1
|
Petrásková L, Bojarová P. Recent trends in the separation and analysis of chitooligomers. Carbohydr Res 2025; 548:109337. [PMID: 39642757 DOI: 10.1016/j.carres.2024.109337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Chitosan is a widely used linear biopolymer composed mainly of glucosamine and to a lesser extent of N-acetylglucosamine units. Many biological activities of chitosan are attributed to its shorter oligomeric chains, which consist of chitosan prepared either by enzyme activity (lysozyme, bacterial chitinase) or chemically by acid-catalyzed hydrolysis (e.g. in the stomach). However, these processes always result in a mixture of shorter chitooligosaccharides with varying degrees of acetylation whereas for relevant results of biological studies it is necessary to work with a precisely defined material. In this review, we provide an overview and comparison of analytical methods leading to the determination of the degree of polymerization (DP), the degree of acetylation (DA), the fraction of acetylation (FA) and the acetylation patterns (PA) of chitooligosaccharide chains and of the current state of knowledge on chitooligosaccharide separation. This review aims to present the most promising routes to well-defined low molecular weight chitosan with low dispersity.
Collapse
Affiliation(s)
- Lucie Petrásková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14200, Prague, Czech Republic.
| | - Pavla Bojarová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14200, Prague, Czech Republic
| |
Collapse
|
2
|
Yang L, Qu M, Wang Z, Huang S, Wang Q, Wei M, Li F, Yang D, Pan L. Biochemical Properties of a Novel Cold-Adapted GH19 Chitinase with Three Chitin-Binding Domains from Chitinilyticum aquatile CSC-1 and Its Potential in Biocontrol of Plant Pathogenic Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19581-19593. [PMID: 39190598 DOI: 10.1021/acs.jafc.4c02559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
GH19 (glycoside hydrolase 19) chitinases play crucial roles in the enzymatic conversion of chitin and biocontrol of phytopathogenic fungi. Herein, a novel multifunctional chitinase of GH19 (CaChi19A), which contains three chitin-binding domains (ChBDs), was successfully cloned from Chitinilyticum aquatile CSC-1 and heterologously expressed in Escherichia coli. We also generated truncated mutants of CaChi19A_ΔI, CaChi19A_ΔIΔII, and CaChi19A_CatD consisting of two ChBDs and a catalytic domain, one ChBD and a catalytic domain, and only a catalytic domain, respectively. CaChi19A, CaChi19A_ΔI, CaChi19A_ΔIΔII, and CaChi19A_CatD exhibited cold adaptation, as their relative enzyme activities at 5 °C were 40.7, 51.6, 66.2, and 82.6%, respectively. Compared with CaChi19A and other variants, CaChi19A_ΔIΔII demonstrated a higher level of stability below 50 °C and retained relatively high activity over a wide pH range of 5-12. Analysis of the hydrolysis products revealed that CaChi19A and CaChi19A_ΔIΔII exhibit exoacting, endoacting, and N-acetyl-β-d-glucosaminidase activities toward colloidal chitin. Furthermore, CaChi19A and CaChi19A_ΔIΔII exhibited inhibitory effects on the hyphal growth of Fusarium oxysporum, Fusarium redolens, Fusarium fujikuroi, Fusarium solani, and Coniothyrium diplodiella, thereby illustrating effective biocontrol activity. These results indicated that CaChi19A and CaChi19A_ΔIΔII show advantages in some applications where low temperatures were demanded in industries as well as the biocontrol of fungal diseases in agriculture.
Collapse
Affiliation(s)
- Liyan Yang
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Mingbo Qu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Zhou Wang
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Shiyong Huang
- Guangxi Research Institute of Chemical Industry Co., Ltd., Nanning 530001, China
| | - Qingyan Wang
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Maochun Wei
- Guangxi Research Institute of Chemical Industry Co., Ltd., Nanning 530001, China
| | - Fei Li
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Dengfeng Yang
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Lixia Pan
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| |
Collapse
|
3
|
Wang Y, Li D, Li Z, Cui Z, Ye X. Functional analysis of a novel endo-β-1,6-glucanase MoGlu16 and its application in detecting cell wall β-1,6-glucan of Magnaporthe oryzae. Front Microbiol 2024; 15:1429065. [PMID: 39027104 PMCID: PMC11254853 DOI: 10.3389/fmicb.2024.1429065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
As an essential component of the fungal cell wall, β-1,6-glucan has an important role in the growth and development of fungi, but its distribution has not been investigated in Magnaporthe oryzae. Here, a novel β-1,6-glucanase from M. oryzae, MoGlu16, was cloned and expressed in Pichia pastoris. The enzyme was highly active on pustulan, with a specific activity of 219.0 U/mg at pH 5.0 and 50°C, and showed great selectivity for continuous β-1,6-glycosidic bonding polysaccharides. Based on this, β-1,6-glucan was selectively visualized in the vegetative hyphae, conidia and bud tubes of M. oryzae using a hydrolytically inactive GFP-tagged MoGlu16 with point mutations at the catalytic position (His-MoGlu16E236A-Gfp). The spore germination and appressorium formation were significantly inhibited after incubation of 105/ml conidia with 0.03 μg/μl MoGlu16. Mycelia treated with MoGlu16 produced reactive oxygen species and triggered the cell wall integrity pathway, increasing the expression levels of genes involved in cell wall polysaccharide synthesis. These results revealed that MoGlu16 participated in the remodeling of cell wall in M. oryzae, laying a foundation for the analysis of cell wall structure.
Collapse
Affiliation(s)
- Yanxin Wang
- College of Life Sciences of Liaocheng University, Liaocheng, China
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, Nanjing, China
| | - Ding Li
- Jiangsu Academy of Agricultural Sciences, Institute of Veterinary Immunology & Engineering, Nanjing, China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, Nanjing, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, Nanjing, China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Zhang Q, Zhang X, He Y, Li Y. The synergistic action of two chitinases from Vibrio harveyi on chitin degradation. Carbohydr Polym 2023; 307:120640. [PMID: 36781282 DOI: 10.1016/j.carbpol.2023.120640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 02/02/2023]
Abstract
In this study, two chitinases (VhChit2 and VhChit6) from Vibrio harveyi possessed specific activity of 36.5 and 20.8 U/mg, respectively. Structure analysis indicates that their amino acid composition of active sites is similar, but the substrate binding cleft of VhChit2 is deeper than that of VhChit6. They were shown to have a synergistic effect on chitin degradation, and the optimized degree of synergy and the degradation ratio of chitin reached 1.75 and 23.6 %, respectively. The saturated adsorption capacity of VhChit2 and VhChit6 adsorbed in 1 g of chitin was 48.5 and 33.4 mg. It was found that VhChit2 and VhChit6 had different adsorption sites on chitin, making more enzymes absorbed by chitin. Furthermore, the combined use of VhChit2 and VhChit6 increased their binding force of chitinases with the substrate. The synergistic action of VhChit2 and VhChit6 may be attributed to their different adsorption sites on chitin and the increased binding force with chitin.
Collapse
Affiliation(s)
- Qiao Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; College of Food and Biological Engineering, Hezhou University, Hezhou 542899, China
| | - Xueying Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yuanchang He
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yongcheng Li
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; Hainan Provincial Research Center of Aquatic Resources Efficient Utilization in the South China Sea, Haikou 570228, China.
| |
Collapse
|
5
|
Bartholomew ES, Xu S, Zhang Y, Yin S, Feng Z, Chen S, Sun L, Yang S, Wang Y, Liu P, Ren H, Liu X. A chitinase CsChi23 promoter polymorphism underlies cucumber resistance against Fusarium oxysporum f. sp. cucumerinum. THE NEW PHYTOLOGIST 2022; 236:1471-1486. [PMID: 36068958 DOI: 10.1111/nph.18463] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Fusarium wilt disease, caused by Fusarium oxysporum f. sp. cucumerinum (Foc), leads to widespread yield loss and quality decline in cucumber. However, the molecular mechanisms underlying Foc resistance remain poorly understood. We report the mapping and functional characterisation of CsChi23, encoding a cucumber class I chitinase with antifungal properties. We assessed sequence variations at CsChi23 and the associated defence response against Foc. We functionally characterised CsChi23 using transgenic assay and expression analysis. The mechanism regulating CsChi23 expression was assessed by genetic and molecular approaches. CsChi23 was induced by Foc infection, which led to rapid upregulation in resistant cucumber lines. Overexpressing CsChi23 enhanced fusarium wilt resistance and reduced fungal biomass accumulation, whereas silencing CsChi23 causes loss of resistance. CsHB15, a homeodomain leucine zipper (HD-Zip) III transcription factor, was found to bind to the CsChi23 promoter region and activate its expression. Furthermore, silencing of CsHB15 reduces CsChi23 expression. A single-nucleotide polymorphism variation -400 bp upstream of CsChi23 abolished the HD-Zip III binding site in a susceptible cucumber line. Collectively, our study indicates that CsChi23 is sufficient to enhance fusarium wilt resistance and reveals a novel function of an HD-Zip III transcription factor in regulating chitinase expression in cucumber defence against fusarium wilt.
Collapse
Affiliation(s)
- Ezra S Bartholomew
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shuo Xu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yaqi Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shuai Yin
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhongxuan Feng
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shuyinq Chen
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lei Sun
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Songlin Yang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ying Wang
- Heze Agricultural and Rural Bureau, No. 1021 Shuanghe Road, Mudan District, Heze City, Shandong, 274000, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Huazhong Ren
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of National Education, Beijing, 100193, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Beijing, 100193, China
| | - Xingwang Liu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of National Education, Beijing, 100193, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Beijing, 100193, China
| |
Collapse
|
6
|
Evolutionary Morphogenesis of Sexual Fruiting Bodies in Basidiomycota: Toward a New Evo-Devo Synthesis. Microbiol Mol Biol Rev 2021; 86:e0001921. [PMID: 34817241 DOI: 10.1128/mmbr.00019-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The development of sexual fruiting bodies is one of the most complex morphogenetic processes in fungi. Mycologists have long been fascinated by the morphological and developmental diversity of fruiting bodies; however, evolutionary developmental biology of fungi still lags significantly behind that of animals or plants. Here, we summarize the current state of knowledge on fruiting bodies of mushroom-forming Basidiomycota, focusing on phylogenetic and developmental biology. Phylogenetic approaches have revealed a complex history of morphological transformations and convergence in fruiting body morphologies. Frequent transformations and convergence is characteristic of fruiting bodies in contrast to animals or plants, where main body plans are highly conserved. At the same time, insights into the genetic bases of fruiting body development have been achieved using forward and reverse genetic approaches in selected model systems. Phylogenetic and developmental studies of fruiting bodies have each yielded major advances, but they have produced largely disjunct bodies of knowledge. An integrative approach, combining phylogenetic, developmental, and functional biology, is needed to achieve a true fungal evolutionary developmental biology (evo-devo) synthesis for fungal fruiting bodies.
Collapse
|
7
|
Wang Y, Luo X, Zhao Y, Ye X, Yang F, Li Z, Huang Y, Fang X, Huan M, Li D, Cui Z. Integrated Strategies for Enhancing the Expression of the AqCoA Chitosanase in Pichia pastoris by Combined Optimization of Molecular Chaperones Combinations and Copy Numbers via a Novel Plasmid pMC-GAP. Appl Biochem Biotechnol 2021; 193:4035-4051. [PMID: 34553325 DOI: 10.1007/s12010-021-03668-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022]
Abstract
In our previous study, the chitosanase AqCoA and the chitooligosaccharides it produced were found to exhibit significant protective effects against fungal diseases. In this study, we enhanced the expression of AqCoA using the novel pMC-GAP that enables stable transformation of Escherichia coli, and built an integrated model based on the gene copy number, molecular chaperones, and protein production of AqCoA. In terms of gene dosage, the highest hydrolase activity was 0.32 U/ml in the strain with four copies, which was 1.78-fold higher than that of the strain with only one copy (0.18 U/ml). In addition, we found the chaperones such as PDI, ERO1, HAC1, YDJ1, SSE1, SSA4, and SSO2 improved protein expression. Furthermore, the PDI/ERO1, SSA4/SSE1, and YDJ1/SSO2 pairs synergistically increased the expression levels by 61%, 31%, and 42%, respectively. Finally, we investigated the combined effects of gene copy numbers and molecular chaperones on protein expression. The highest activity reached 2.32 U/ml in the strain with six integrated molecular chaperone expression cassettes and sixteen copies of the target gene, which was 13-fold higher than that of the control strain with only one copy (GAP-1AqCoA). Combined optimization of gene dosage and molecular chaperone combinations significantly increased the expression level of AqCoA, providing a powerful strategy to improve the expression of other heterologous proteins in P. pastoris.
Collapse
Affiliation(s)
- Yanxin Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Xue Luo
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Yuqiang Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China.,Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Fan Yang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Xiaodong Fang
- Guangzhou Hanyun Parmaceutical Technology Co. Ltd, Guangzhou, 510000, China
| | - Minghui Huan
- Microbial Research Institute of Liaoning Province, Chaoyang, China
| | - Ding Li
- Institute of Veterinary Immunology &Engineering, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, People's Republic of China.
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China. .,Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
8
|
Liu C, Yan S, Zhao J, Lin M, Duan B, Zhang Z, Yang Y, Liu Z, Yuan S. An Aspergillus nidulans endo-β-1,3-glucanase exhibited specific catalytic features and was used to prepare 3-O-β-cellobiosyl-d-glucose and 3-O-β-gentiobiosyl-d-glucose with high antioxidant activity from barley β-glucan and laminarin, respectively. Int J Biol Macromol 2021; 186:424-432. [PMID: 34246678 DOI: 10.1016/j.ijbiomac.2021.07.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 12/01/2022]
Abstract
An endo-β-1,3(4)-glucanase AnENG16A from Aspergillus nidulans shows distinctive catalytic features for hydrolysis of β-glucans. AnENG16A hydrolyzed Eisenia bicyclis laminarin to mainly generate 3-O-β-gentiobiosyl-d-glucose and hydrolyzed barley β-glucan to mainly produce 3-O-β-cellobiosyl-d-glucose. Using molecular exclusion chromatography, we isolated and purified 3-O-β-cellobiosyl-d-glucose and 3-O-β-gentiobiosyl-d-glucose, respectively, from AnENG16A-hydrolysate of barley β-glucan and E. bicyclis laminarin. Further study reveals that 3-O-β-cellobiosyl-d-glucose had 8.99-fold higher antioxidant activity than barley β-glucan and 3-O-β-gentiobiosyl-d-glucose exhibited 43.0% higher antioxidant activity than E. bicyclis laminarin. Notably, 3-O-β-cellobiosyl-d-glucose and 3-O-β-gentiobiosyl-d-glucose exhibited 148.9% and 116.0% higher antioxidant activity than laminaritriose, respectively, indicating that β-1,4-linkage or -1,6-linkage at non-reducing end of β-glucotrioses had enhancing effect on antioxidant activity compared to β-1,3-linkage. Furthermore, 3-O-β-cellobiosyl-d-glucose showed 237.9% higher antioxidant activity than cellotriose, and laminarin showed 5.06-fold higher antioxidant activity than barley β-glucan, indicating that β-1,4-linkage at reducing end of β-glucans or oligosaccharides resulted in decrease of antioxidant activity compared to β-1,3-linkage.
Collapse
Affiliation(s)
- Cuicui Liu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu 210023, PR China
| | - Songling Yan
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu 210023, PR China
| | - Jing Zhao
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu 210023, PR China
| | - Miao Lin
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu 210023, PR China
| | - Baiyun Duan
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu 210023, PR China
| | - Zhenqing Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, PR China
| | - Yao Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, Jiangsu 210023, PR China.
| | - Zhonghua Liu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu 210023, PR China.
| | - Sheng Yuan
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu 210023, PR China.
| |
Collapse
|
9
|
Li M, Bi J, Bai Y, Kang L, Duan B, Liu Z, Yuan S. Accumulation and cross-linkage of β-1,3/1,6-glucan lead to loss of basal stipe cell wall extensibility in mushroom Coprinopsis cinerea. Carbohydr Polym 2021; 259:117743. [PMID: 33674003 DOI: 10.1016/j.carbpol.2021.117743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 11/19/2022]
Abstract
The mature basal stipe of mushroom Coprinopsis cinerea loses wall extensibility. We found that an endo-β-1,3-glucanase ENG from C. cinerea could restore mature basal stipe wall extensibility via pretreatment such that the ENG-pretreated basal stipe walls could be induced to extend by chitinase ChiIII. ENG pretreatment released glucose, laminaribiose, and 3-O-D-gentiobiose-D-glucose from the basal stipe walls, consistent with ENG-digested products of β-1,6-branched β-1,3-glucan. Different effects of endo-β-1,3-glucanase ENG and exo-β-1,3-glucanase EXG pretreatment on the structure, amount and ratio (β-1,3-glucoside bonds to β-1,6-glucoside bonds) of products from the basal stipe and the apical stipe cell walls, respectively, and on the cell wall extensibility and the cell wall ultra-architecture of the basal stipes were analyzed. All results demonstrate that the more accumulation and cross-linkage of β-1,6-branched β-1,3-glucan with wall maturation lead to loss of wall extensibility of the basal stipe regions compared to the apical stipe cell walls.
Collapse
Affiliation(s)
- Maomao Li
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Rd, Xianlin University Park, Nanjing 210046, PR China
| | - Jingjing Bi
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Rd, Xianlin University Park, Nanjing 210046, PR China
| | - Yang Bai
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Rd, Xianlin University Park, Nanjing 210046, PR China
| | - Liqin Kang
- College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210013, PR China
| | - Baiyun Duan
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Rd, Xianlin University Park, Nanjing 210046, PR China
| | - Zhonghua Liu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Rd, Xianlin University Park, Nanjing 210046, PR China.
| | - Sheng Yuan
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Rd, Xianlin University Park, Nanjing 210046, PR China.
| |
Collapse
|
10
|
Liu C, Bi J, Kang L, Zhou J, Liu X, Liu Z, Yuan S. The molecular mechanism of stipe cell wall extension for mushroom stipe elongation growth. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2020.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Liu X, Wang R, Bi J, Kang L, Zhou J, Duan B, Liu Z, Yuan S. A novel endo-β-1,6-glucanase from the mushroom Coprinopsis cinerea and its application in studying of cross-linking of β-1,6-glucan and the wall extensibility in stipe cell walls. Int J Biol Macromol 2020; 160:612-622. [DOI: 10.1016/j.ijbiomac.2020.05.244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/13/2020] [Accepted: 05/27/2020] [Indexed: 12/19/2022]
|
12
|
Bai Y, Wang Y, Liu X, Zhao J, Kang L, Liu Z, Yuan S. Heterologous expression and characterization of a novel chitin deacetylase, CDA3, from the mushroom Coprinopsis cinerea. Int J Biol Macromol 2020; 150:536-545. [DOI: 10.1016/j.ijbiomac.2020.02.083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/08/2020] [Accepted: 02/09/2020] [Indexed: 12/19/2022]
|
13
|
Chitinases Play a Key Role in Stipe Cell Wall Extension in the Mushroom Coprinopsis cinerea. Appl Environ Microbiol 2019; 85:AEM.00532-19. [PMID: 31126941 DOI: 10.1128/aem.00532-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/10/2019] [Indexed: 11/20/2022] Open
Abstract
The elongation growth of the mushroom stipe is a characteristic but not well-understood morphogenetic event of basidiomycetes. We found that extending native stipe cell walls of Coprinopsis cinerea were associated with the release of N-acetylglucosamine and chitinbiose and with chitinase activity. Two chitinases among all detected chitinases from C. cinerea, ChiE1 and ChiIII, reconstituted heat-inactivated stipe wall extension and released N-acetylglucosamine and chitinbiose. Interestingly, both ChiE1 and ChiIII hydrolyze insoluble crystalline chitin powder, while other C. cinerea chitinases do not, suggesting that crystalline chitin components of the stipe cell wall are the target of action for ChiE1 and ChiIII. ChiE1- or ChiIII-reconstituted heat-inactivated stipe walls showed maximal extension activity at pH 4.5, consistent with the optimal pH for native stipe wall extension in vitro; ChiE1- or ChiIII-reconstituted heat-inactivated stipe wall extension activities were associated with stipe elongation growth regions; and the combination of ChiE1 and ChiIII showed a synergism to reconstitute heat-inactivated stipe wall extension at a low action concentration. Field emission scanning electron microscopy (FESEM) images showed that the inner surface of acid-induced extended native stipe cell walls and ChiE1- or ChiIII-reconstituted extended heat-inactivated stipe cell walls exhibited a partially broken parallel microfibril architecture; however, these broken transversely arranged microfibrils were not observed in the unextended stipe cell walls that were induced by neutral pH buffer or heat inactivation. Double knockdown of ChiE1 and ChiIII resulted in the reduction of stipe elongation, mycelium growth, and heat-sensitive cell wall extension of native stipes. These results indicate a chitinase-hydrolyzing mechanism for stipe cell wall extension.IMPORTANCE A remarkable feature in the development of basidiomycete fruiting bodies is stipe elongation growth that results primarily from manifold cell elongation. Some scientists have suggested that stipe elongation is the result of enzymatic hydrolysis of cell wall polysaccharides, while other scientists have proposed the possibility that stipe elongation results from nonhydrolytic disruption of the hydrogen bonds between cell wall polysaccharides. Here, we show direct evidence for a chitinase-hydrolyzing mechanism of stipe cell wall elongation in the model mushroom Coprinopsis cinerea that is different from the expansin nonhydrolysis mechanism of plant cell wall extension. We presumed that in the growing stipe cell walls, parallel chitin microfibrils are tethered by β-1,6-branched β-1,3-glucans, and that the breaking of the tether by chitinases leads to separation of these microfibrils to increase their spacing for insertion of new synthesized chitin and β-1,3-glucans under turgor pressure in vivo.
Collapse
|
14
|
Liu H, Cheng M, Zhao S, Lin C, Song J, Yang Q. ATP-Binding Cassette Transporter Regulates N,N'-diacetylchitobiose Transportation and Chitinase Production in Trichoderma asperellum T4. Int J Mol Sci 2019; 20:ijms20102412. [PMID: 31096671 PMCID: PMC6566805 DOI: 10.3390/ijms20102412] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 01/14/2023] Open
Abstract
ATP-binding cassette (ABC) transporters are a superfamily of proteins that transport nutrient substances and secondary metabolites through cell membranes. They also act as an uptake system for N,N′-diacetylchitobiose (GlcNAc)2 in Streptomyces coelicolor. (GlcNAc)2 is an important inducer of chitinase. However, whether the ABC transporter in Trichoderma spp. is also responsible for (GlcNAc)2 uptake and chitinase induction has not yet been confirmed. In this study, we applied RNA interference and overexpression technologies to alter the expression level of the ABC-B transporter in order to detect changes in its transportation ability and the expression level of inducible endo-chitinase ECH42—an important biocontrol enzyme in Trichoderma asperellum. The results revealed that, after interference with the expression of the ABC-B transporter, T. asperellum T4 was only able to grow normally when glucose was the only carbon source. Compared with the wild-type, the efficiency of (GlcNAc)2 by the overexpression strain evidently increased, along with the activity level of ECH42. In conclusion, one of the functions of the ABC-B transporter in T.asperellum is the uptake and transport of (GlcNAc)2 into cells, and chitobiose is a strong inducer of ECH42 in T. asperellum T4.
Collapse
Affiliation(s)
- He Liu
- School of Life Science and Technology 150080, Harbin Institute of Technology, Harbin 150000, China.
| | - Ming Cheng
- School of Life Science and Technology 150080, Harbin Institute of Technology, Harbin 150000, China.
| | - Shanshan Zhao
- School of Life Science and Technology 150080, Harbin Institute of Technology, Harbin 150000, China.
| | - Congyu Lin
- School of Life Science and Technology 150080, Harbin Institute of Technology, Harbin 150000, China.
| | - Jinzhu Song
- School of Life Science and Technology 150080, Harbin Institute of Technology, Harbin 150000, China.
| | - Qian Yang
- School of Life Science and Technology 150080, Harbin Institute of Technology, Harbin 150000, China.
| |
Collapse
|
15
|
Zhou J, Dai R, Wang Y, Li M, Zhu Y, Chen L, Kang L, Liu Z, Yang Y, Yuan S. A novel thermophilic exochitinase ChiEn3 from Coprinopsis cinerea exhibits a hyperhydrolytic activity toward 85% deacetylated chitosan and a significant application to preparation of chitooligosaccharides from the chitosan. Carbohydr Polym 2018; 207:729-736. [PMID: 30600059 DOI: 10.1016/j.carbpol.2018.12.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/12/2018] [Accepted: 12/16/2018] [Indexed: 01/13/2023]
Abstract
ChiEn3 from Coprinopsis cinerea was characterized as an exo-acting chitinase with a processivity. ChiEn3 hydrolyzed only soluble chitin and exhibited a hyperhydrolytic activity toward 85% deacetylated chitosan which was 33.6-fold higher than its hydrolytic activity toward glycol chitin. Its maximum hydrolytic activity was observed at 60 °C and retained 66.2% of hydrolytic activity after 60 min incubation at 60 °C. Commercial 85% deacetylated chitosan was degraded by ChiEn3 to a series of COSs with a DP of 2-20 in which COSs with a DP of 3-6 were dominant, whereas, lab-prepared chitosan (FA = 0.65) was degraded by ChiEn3 to COSs with a DP of 2-10 in which the AA dimer was dominant. DPPH-radical-scavenging activity of ChiEn3-digested products of 85% deacetylated chitosan was 3.32-fold higher than that of undigested 85% deacetylated chitosan. Therefore, ChiEn3 shows a valuable advantage for application to the preparation of COSs from commercial 85% deacetylated chitosan.
Collapse
Affiliation(s)
- Jiangsheng Zhou
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Rujuan Dai
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Yanxin Wang
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Maomao Li
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Yiting Zhu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Lingling Chen
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Liqin Kang
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Zhonghua Liu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Yao Yang
- Ginling College, Nanjing Normal University, 122 Ninghai Road, Nanjing, 210097, PR China
| | - Sheng Yuan
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China.
| |
Collapse
|
16
|
Zhou J, Chen L, Kang L, Liu Z, Bai Y, Yang Y, Yuan S. ChiE1 from Coprinopsis cinerea is Characterized as a Processive Exochitinase and Revealed to Have a Significant Synergistic Action with Endochitinase ChiIII on Chitin Degradation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12773-12782. [PMID: 30404442 DOI: 10.1021/acs.jafc.8b04261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fruiting bodies that exhibit strong autolysis of Coprinopsis cinerea are a good resource for the chitinolytic system. In this study, a new Chitinase ChiE1 from C. cinerea was cloned, heterologously expressed, and characterized. Biochemical analysis demonstrated that ChiE1 is an exochitinase with a processive mode of action. Although ChiE1 contains only a single catalytic domain without a binding domain, it can bind to and degrade insoluble chitin powder and colloidal chitin. The combination of ChiE1 and C. cinerea endochitinase ChiIII could increase the amount of reducing sugar released from chitin powder by approximately 120% compared to using ChiE1 and ChiIII alone. The synergistic action of ChiE1 and ChiIII on degradation of chitin powder is higher than all previously reported synergism of chitinases. The recombinant Chitinase ChiE1 expressed in Pichia pastoris may be used as a synergistic chitinase for a reconstituted chitinolytic system for agricultural, biological, and environmental applications.
Collapse
Affiliation(s)
- Jiangsheng Zhou
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , PR China
| | - Lingling Chen
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , PR China
| | - Liqin Kang
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , PR China
| | - Zhonghua Liu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , PR China
| | - Yang Bai
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , PR China
| | - Yao Yang
- Ginling College , Nanjing Normal University , 122 Ninghai Road , Nanjing 210097 , PR China
| | - Sheng Yuan
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , PR China
| |
Collapse
|
17
|
Sakamoto Y. Influences of environmental factors on fruiting body induction, development and maturation in mushroom-forming fungi. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2018.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Ramakrishna B, Vaikuntapu P, Mallakuntla MK, Bhuvanachandra B, Sivaramakrishna D, Uikey S, Podile AR. Carboxy-terminal glycosyl hydrolase 18 domain of a carbohydrate active protein of Chitinophaga pinensis is a non-processive exochitinase. Int J Biol Macromol 2018; 115:1225-1232. [DOI: 10.1016/j.ijbiomac.2018.04.159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/07/2018] [Accepted: 04/29/2018] [Indexed: 01/12/2023]
|
19
|
Cloning, characterization and substrate degradation mode of a novel chitinase from Streptomyces albolongus ATCC 27414. Food Chem 2018; 261:329-336. [PMID: 29739601 DOI: 10.1016/j.foodchem.2018.04.068] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 11/21/2022]
Abstract
A novel chitinase gene was cloned from Streptomyces albolongus ATCC 27414, and expressed successfully in Escherichia coli BL21. The recombinant enzyme (SaChiA4) belongs to glycoside hydrolases (GH) family 18 and consists of a catalytic domain and a chitin binding domain (CBD) in its C-terminus. SaChiA4 was purified homogeneously (specific activity of 66.2 U/mg with colloidal chitin as substrate), and showed a molecular mass of approximately 47 kDa. SaChiA4 showed its optimal activity at pH 5.0 and 55 °C and exhibited remarkable pH and temperature stability. SaChiA4 has been proved to have a higher specificity toward glycosides containing acetyl groups and hydrolyzes the substrates in a non-processive manner with higher ability to produce (GlcNAc)2 and GlcNAc. The results indicated that SaChiA4 is a novel endo-type chitinase, which has potential applications in the treatment of chitin wastes and the production of (GlcNAc)2.
Collapse
|
20
|
Wang Y, Niu X, Guo X, Yu H, Liu Z, Zhang Z, Yuan S. Heterologous expression, characterization and possible functions of the chitin deacetylases, Cda1 and Cda2, from mushroom Coprinopsis cinerea. Glycobiology 2018; 28:318-332. [DOI: 10.1093/glycob/cwy007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/22/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Yanxin Wang
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Rd, Xianlin University Park, Nanjing 210023, PR China
| | - Xin Niu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Rd, Xianlin University Park, Nanjing 210023, PR China
| | - Xiaoli Guo
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Rd, Xianlin University Park, Nanjing 210023, PR China
| | - Han Yu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Rd, Xianlin University Park, Nanjing 210023, PR China
| | - Zhonghua Liu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Rd, Xianlin University Park, Nanjing 210023, PR China
| | - Zhenqing Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Wenjing Rd, Dushu lake campus, Suzhou, Jiangsu 215021, PR China
| | - Sheng Yuan
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Rd, Xianlin University Park, Nanjing 210023, PR China
| |
Collapse
|
21
|
Niu X, Zhou JS, Wang YX, Liu CC, Liu ZH, Yuan S. Heterologous Expression and Characterization of a Novel Chitinase (ChiEn1) from Coprinopsis cinerea and its Synergism in the Degradation of Chitin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6943-6956. [PMID: 28721730 DOI: 10.1021/acs.jafc.7b02278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chitinase ChiEn1 did not hydrolyze insoluble chitin but showed hydrolysis and transglycosylation activities toward chitin-oligosaccharides. Interestingly, the addition of ChiEn1 increased the amount of reducing sugars released from chitin powder by endochitinase ChiIII by 105.0%, and among the released reducing sugars the amount of (GlcNAc)2 was increased by 149.5%, whereas the amount of GlcNAc was decreased by 10.3%. The percentage of GlcNAc in the products of chitin powder with the combined ChiIII and ChiEn1 was close to that in the products of chitin-oligosaccharides with ChiEn1, rather than that with ChiIII. These results indicate that chitin polymers are first degraded into chitin oligosaccharides by ChiIII and the latter are further degraded to monomers and dimers by ChiEn1, and the synergistic action of ChiEn1 and ChiIII is involved in the efficient degradation of chitin in cell walls during pileus autolysis. The structure modeling explores the molecular base of ChiEn1 action.
Collapse
Affiliation(s)
- Xin Niu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University , Nanjing, PR China 210023
| | - Jiang-Sheng Zhou
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University , Nanjing, PR China 210023
| | - Yan-Xin Wang
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University , Nanjing, PR China 210023
| | - Cui-Cui Liu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University , Nanjing, PR China 210023
| | - Zhong-Hua Liu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University , Nanjing, PR China 210023
| | - Sheng Yuan
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University , Nanjing, PR China 210023
| |
Collapse
|
22
|
Lentinula edodes Genome Survey and Postharvest Transcriptome Analysis. Appl Environ Microbiol 2017; 83:AEM.02990-16. [PMID: 28314725 DOI: 10.1128/aem.02990-16] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/07/2017] [Indexed: 12/22/2022] Open
Abstract
Lentinula edodes is a popular, cultivated edible and medicinal mushroom. Lentinula edodes is susceptible to postharvest problems, such as gill browning, fruiting body softening, and lentinan degradation. We constructed a de novo assembly draft genome sequence and performed gene prediction for Lentinula edodesDe novo assembly was carried out using short reads from paired-end and mate-paired libraries and by using long reads by PacBio, resulting in a contig number of 1,951 and an N50 of 1 Mb. Furthermore, we predicted genes by Augustus using transcriptome sequencing (RNA-seq) data from the whole life cycle of Lentinula edodes, resulting in 12,959 predicted genes. This analysis revealed that Lentinula edodes lacks lignin peroxidase. To reveal genes involved in the loss of quality of Lentinula edodes postharvest fruiting bodies, transcriptome analysis was carried out using serial analysis of gene expression (SuperSAGE). This analysis revealed that many cell wall-related enzymes are upregulated after harvest, such as β-1,3-1,6-glucan-degrading enzymes in glycoside hydrolase (GH) families GH5, GH16, GH30, GH55, and GH128, and thaumatin-like proteins. In addition, we found that several chitin-related genes are upregulated, such as putative chitinases in GH family 18, exochitinases in GH20, and a putative chitosanase in GH family 75. The results suggest that cell wall-degrading enzymes synergistically cooperate for rapid fruiting body autolysis. Many putative transcription factor genes were upregulated postharvest, such as genes containing high-mobility-group (HMG) domains and zinc finger domains. Several cell death-related proteins were also upregulated postharvest.IMPORTANCE Our data collectively suggest that there is a rapid fruiting body autolysis system in Lentinula edodes The genes for the loss of postharvest quality newly found in this research will be targets for the future breeding of strains that keep fresh longer than present strains. De novoLentinula edodes genome assembly data will be used for the construction of a complete Lentinula edodes chromosome map for future breeding.
Collapse
|