injury remains unclear. Here, we studied the role of PINK1/Parkin-mediated mitophagy in T-2 toxin-induced nephrotoxicity. Mitochondrial damage was accompanied by NLRP3-inflammasome activation and PINK1/Parkin-mediated mitophagy in the kidney of T-2 toxin-exposed C57BL/6N mice. Knocking out Parkin inhibited the mitophagy but aggravated the structural and functional damage, NLRP3-inflammasome activation, mitochondrial damage, and apoptosis. Correlation analysis revealed that NLRP3-inflammasome activation was correlated with apoptosis. These results show that PINK1/Parkin-mediated mitophagy mitigates T-2 toxin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jiayu Du
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Siming Huo
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yilong Cui
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bing Shao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
13
|
Zhang X, Wang Q, Zhang J, Song M, Shao B, Han Y, Yang X, Li Y. The Protective Effect of Selenium on T-2-Induced Nephrotoxicity Is Related to the Inhibition of ROS-Mediated Apoptosis in Mice Kidney. Biol Trace Elem Res 2022; 200:206-216. [PMID: 33547999 DOI: 10.1007/s12011-021-02614-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/26/2021] [Indexed: 02/04/2023]
Abstract
T-2 toxin is produced by the Fusarium genus. Ingestion of food or feed contaminated by T-2 toxin will cause damage to kidney. Selenium (Se), an essential trace element, showed the significant protective effects against kidney and renal cell damage induced by toxic substances. To explore the protective effects and mechanisms of Se against T-2-induced renal lesions, forty-eight male Kunming mice were exposed to T-2 toxin (1.0 mg/kg) and/or Se (0.2 mg/kg) for 28 days. In this study, we found that Se alleviated T-2-induced nephrotoxicity, presenting as increasing the body weight and kidney coefficient, relieving the renal structure injury, decreasing the contents of renal function-related biomarkers, decreasing the levels of reactive oxygen species (ROS), and increasing the mitochondrial membrane potential in T-2 toxin-treated mice. In addition, inhibition of renal cell apoptosis by Se was associated with blocking the mitochondrial pathway in T-2 toxin-treated mice, presenting as decreasing the protein expression of cytochrome-c, activities of caspase-3/9, as well as regulating the protein and mRNA expressions of Bax and Bcl-2. These results documented that the alleviating effect of Se on T-2-induced nephrotoxicity is related to the inhibition of ROS-mediated renal apoptosis.
Collapse
Affiliation(s)
- Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Qi Wang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Bing Shao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Yanfei Han
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
14
|
Legrand E, Basu N, Hecker M, Crump D, Xia J, Chandramouli B, Butler H, Head JA. Targeted Metabolomics to Assess Exposure to Environmental Chemicals of Concern in Japanese Quail at Two Life Stages. Metabolites 2021; 11:850. [PMID: 34940609 PMCID: PMC8715744 DOI: 10.3390/metabo11120850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
This proof-of-concept study characterizes the Japanese quail (Coturnix japonica) hepatic metabolome following exposure to benzo[a]pyrene, chlorpyrifos, ethinylestradiol, fluoxetine hydrochloride, hexabromocyclododecane, lead(II)nitrate, seleno-L-methionine, and trenbolone in embryos and adults. The analysis revealed effects on lipid metabolism following exposure to several chemicals at both life stages. The most pronounced effects were observed in embryos exposed to 41.1 μg/g chlorpyrifos. This work highlighted challenges and the need for further avian metabolomics studies.
Collapse
Affiliation(s)
- Elena Legrand
- Faculty of Agricultural and Environmental Sciences, McGill University, Montréal, QC H9X 3V9, Canada; (N.B.); (J.X.); (J.A.H.)
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montréal, QC H9X 3V9, Canada; (N.B.); (J.X.); (J.A.H.)
| | - Markus Hecker
- Toxicology Centre and School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada;
| | - Doug Crump
- Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Jianguo Xia
- Faculty of Agricultural and Environmental Sciences, McGill University, Montréal, QC H9X 3V9, Canada; (N.B.); (J.X.); (J.A.H.)
| | - Bharat Chandramouli
- SGS-AXYS Analytical Services Ltd., 2045 Mills Road West, Sidney, BC V8L 5X2, Canada; (B.C.); (H.B.)
| | - Heather Butler
- SGS-AXYS Analytical Services Ltd., 2045 Mills Road West, Sidney, BC V8L 5X2, Canada; (B.C.); (H.B.)
| | - Jessica A. Head
- Faculty of Agricultural and Environmental Sciences, McGill University, Montréal, QC H9X 3V9, Canada; (N.B.); (J.X.); (J.A.H.)
| |
Collapse
|
15
|
Tso KH, Lumsangkul C, Cheng MC, Ju JC, Fan YK, Chiang HI. Differential Effects of Green Tea Powders on the Protection of Brown Tsaiya and Kaiya Ducklings against Trichothecene T-2 Toxin Toxicity. Animals (Basel) 2021; 11:ani11092541. [PMID: 34573507 PMCID: PMC8466186 DOI: 10.3390/ani11092541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The objective of this study is to examine the effects of T-2 toxin (T-2) and green tea powders (GTP) on growth performance, hematology, and pathology parameters in Brown Tsaiya ducklings (BTDs) and Kaiya ducklings (KDs). T-2 toxin shows a strong and differential toxicity in growth suppression, as well as abnormalities in the hematological and pathological parameters of BTDs and KDs. We found that GTP could potentially prevent T-2-induced poor growth performance and improve some hematological parameters. Moreover, BTDs were more sensitive than KDs in terms of responses to T-2 toxicity and GTP detoxification. Abstract A 3-week feeding trial in a 3 × 2 × 2 factorial design was conducted with three concentrations (0, 0.5, and 5 mg/kg) of T-2 toxin (T-2) and two levels (0% and 0.5%) of green tea powder (GTP) supplements used in the diets of female brown Tsaiya ducklings (BTDs) and Kaiya ducklings (KDs), respectively. Breed had a significant effect on the growth performances and the relative weights of organs and carcass. In general, the growth performances of KDs were better than BTDs. The relative weights of organs and carcass of BTDs were typically heavier than those of KDs; however, the breast of KDs was heavier than those of BTDs. Both ducklings received 5 mg/kg of T-2 blended in the diet showed lower feed intake and body weight gain (BWG) in the second and the third week. The diet containing 5 mg/kg of T-2 and 0.5% GTP improved the BWG compared to those fed the diet supplemented with 5 mg/kg of T-2 without GTP in BTDs. Ducklings fed the diet containing 5 mg/kg of T-2 induced hypocalcemia and hypomagnesemia, as well as decreased concentrations of creatine phosphokinase and alkaline phosphatase. The concentrations of blood urea nitrogen (BUN) and glutamate oxaloacetate transaminase (GOT) were increased in KDs and BTDs fed the diet containing 5 mg/kg of T-2 without GTP, respectively. However, duckling diets containing 5 mg/kg of T-2 with 0.5% GTP lowered concentrations of BUN and GOT in the blood plasma of KDs and BTDs, respectively. The diet containing 5 mg/kg of T-2 increased the relative kidney weight but decreased the relative breast weight of ducklings. Enlarged gizzards and reduced relative leg weights were observed in BTDs fed the diets containing 5 mg/kg of T-2. In summary, BTDs are more sensitive than KDs in responding to T-2 toxicity and GTP detoxification. Green tea powder has detoxification ability and could potentially mitigate T-2 toxicity on BWG, BUN, and GOT in ducklings.
Collapse
Affiliation(s)
- Ko-Hua Tso
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (K.-H.T.); (M.-C.C.)
| | - Chompunut Lumsangkul
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Min-Chien Cheng
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (K.-H.T.); (M.-C.C.)
- Hengchun Branch Institute, Livestock Research Institute, Council of Agriculture, Pingtung 94644, Taiwan
| | - Jyh-Cherng Ju
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (K.-H.T.); (M.-C.C.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40402, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
- Correspondence: (J.-C.J.); (Y.-K.F.); (H.-I.C.); Tel.: +886-4-2287-0613 (J.-C.J. & Y.-K.F. & H.-I.C.); Fax: +886-4-2286-0265 (J.-C.J. & Y.-K.F. & H.-I.C.)
| | - Yang-Kwang Fan
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (K.-H.T.); (M.-C.C.)
- Correspondence: (J.-C.J.); (Y.-K.F.); (H.-I.C.); Tel.: +886-4-2287-0613 (J.-C.J. & Y.-K.F. & H.-I.C.); Fax: +886-4-2286-0265 (J.-C.J. & Y.-K.F. & H.-I.C.)
| | - Hsin-I Chiang
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (K.-H.T.); (M.-C.C.)
- Center for the Integrative and Evolutionary Galliformes Genomics, National Chung Hsing University, Taichung 40227, Taiwan
- Correspondence: (J.-C.J.); (Y.-K.F.); (H.-I.C.); Tel.: +886-4-2287-0613 (J.-C.J. & Y.-K.F. & H.-I.C.); Fax: +886-4-2286-0265 (J.-C.J. & Y.-K.F. & H.-I.C.)
| |
Collapse
|
16
|
Wang Z, Gao Y, Huang X, Huang S, Yang X, Wang J, Zheng N. Metabolomics analysis underlay mechanisms in the renal impairment of mice caused by combination of aflatoxin M1 and ochratoxin A. Toxicology 2021; 458:152835. [PMID: 34126166 DOI: 10.1016/j.tox.2021.152835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/26/2021] [Accepted: 06/09/2021] [Indexed: 11/29/2022]
Abstract
Aflatoxin M1 (AFM1) and ochratoxin A (OTA) are pernicious mycotoxins widely co-existing in the environment. However, nephrotoxicity and underlying mechanism induced by AFM1 coupled with OTA still remain to be explored. In this study, CD-1 mice were treated with 3.5 mg/kg b.w. AFM1, OTA, and AFM1 + OTA for 35 days, and UPLC-MS-based metabolomics method was effectuated to investigate metabolomic profiles of mice kidney. Subsequent experiments on human renal proximal tubular (HK-2) cells were performed to dig out the causal connections between distinguished differential metabolites and nephrotoxicity. Compared with DMSO vehicle group, all three toxin treatments (AFM1 and OTA alone, and in combination) significantly reduced final body weight, and remarkably elevated the concentration of serum creatinine (SCr) and caused abnormal histological phenotypes (shown by histopathological slices). OTA, AFM1 + OTA but not AFM1 reduced the relative weight index of kidney. These phenotypic results indicated that AFM1 and OTA were both toxic to the body, and it seemed that OTA exhibited a notable impairment to kidney while AFM1 had similar but limited effect compared with OTA. Further metabolomics analysis showed that when AFM1 and OTA were combined together, OTA exerted dominant effect on the alteration of metabolic processes. There were few differences in the number of changed metabolites between OTA and AFM1 + OTA group. Among the differentially expressed metabolites affected by OTA, and AFM1 + OTA, lysophosphatidylcholines (LysoPCs) were identified as the main type with significant upregulation, in which LysoPC (16:0) accounted for the most prime proportion. Western blotting results of HK-2 cells showed that single OTA and AFM1 + OTA increased the apoptotic protein expressions of Bax, caspase 3 and PARP, and decreased the expression of Bcl-2; while AFM1 only raised the expression of caspase 3. LysoPC (16:0) but not LysoPC (18:1) lifted the protein level of caspase 3 and PARP in HK-2 cells, and reduced the level of Bcl-2. Taken together, this study is the first effort trying to assess nephrotoxicity of AFM1 with OTA, and we guessed that OTA had a more pronounced toxicity to kidney in contrast to AFM1. No obvious synergism between AFM1 and OTA was found to contribute to the occurrence or development of nephropathy. LysoPC (16:0) might be the pivotal metabolite in response to single OTA and combined AFM1 + OTA engendering renal injury.
Collapse
Affiliation(s)
- Ziwei Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Yanan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Xin Huang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Shengnan Huang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Xue Yang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| |
Collapse
|
17
|
Zhang X, Wang Y, Yang X, Liu M, Huang W, Zhang J, Song M, Shao B, Li Y. The nephrotoxicity of T-2 toxin in mice caused by oxidative stress-mediated apoptosis is related to Nrf2 pathway. Food Chem Toxicol 2021; 149:112027. [DOI: 10.1016/j.fct.2021.112027] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/14/2020] [Accepted: 01/21/2021] [Indexed: 12/22/2022]
|
18
|
Li L, Zhang M, Men Y, Wang W, Zhang W. Heavy metals interfere with plasma metabolites, including lipids and amino acids, in patients with breast cancer. Oncol Lett 2020; 19:2925-2933. [PMID: 32218848 PMCID: PMC7068226 DOI: 10.3892/ol.2020.11402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 01/16/2020] [Indexed: 12/28/2022] Open
Abstract
The aim of the present study was to examine the association between plasma heavy metals and the metabolome in patients with breast cancer (BC), and the association with cancer development. Nuclear magnetic resonance was used to determine the metabolites involved and an inductively coupled plasma mass spectrometry system was used to quantify the heavy metals in the plasma samples. It was indicated that cadmium was significantly higher in the plasma of patients with BC compared with that in the control population (~15-fold increase). Chromium, arsenic and lead were also elevated in the plasma of patients with BC by ~3.24, 2.14 and 1.52 fold, respectively. A number of small molecules, including amino acids and salts, were altered in the plasma of patients with BC compared with the control population. Another notable finding in this investigation was that plasma lipid levels were elevated in patients with BC compared with those in the control population. The findings of the present study suggest that exposure to heavy metals, including cadmium, arsenic, chromium and lead, may influence blood lipid levels and other small molecule metabolites, which in turn may be involved in BC development. Further studies surrounding urinary heavy metals and the metabolome are required to further determine the impact of metals on metabolism and on BC development.
Collapse
Affiliation(s)
- Ling Li
- Department of Oncology, Affiliated Tengzhou Central People's Hospital of Jining Medical University, Tengzhou, Shandong 277599, P.R. China
| | - Meihua Zhang
- Medical Image Center, Affiliated Tengzhou Central People's Hospital of Jining Medical University, Tengzhou, Shandong 277599, P.R. China
| | - Yuhao Men
- College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109, P.R. China
| | - Wei Wang
- Department of Oncology, Affiliated Tengzhou Central People's Hospital of Jining Medical University, Tengzhou, Shandong 277599, P.R. China
| | - Weidong Zhang
- College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109, P.R. China
| |
Collapse
|
19
|
Yang L, Tu D, Wu Y, Liu W, Hu Y, Liu T, Tan L, Li Y, Lei H, Zhan Y, Wang N, Deng Z, Guo S, Wang A. Distribution and persistence of residual T-2 and HT-2 toxins from moldy feed in broiler chickens. Toxicon 2020; 178:82-91. [PMID: 32135197 DOI: 10.1016/j.toxicon.2020.02.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/16/2020] [Accepted: 02/29/2020] [Indexed: 10/24/2022]
Abstract
T-2 and HT-2 widely found in food products can seriously affect human and animal health. In this study, sterilized corn was inoculated with F. poae and incubated to allow fungal growth before being examined via liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) to determine the concentrations of T-2/HT-2. Broilers were then fed with a mix of moldy corn and normal feed at different ratios to obtain different toxin doses. After 35 days, the contaminated feed was replaced with mycotoxin-free feed and the distribution and concentration of residual toxins in the tissues and organs of the chickens were examined at different time points. The results showed that at the time of feed replacement (0 h), T-2 residue was present at significantly higher concentrations in the lungs and small intestines than in other tissues (P < 0.05). In addition, T-2 concentrations increased in a dose-dependent manner in the tissues of chickens in the low-, medium-, and high-dose groups; however, the differences in concentration between the groups were not statistically significant. The HT-2 content (0 h) in the livers and small intestines was significantly higher than that in other tissues (P < 0.05). At 48 h post-feed replacement, the concentration of T-2 dropped below detectable levels in all tissues while HT-2 could still be detected at 192 h post-feed replacement. Thus, this study reveals the distribution and persistence of residual T-2/HT-2 from moldy feed in broilers, providing a reference for the detection of these toxins in animal-derived food products and a theoretical basis for formulating food-safety and quality standards.
Collapse
Affiliation(s)
- Lingchen Yang
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, 410128, China
| | - Di Tu
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, 410128, China
| | - Yingxin Wu
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, 410128, China
| | - Wei Liu
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, 410128, China
| | - Yi Hu
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, 410128, China
| | - Tanbin Liu
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, 410128, China
| | - Lei Tan
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, 410128, China
| | - Yalan Li
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, 410128, China
| | - Hongyu Lei
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, 410128, China
| | - Yang Zhan
- Lab of Functional Proteomics (LFP), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, HUNAU, Changsha, Hunan, 410128, China
| | - Naidong Wang
- Lab of Functional Proteomics (LFP), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, HUNAU, Changsha, Hunan, 410128, China
| | - Zhibang Deng
- Lab of Functional Proteomics (LFP), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, HUNAU, Changsha, Hunan, 410128, China
| | - Shiyin Guo
- College of Food Science and Technology, HUNAU, Changsha, Hunan, 410128, China.
| | - Aibing Wang
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, 410128, China.
| |
Collapse
|
20
|
Men Y, Li L, Zhang F, Kong X, Zhang W, Hao C, Wang G. Evaluation of heavy metals and metabolites in the urine of patients with breast cancer. Oncol Lett 2020; 19:1331-1337. [PMID: 31966065 PMCID: PMC6956222 DOI: 10.3892/ol.2019.11206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
Epidemiologic studies demonstrated that the environment serves a crucial role in cancer development. Heavy metals, including arsenic (As), cadmium (cd), chromium (Cr), lead and mercury, are considered to be carcinogens or co-carcinogens. Furthermore, Cd has been detected in breast cancer (BC) tissue at high concentrations. The present study aimed to investigate the correlation between heavy metals detected in urine and urine metabolome of patients with BC, and their association with cancer development. Nuclear magnetic resonance was used to determine urine metabolites and an inductively coupled plasma mass spectrometry system was used to detect heavy metals in urine samples. The results demonstrated that Cd was markedly increased in the urine of patients with BC compared with the control population (approximately 2-fold). Cr and As were also increased in the urine of patients with BC. In addition, numerous small molecule metabolites were altered in the urine of patients with BC compared with the control population. This study also demonstrated that alterations in small molecule metabolites in the urine of patients with BC were very similar to results from a previous report. These findings indicated that environmental exposure to Cd, As, or Cr could influence the urine levels of metabolites, which may be involved in BC development. Further investigation is therefore required to examine a larger range of samples from different countries or areas in order to understand the impact of heavy metals on metabolism and BC development.
Collapse
Affiliation(s)
- Yuhao Men
- Department of Oncology, Affiliated Tengzhou Central People's Hospital of Jining Medical University, Tengzhou, Shandong 277599, P.R. China
- Department of Animal Breeding, College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109, P.R. China
| | - Ling Li
- Department of Oncology, Affiliated Tengzhou Central People's Hospital of Jining Medical University, Tengzhou, Shandong 277599, P.R. China
| | - Fen Zhang
- Department of Oncology, Affiliated Tengzhou Central People's Hospital of Jining Medical University, Tengzhou, Shandong 277599, P.R. China
| | - Xueyuan Kong
- Department of Oncology, Affiliated Tengzhou Central People's Hospital of Jining Medical University, Tengzhou, Shandong 277599, P.R. China
| | - Weidong Zhang
- Department of Animal Breeding, College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109, P.R. China
| | - Chongli Hao
- Department of Oncology, Affiliated Tengzhou Central People's Hospital of Jining Medical University, Tengzhou, Shandong 277599, P.R. China
| | - Guotian Wang
- Department of Oncology, Affiliated Tengzhou Central People's Hospital of Jining Medical University, Tengzhou, Shandong 277599, P.R. China
| |
Collapse
|
21
|
Song Y, Li R, Zhang Y, Wei J, Chen W, Chung CKA, Cai Z. Mass spectrometry-based metabolomics reveals the mechanism of ambient fine particulate matter and its components on energy metabolic reprogramming in BEAS-2B cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:3139-3150. [PMID: 30463164 DOI: 10.1016/j.scitotenv.2018.10.171] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 05/25/2023]
Abstract
Exposure to airborne fine particulate matter (PM2.5) is associated with various adverse effects. However, the molecular mechanism involved in PM2.5-elicited energy metabolic reprogramming and the toxic chemical determinants within PM2.5 are not well elucidated. In this study, nontargeted and targeted metabolomics research were conducted to investigate the overall metabolic changes and relevant toxicological pathways caused by Taiyuan winter total PM2.5 and its water soluble and organic soluble fractions in human lung bronchial epithelial cells (BEAS-2B). The results showed that significant metabolome alterations in BEAS-2B cells were observed after the exposure of total PM2.5 and its organic soluble fraction. Purine metabolism, arginine and proline metabolism, glutathione (GSH) metabolism, tricarboxylic acid (TCA) cycle and glycolysis were mainly affected. Along with a significant increase of reactive oxygen species (ROS), malondialdehyde (MDA), nitric oxide (NO) and pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β), obvious metabolic phenotype remodeling from oxidative phosphorylation to glycolysis was found in BEAS-2B cells treated with total PM2.5 and its organic soluble fraction. Compared with water soluble fraction, organic soluble fraction was found to play the dominant role in PM2.5 toxicity. Our study provided novel insights into the mechanism of PM2.5-elicited toxicity.
Collapse
Affiliation(s)
- Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Yanhao Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Juntong Wei
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Wei Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Chi Kong Arthur Chung
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China; School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, China.
| |
Collapse
|
22
|
Wang Q, Zhang Y, Zheng N, Guo L, Song X, Zhao S, Wang J. Biological System Responses of Dairy Cows to Aflatoxin B1 Exposure Revealed with Metabolomic Changes in Multiple Biofluids. Toxins (Basel) 2019; 11:toxins11020077. [PMID: 30717092 PMCID: PMC6410036 DOI: 10.3390/toxins11020077] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/19/2018] [Accepted: 01/20/2019] [Indexed: 01/28/2023] Open
Abstract
Research on mycotoxins now requires a systematic study of post-exposure organisms. In this study, the effects of aflatoxin B1 (AFB1) on biofluids biomarkers were examined with metabolomics and biochemical tests. The results showed that milk concentration of aflatoxin M1 changed with the addition or removal of AFB1. AFB1 significantly affected serum concentrations of superoxide dismutase (SOD) and malon dialdehyde (MDA), SOD/MDA, and the total antioxidant capacity. Significant differences of volatile fatty acids and NH3-N were detected in the rumen fluid. Eighteen rumen fluid metabolites, 11 plasma metabolites, and 9 milk metabolites were significantly affected by the AFB1. These metabolites are mainly involved in the pathway of amino acids metabolism. Our results suggest that not only is the study of macro-indicators (milk composition and production) important, but that more attention should be paid to micro-indicators (biomarkers) when assessing the risks posed by mycotoxins to dairy cows.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yangdong Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Liya Guo
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiaoming Song
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
23
|
Zhang Y, Li Y, Shi Z, Wu J, Yang X, Feng L, Ren L, Duan J, Sun Z. Metabolic impact induced by total, water soluble and insoluble components of PM 2.5 acute exposure in mice. CHEMOSPHERE 2018; 207:337-346. [PMID: 29803883 DOI: 10.1016/j.chemosphere.2018.05.098] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
Fine particulate matter (PM2.5) has been listed as an important environmental risk factor for human health. However, the systemic biological effects on metabolic responses induced by PM2.5 and its components were poorly understood. This study was aimed to evaluate the toxicity of different components of PM2.5 at molecular level via metabolomics approach. In the present study, we adopted a 1H NMR-based metabolomics approach to evaluate metabolic profiles in mice after acute exposure to Total-PM2.5, water soluble components of PM2.5 (WS-PM2.5) and water insoluble components of PM2.5 (WIS-PM2.5). First, we characterized the morphological features and chemical composition of PM2.5. Then, the metabolites changes of serum and urine in mice were systematically analyzed using 800 MHz 1H NMR techniques in combination with multivariate statistical analysis. Total-PM2.5 exposure affected metabolites mainly involved in amino acid metabolism, protein biosynthesis, energy metabolism and metabolism of cofactors and vitamins. WS-PM2.5 exposure influenced lipid metabolism and carbohydrate metabolism. WIS-PM2.5 exposure mainly perturbed amino acid metabolism and energy metabolism. The results suggested that acute exposure to the Total-PM2.5, WS-PM2.5 and WIS-PM2.5 in mice exhibited marked systemic metabolic changes. In addition, the insoluble fraction of PM2.5 contributed greatly to the toxicity of PM2.5.
Collapse
Affiliation(s)
- Yannan Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhixiong Shi
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Jing Wu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaozhe Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Lin Feng
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Lihua Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
24
|
Guo P, Liu A, Huang D, Wu Q, Fatima Z, Tao Y, Cheng G, Wang X, Yuan Z. Brain damage and neurological symptoms induced by T-2 toxin in rat brain. Toxicol Lett 2018; 286:96-107. [DOI: 10.1016/j.toxlet.2018.01.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 01/03/2018] [Accepted: 01/12/2018] [Indexed: 11/17/2022]
|
25
|
Zhang W, Zhao Y, Li F, Li L, Feng Y, Min L, Ma D, Yu S, Liu J, Zhang H, Shi T, Li F, Shen W. Zinc Oxide Nanoparticle Caused Plasma Metabolomic Perturbations Correlate with Hepatic Steatosis. Front Pharmacol 2018; 9:57. [PMID: 29472859 PMCID: PMC5810292 DOI: 10.3389/fphar.2018.00057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/16/2018] [Indexed: 12/11/2022] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs), known for their chemical stability and strong adsorption, are used in everyday items such as cosmetics, sunscreens, and prophylactic drugs. However, they have also been found to adversely affect organisms; previously we found that ZnO NPs disrupt pubertal ovarian development, inhibit embryonic development by upsetting γ-H2AX and NF-κB pathways, and even disturb skin stem cells. Non-targeted metabolomic analysis of biological organisms has been suggested as an unbiased tool for the investigation of perturbations in response to NPs and their underlying mechanisms. Although metabolomics has been used in nanotoxicological studies, very few reports have used it to investigate the effects of ZnO NPs exposure. In the current investigation, through a metabolomics-based approach, we discovered that ZnO NPs caused changes in plasma metabolites involved in anti-oxidative mechanisms, energy metabolism, and lipid metabolism in hen livers. These results are in line with earlier findings that ZnO NPs perturb the tricarboxylic acid cycle and in turn result in the use of alternative energy sources. We also found that ZnO NPs disturbed lipid metabolism in the liver and consequently impacted blood lipid balance. Changes in plasma metabolomes were correlated with hepatic steatosis.
Collapse
Affiliation(s)
- Weidong Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yong Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fuli Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Lan Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yanni Feng
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lingjiang Min
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Dongxue Ma
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shuai Yu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jing Liu
- Core Laboratories of Qingdao Agricultural University, Qingdao, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianhong Shi
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Fuwei Li
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
26
|
Metabolomic analysis of alterations in lipid oxidation, carbohydrate and amino acid metabolism in dairy goats caused by exposure to Aflotoxin B1. J DAIRY RES 2017; 84:401-406. [DOI: 10.1017/s0022029917000590] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The purposes of this study were to investigate the systemic and characteristic metabolites in the serum of dairy goats induced by aflatoxin B1 (AFB1) exposure and to further understand the endogenous metabolic alterations induced by it. A nuclear magnetic resonance (NMR)-based metabonomic approach was used to analyse the metabolic alterations in dairy goats that were induced by low doses of AFB1 (50 µg/kg DM). We found that AFB1 exposure caused significant elevations of glucose, citrate, acetate, acetoacetate, betaine, and glycine yet caused reductions of lactate, ketone bodies (acetate, β-hydroxybutyrate), amino acids (citrulline, leucine/isoleucine, valine, creatine) and cell membrane structures (choline, lipoprotein, N-acetyl glycoproteins) in the serum. These data indicated that AFB1 caused endogenous metabolic changes in various metabolic pathways, including cell membrane-associated metabolism, the tricarboxylic acid cycle, glycolysis, lipids, and amino acid metabolism. These findings provide both a comprehensive insight into the metabolic aspects of AFB1-induced adverse effects on dairy goats and a method for monitoring dairy animals exposed to low doses of AFB1.
Collapse
|
27
|
Yang S, De Boevre M, Zhang H, De Ruyck K, Sun F, Zhang J, Jin Y, Li Y, Wang Z, Zhang S, Zhou J, Li Y, De Saeger S. Metabolism of T-2 Toxin in Farm Animals and Human In Vitro and in Chickens In Vivo Using Ultra High-Performance Liquid Chromatography- Quadrupole/Time-of-Flight Hybrid Mass Spectrometry Along with Online Hydrogen/Deuterium Exchange Technique. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7217-7227. [PMID: 28737905 DOI: 10.1021/acs.jafc.7b02575] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
After being incubated with animal and human liver microsomes, metabolites of phase I and II were investigated. A comparison was performed by ultrahigh performance liquid chromatography-quadrupole/time-of-flight coupled to mass spectrometry (UHPLC-Q/TOF). Consequently, a total of four phase I metabolites and three glucuronide binding metabolites of T-2 toxin were discovered. Although a significant metabolic difference was observed among six species, HT-2 toxin was the major product in all species. In addition, the in vivo metabolism of T-2 toxin after oral administration was also investigated in chickens, In total, 18 metabolites were detected, of which 13 were novel, to our knowledge, and reported for the first time. To elucidate the structures of these metabolites, besides accurate mass data from their MS and MS2 spectra, online hydrogen/deuterium (H/D) exchange technique was also carried out. These new metabolites were regarded as 3'-hydroxy-T-2 3-sulfate, 3'-hydroxy-HT-2 3-sulfate, 4'-hydroxy-HT-2, 3',4'-dihydroxy-HT-2, 4'-carboxyl-T-2, 4'-carboxyl-HT-2, 4'-carboxyl-4'-hydroxy-T-2, and their isomers, implying that T-2 toxin was metabolized more extensively in animals than previously thought. Furthermore, 3'-hydroxy-HT-2, 4'-carboxyl-T-2, 3'-hydroxy-T-2, HT-2 toxin, and neosolaniol were identified to be the major metabolites of T-2 toxin in chickens. The present study expands existing knowledge about T-2 toxin metabolism, informing assessments of the impact T-2 toxin exposure and metabolism on health.
Collapse
Affiliation(s)
- Shupeng Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences , Key Laboratory of Bee Products for Quality and Safety Control; Laboratory of Risk Assessment for Quality and Safety of Bee Products; Bee Product Quality Supervision and Testing Center, Beijing 100093, People's Republic of China
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
- College of Veterinary Medicine, China Agricultural University , Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing 100193, People's Republic of China
| | - Marthe De Boevre
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Huiyan Zhang
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
- College of Veterinary Medicine, China Agricultural University , Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing 100193, People's Republic of China
| | - Karl De Ruyck
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Feifei Sun
- College of Veterinary Medicine, China Agricultural University , Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing 100193, People's Republic of China
| | - Jinzhen Zhang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences , Key Laboratory of Bee Products for Quality and Safety Control; Laboratory of Risk Assessment for Quality and Safety of Bee Products; Bee Product Quality Supervision and Testing Center, Beijing 100093, People's Republic of China
| | - Yue Jin
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences , Key Laboratory of Bee Products for Quality and Safety Control; Laboratory of Risk Assessment for Quality and Safety of Bee Products; Bee Product Quality Supervision and Testing Center, Beijing 100093, People's Republic of China
| | - Yanshen Li
- College of Life Science, Yantai University , Yantai, Shandong 264005, P. R. China
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University , Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing 100193, People's Republic of China
| | - Suxia Zhang
- College of Veterinary Medicine, China Agricultural University , Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing 100193, People's Republic of China
| | - Jinhui Zhou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences , Key Laboratory of Bee Products for Quality and Safety Control; Laboratory of Risk Assessment for Quality and Safety of Bee Products; Bee Product Quality Supervision and Testing Center, Beijing 100093, People's Republic of China
| | - Yi Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences , Key Laboratory of Bee Products for Quality and Safety Control; Laboratory of Risk Assessment for Quality and Safety of Bee Products; Bee Product Quality Supervision and Testing Center, Beijing 100093, People's Republic of China
| | - Sarah De Saeger
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| |
Collapse
|
28
|
Zhang Y, Hu H, Shi Y, Yang X, Cao L, Wu J, Asweto CO, Feng L, Duan J, Sun Z. 1H NMR-based metabolomics study on repeat dose toxicity of fine particulate matter in rats after intratracheal instillation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 589:212-221. [PMID: 28262365 DOI: 10.1016/j.scitotenv.2017.02.149] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/13/2017] [Accepted: 02/18/2017] [Indexed: 05/08/2023]
Abstract
Systemic metabolic effects and toxicity mechanisms of ambient fine particulate matter (PM2.5) remain uncertain. In order to investigate the mechanisms in PM2.5 toxicity, we explored the endogenous metabolic changes and possible influenced metabolic pathways in rats after intratracheal instillation of PM2.5 by using a 1H nuclear magnetic resonance (NMR)-based metabolomics approach. Liver and kidney histopathology examinations were also performed. Chemical characterization demonstrated that PM2.5 was a complex mixture of elements. Histopathology showed cellular edema in liver and glomerulus atrophy of the PM2.5 treated rats. We systematically analyzed the metabolites changes of serum and urine in rats using 1H NMR techniques in combination with multivariate statistical analysis. Significantly reduced levels of lactate, alanine, dimethylglycine, creatine, glycine and histidine in serum, together with increased levels of citrate, arginine, hippurate, allantoin and decreased levels of allthreonine, lactate, alanine, acetate, succinate, trimethylamine, formate in urine were observed of PM2.5 treated rats. The mainly affected metabolic pathways by PM2.5 were glycine, serine and threonine metabolism, glyoxylate and dicarboxylate metabolism, citrate cycle (TCA cycle), nitrogen metabolism and methane metabolism. Our study provided important information on assessing the toxicity of PM2.5 and demonstrated that metabolomics approach can be employed as a tool to understand the toxicity mechanism of complicated environmental pollutants.
Collapse
Affiliation(s)
- Yannan Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069. PR China
| | - Hejing Hu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069. PR China
| | - Yanfeng Shi
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069. PR China
| | - Xiaozhe Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069. PR China
| | - Lige Cao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069. PR China
| | - Jing Wu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069. PR China
| | - Collins Otieno Asweto
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069. PR China
| | - Lin Feng
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069. PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069. PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069. PR China.
| |
Collapse
|
29
|
Feng Y, Min L, Zhang W, Liu J, Hou Z, Chu M, Li L, Shen W, Zhao Y, Zhang H. Zinc Oxide Nanoparticles Influence Microflora in Ileal Digesta and Correlate Well with Blood Metabolites. Front Microbiol 2017. [PMID: 28626453 PMCID: PMC5454036 DOI: 10.3389/fmicb.2017.00992] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) are used widely in consumer and industrial products, however, their influence on gut microbiota and metabolism and their mutual interactions are not fully understood. In this study, the effects of ZnO NPs on ileal bacterial communities, plasma metabolites, and correlations between them were investigated. Hens were fed with different concentrations of ZnO NPs [based on Zn; 0 mg/kg (control), 25 mg/kg, 50 mg/kg, and 100 mg/kg] for 9 weeks. Subsequently, ileal digesta and blood plasma were collected for analysis of microflora and metabolites, respectively. The V3-V4 region of the 16S rRNA gene of ileal digesta microbiota was sequenced using the Illumina HiSeq 2500 platform. The predominant bacterial community in the ileum belongs to the phylum Firmicutes. The richness of the bacterial community was negatively correlated with increasing amounts of ZnO NPs (r = -0.636, P < 0.01); when ZnO NP levels were at 100 mg/kg, microbiota diversity was significantly decreased (P < 0.05). The community structure determined by LEfSe analysis indicated that Bacilli, Fusobacteria, and Proteobacteria were changed, and Lactobacillus was reduced by ZnO NPs. Moreover, metabolism as analyzed by nuclear magnetic resonance (NMR) indicated that glucose, some amino acids, and other metabolites were changed by ZnO NPs. Choline, lactate, and methionine were positively correlated with bacterial richness. In summary, ZnO NPs could influence the levels of microflora in ileal digesta, particularly Lactobacillus. Furthermore, the richness of the microbiota was related to changes in choline, lactate, and methionine metabolism.
Collapse
Affiliation(s)
- Yanni Feng
- College of Animal Science and Technology, Qingdao Agricultural UniversityQingdao, China
| | - Lingjiang Min
- College of Animal Science and Technology, Qingdao Agricultural UniversityQingdao, China
| | - Weidong Zhang
- College of Animal Science and Technology, Qingdao Agricultural UniversityQingdao, China
| | - Jing Liu
- Core Laboratories of Qingdao Agricultural UniversityQingdao, China
| | - Zhumei Hou
- College of Marine Science and Technology, Qingdao Agricultural UniversityQingdao, China
| | - Meiqiang Chu
- College of Animal Science and Technology, Qingdao Agricultural UniversityQingdao, China
| | - Lan Li
- College of Animal Science and Technology, Qingdao Agricultural UniversityQingdao, China
| | - Wei Shen
- College of Animal Science and Technology, Qingdao Agricultural UniversityQingdao, China
| | - Yong Zhao
- College of Animal Science and Technology, Qingdao Agricultural UniversityQingdao, China.,State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural SciencesBeijing, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|