1
|
Sun YY, Yan ZS, Gao Y, Liang XX, Dong YY, Yang XY, Dang MY, Bai D, Wu XX. Substance basis and fermentation mechanism study of the analgesic and anti-inflammatory effects of Tibetan medicine Wuwei Ganlu based on JiuQu fermentation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 344:119565. [PMID: 40015538 DOI: 10.1016/j.jep.2025.119565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wuwei Ganlu, as an integral part of the Tibetan medical system known as "Sowa Rigpa" originates from the formulations documented in the "Four Tantras". It is recognized by UNESCO as an intangible cultural heritage, representing a body of traditional knowledge and practice. Fermentation, a crucial step in the preparation of Wuwei Ganlu, has not been fully understood in terms of its mechanisms and its impact on the material basis and pharmacological efficacy of the medicine. AIM OF THE STUDY By investigating the effects of fermentation on the chemical components and pharmacological activities of Tibetan medicine Wuwei Ganlu, this study aims to reveal the scientific basis for the enhanced efficacy induced by fermentation. MATERIALS AND METHODS An analgesic and anti-inflammatory animal model was employed to investigate the effects of Tibetan medicine Wuwei Ganlu at different fermentation stages (from 0 to 5 days) on the number of twisting and serum IL-6 levels in mice, aiming to explore the influence of fermentation on the potentiation of its analgesic and anti-inflammatory effects. Based on this, a systematic analysis of the substance basis of Wuwei Ganlu before and after fermentation was conducted using UPLC-Q-Exactive Orbitrap MS and HPLC-MS/MS methods, identifying key differences in the substance composition and determining the indicative components. Additionally, fungal community changes before and after fermentation were studied using ITS rRNA sequencing, which revealed the differences in the fungal community. The integrity of the plant cell walls in Wuwei Ganlu before and after fermentation was examined under a microscope, and the effects of fermentation on the plant cell walls and cellulase activity were assessed by measuring the enzyme activity during the fermentation process. Finally, the fermentation mechanism of Wuwei Ganlu was further corroborated by studying the changes in content and transformation patterns of specific components, including Rutin, Quercitrin, Hyperoside, Quercetin, and Ephedrine, under the same fermentation conditions. RESULTS The analgesic and anti-inflammatory experiments indicated that fermentation significantly enhanced the analgesic and anti-inflammatory effects of Tibetan medicine Wuwei Ganlu, as evidenced by a marked reduction in the number of twisting and IL-6 levels (P < 0.05). Fermentation caused significant changes in the Chemical Compotents of Wuwei Ganlu, increasing the levels of Ephedrine (19.69%), Rutin (16.71%), Quercitrin (21.54%), Quercetin (132.54%), and Hyperoside (110.16%). Fungal community analysis revealed that Saccharomycetaceae was the dominant fungal genus during fermentation, with its abundance significantly increasing after fermentation, while Aspergillus showed relatively low abundance on day 3 of fermentation. The cellulase produced by Saccharomycetaceae promoted the hydrolysis of the plant cell walls. Microscopic observation demonstrated that fermentation led to plant cell walls rupture and fiber structure transparency in the raw materials, which enhanced cellulase activity between days 1 and 3, promoting the release of Ephedrine, Rutin, Quercitrin, Quercetin, and Hyperoside. Under the catalytic action of JiuQu fermentation starter, Rutin, Quercitrin, and Hyperoside were hydrolyzed into Quercetin, while Ephedrine was transformed into Methylephedrone and Cathinone, confirming the fermentation-induced transformation pathways of these compotents. The heatmap of the correlation between chemical components, microbial community, and pharmacological indicators showed that the abundance of Saccharomycetaceae in the fermented samples was significantly correlated with the Twisting inhibition rate and IL-6 levels in mice, as well as Ephedrine and Quercetin, suggesting that Ephedrine and Quercetin may have potential analgesic and anti-inflammatory effects. CONCLUSION The fermentation process significantly enhances the analgesic and anti-inflammatory effects, primarily due to the chemical components changes in Tibetan medicine Wuwei Ganlu induced by fermentation. Fermentation regulates the abundance of dominant microbial communities, particularly Saccharomycetaceae species, and enhances cellulase activity. This enhances the breakdown of plant cell walls, promoting the release of chemical components. Additionally, fermentation facilitates the conversion of glycosides (water-soluble) into aglycones (lipid-soluble), such as the hydrolysis of Rutin, Hyperoside, and hypericin into Quercetin. In summary, the fermentation mechanism of Wuwei Ganlu involves an increase in Saccharomycetaceae abundance and enhanced cellulase activity under the influence of JiuQu fermentation, leading to plant cell walls breakdown and the subsequent release of chemical components. Moreover, the conversion of glycosides to lipid-soluble aglycones during fermentation enhances transdermal absorption, which may also contribute to the potentiation of its effects.
Collapse
Affiliation(s)
- Yang-Yang Sun
- The Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Zheng-Shen Yan
- The Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yuan Gao
- The Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xiao-Xue Liang
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Ying-Ying Dong
- The Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xiao-Yun Yang
- The Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Meng-Ya Dang
- The Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Dong Bai
- The Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xiao-Xia Wu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
2
|
Li J, Niu B, Wu P, Meng X, Fan L. Organic acid-assisted heat treatment enhances the xanthine oxidase inhibitory activity of Flos Sophorae Immaturus tea. J Food Sci 2025; 90:e17563. [PMID: 39731730 DOI: 10.1111/1750-3841.17563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 12/30/2024]
Abstract
Abundant polyphenols in Flos Sophorae Immaturus tea (FSIt) exhibited xanthine oxidase (XO) inhibitory activity. However, the XO inhibitory activity of FSIt was closely related to the processing methods. Herein, organic acids were employed as catalysts for polyphenol conversion during heat treatment and applied to enhance the XO inhibitory activity of FSIt; the potential mechanisms were clarified by polyphenols degradation and conversion analysis, omission experiment, and interaction assay. Results showed that 10% oxalic acid (OA)- or 10% lactic acid (LA)-assisted heat treatment significantly increased the XO inhibition rate from 26.49% to 84.16% and 75.45%, respectively. OA-assisted presented the high catalytic efficiency of rutin (31.56%), hyperoside (33.21%), and quercitrin (34.14%) to quercetin during heat treatment, as well as kaempferol-3-O-rutinoside (20.04%) to kaempferol and narcissoside (26.04%) to isorhamnetin. The de-glycosylation of polyphenols was the predominant reason for the enhancement of XO inhibitory activity. Moreover, the synergistic effect of chlorogenic acid and flavonoids also exhibited the ability to improve the XO inhibitory activity of FSIt. PRACTICAL APPLICATION: Improving the polyphenol composition of FSIt through organic acid-assisted heat treatment, thereby enhancing its XO inhibitory activity, is a promising approach to deeply understand the relationship between processing methods and bioactivities of products, and further promote innovation in specific functional food processing technology.
Collapse
Affiliation(s)
- Jun Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Chinese Cuisine Promotion and Research Base, Yangzhou University, Yangzhou, China
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, China
| | - Ben Niu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Peng Wu
- Chinese Cuisine Promotion and Research Base, Yangzhou University, Yangzhou, China
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, China
| | - Xiangren Meng
- Chinese Cuisine Promotion and Research Base, Yangzhou University, Yangzhou, China
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, China
| | - Liuping Fan
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Niu Y, Liu Q, Ou X, Zhou Y, Sun Z, Yan F. CO 2-Sourced Polymer Dyes for Dual Information Encryption. SMALL METHODS 2024; 8:e2400470. [PMID: 38818740 DOI: 10.1002/smtd.202400470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Large amounts of small molecule dyes leak into the ecosystems annually in harmful and unsustainable ways. Polymer dyes have attracted much attention because of their high migration resistance, excellent stability, and minimized leakage. However, the complex synthesis process, high cost, and poor degradability hinder their widespread application. Herein, green and sustainable polymer dyes are prepared using natural dye quercetin (Qc) and CO2 through a one-step process. The CO2-sourced polymer dyes show strong migration resistance, high stability, and can be degraded on demand. Additionally, the CO2-sourced polymer dyes showed unique responses to Zn2+, leading to significantly enhanced fluorescence, highlighting their potential for information encryption/decryption. The CO2-sourced polymer dyes can solve the environmental hazards caused by small molecule dye leakage and promote the carbon cycle process. Meanwhile, the one-step synthesis process is expected to achieve sustainable and widespread utilization of CO2-sourced polymer dyes.
Collapse
Affiliation(s)
- Yajuan Niu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Qinbo Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xu Ou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yingjie Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhe Sun
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Feng Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
4
|
Liu Y, Wang C, Chen Z, Yuan H, Lei R, Li X, Ma S, Liu C. Distribution of active ingredients and quality control of Forsythia suspensa with AP-MALDI mass spectrometry imaging. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5073. [PMID: 38989767 DOI: 10.1002/jms.5073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Abstract
The fruits of Forsythia suspensa (F. suspensa) have been used as a traditional Chinese medicine for 2000 years. Currently, the quality control of F. suspensa strictly follows the instructions of Chinese Pharmacopeia, which mainly controls the content of forsythoside A, phillyrin, and volatile oil. In this study, air pressure MALDI mass spectrometry imaging (AP-MALDI MSI) was used to evaluate the quality of F. suspensa fruits and the distribution of dozens of active ingredients. The variation of active ingredients was measured for more than 30 batches of samples, regarding harvest time, cultivated environment, shelf-life, and habitat. Fifty-three active ingredients could be detected in F. suspensa fruits with AP-MALDI MSI. Seven active ingredients were upregulated, four ingredients downregulated, and 15 ingredients did not change in ripe fruits. A sharp variation of active ingredients in late September was observed for the Caochuan fruits harvested in 2019, which is closely related to the appearance of the ginger color of the pericarp under the microscope observation. The microscope observation is a reliable way to classify ripe and green fruits instead of outlook. Just considering forsythoside A and phillyrin, it is found that wild fruits are better than cultivated fruits, but cultivated fruits have high contents of other ingredients. The shelf-life of F. suspensa fruits is proposed to be 3 years, considering the 26 ingredients investigated. It was found that Luoning wild fruits are better than those from Caochuan with a new evaluation method. Mass spectrometry imaging is an easy, objective, and effective method to evaluate the quality of F. suspensa fruits.
Collapse
Affiliation(s)
- Yongli Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
- Hebei Institute for Drug and Medical Device Control, Shijiazhuang, 050227, China
| | - Cheng Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhenhe Chen
- Shimadzu China Innovation Center, Shimadzu China, Beijing, 100020, China
| | - Hao Yuan
- Hebei Institute for Drug and Medical Device Control, Shijiazhuang, 050227, China
| | - Rong Lei
- Hebei Institute for Drug and Medical Device Control, Shijiazhuang, 050227, China
| | - Xiaodong Li
- Shimadzu China Innovation Center, Shimadzu China, Beijing, 100020, China
| | - Shuangcheng Ma
- National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Changxiao Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
- Tianjin Institute of Pharmaceutical Research, Tianjin, 300462, China
| |
Collapse
|
5
|
Wang Q, Chang H, Deng P, He Z, Chen Q, Wang Z, Qin F, Oz F, Oz E, Chen J, Zeng M. Investigation on the simultaneous inhibition of advanced glycation end products, 4-methylimidazole and hydroxymethylfurfural in thermal reaction meat flavorings by liquiritigenin, liquiritin and glycyrrhizic acid and possible pathways. Food Res Int 2023; 173:113414. [PMID: 37803746 DOI: 10.1016/j.foodres.2023.113414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 10/08/2023]
Abstract
The inhibitory effects of liquiritigenin, liquiritin and glycyrrhizic acid against the hazards during the preparation of thermal reaction beef flavoring were investigated using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Liquiritigenin(1.5 mM) inhibited Nε-carboxymethyl-L-lysine and Nε-carboxyethyl-L-lysine by up to 38.69 % and 61.27 %, respectively; 1.5 mM liquiritin inhibited 4-methylimidazole by up to 48.28 %; and 1.5 mM liquiritigenin and 1.0 mM liquiritin inhibited hydroxymethylfurfural by up to 61.20 % and 59.31 %, respectively. The results of the model system showed that the inhibitory effect of the 3 inhibitors could be extended to other thermal reaction flavoring systems. The 3 inhibitors can effectively block key intermediates in beef flavoring, and liquiritigenin can inhibit up to 22.97 % of glyoxal and 22.89 % of methylglyoxal. In addition, liquiritigenin and liquiritin can directly eliminate up to 25.87 % and 21.01 % of methylglyoxal by addition and other means. Free radicals in the simultaneous formation model system were measured using electron spin resonance (ESR), and the results showed that liquiritigenin, liquiritin and glycyrrhizic acid could scavenge free radicals in the system in a dose-dependent manner, with scavenging rates of up to 44.88-57.09 %. Therefore, the inhibitory effects of the 3 inhibitors can be attributed to the intermediate blocking and free radical scavenging pathways.
Collapse
Affiliation(s)
- Qifan Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Haolong Chang
- School of Food and Pharmacy, Shanghai Zhongqiao Vocational And Technical University, Shanghai 201514, China
| | - Peng Deng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Fang Qin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Fatih Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkiye
| | - Emel Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkiye
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Li J, Gong Y, Li J, Fan L. Hydrothermal treatment improves xanthine oxidase inhibitory activity and affects the polyphenol profile of Flos Sophorae Immaturus. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1205-1215. [PMID: 36086816 DOI: 10.1002/jsfa.12215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Flos Sophorae Immaturus (FSI) is rich in polyphenols and a potential uric acid-lowering food. However, the processing of FSI is greatly restricted due to the heat sensitivity and low solubility of polyphenols. In this study, hydrothermal treatment - an effective strategy - was applied to FSI processing. The variation of xanthine oxidase (XO) inhibitory effect and polyphenol composition of FSI during hydrothermal treatment were recorded. RESULTS The XO inhibition rate of FSI increased from 32.42% to 89.00% after hydrothermal treatment at 220 °C for 30 min, as well as total polyphenols (from 0.66 to 1.11 mg mL-1 ) and flavonoids (from 1.21 to 1.58 mg mL-1 ). However, high thermal temperature (>160 °C) and extended thermal time (>90 min) caused the degradation of polyphenols. Rutin, kaempferol-3-O-rutinoside and narcissoside rapidly degraded and converted to quercetin, kaempferol and isorhamnetin when the temperature exceeded 160 °C. The maximum yields of quercetin, kaempferol and isorhamnetin were at 220 °C for 30 min, 90 min and 90 min, respectively. Meanwhile, the conversion kinetics conformed to the first-order model. Interestingly, these newly formed polyphenols possessed better XO inhibitory effects than their derivatives with 3-O-rutinoside. CONCLUSION Polyphenol conversion during hydrothermal treatment was the main reason for enhancing XO inhibitory activity. Therefore, hydrothermal treatment is an appropriate method for improving the XO inhibitory effect of FSI. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun Li
- State Key laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Institute of Food Processing Technology, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Yuhong Gong
- State Key laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jinwei Li
- State Key laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liuping Fan
- State Key laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| |
Collapse
|
7
|
Influence of phenolic compounds on color formation at different stages of the VHP sugar manufacturing process. Sci Rep 2022; 12:19922. [PMID: 36402832 PMCID: PMC9675745 DOI: 10.1038/s41598-022-24455-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022] Open
Abstract
Phenolic compounds are natural dyes contained in sugarcane juice and represent an important parameter in industrial processing, as they significantly affect the color formation of raw sugar. This study investigated the relationship between color formation and phenolic compounds during a Very High Polarization (VHP) sugar manufacturing process, in which the RB92579 genotype represents about 50% of the processed sugarcane. The products evaluated during the industrial processing of sugarcane were: raw juice, mixed juice, lime-treated juice, clarified juice, syrup, massecuite, and VHP sugar. The polyphenols catechin (CAT), chlorogenic acid (CGA), caffeic acid (CAF), vanillin (VAN), syringaldehyde (SYR), p-coumaric acid (p-COU), coumarin (CUM), and rutin (RUT) were quantified by high-performance liquid chromatography (HPLC). The highest concentrations of CGA and SYR were obtained from the sucrose crystallization product (massecuite), similarly to the parameters of color, total phenols and the total polyphenol content. CGA was the predominant polyphenol in the samples of clarified juice, syrup, massecuite and VHP sugar, with the latter presenting concentrations above 50%. The presence of phenolic compounds provided different indices of color during the production process. In this context, chlorogenic acid (CGA) was the compound that presented the most expressive results, contributing significantly to the formation of color in sugarcane processing products, which is a fact that has not yet been reported in the literature. The color of the VHP sugar crystals also had a positive relationship with the concentration of phenolics, with greater evidence for CGA.
Collapse
|
8
|
Li J, Gong Y, Li J, Fan L. Improving the xanthine oxidase and adenosine deaminase inhibitory activities of Flos Sophorae Immaturus by ultrasound-assisted heating treatments. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Zhang H, Wang M, Xiao J. Stability of polyphenols in food processing. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 102:1-45. [PMID: 36064291 DOI: 10.1016/bs.afnr.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent years, polyphenols have attracted considerable attention due to their diverse potential health-beneficial effects on humans. Polyphenols are widely distributed in natural plants, and therefore play an important role in human food. Thermal processing, irradiation, fermentation, high pressure, microwave, and drying are several popular food processing methods. However, polyphenols are instable in food processing, which easily degrade and react with other components because of their polyhydroxy characteristic. Traditional and advanced technologies have been used to characterize the stability of polyphenols. The main influence factors of stability of polyphenols such as pH, temperature, light, oxygen, enzymes, metal ions, as well as macromolecules, are summarized. Besides, thermal processing greatly promoted the degradation of polyphenols. Thermal degradation mechanisms and products of some polyphenols, such as quercetin and rutin, have been intensively demonstrated. Nevertheless, the structural changes of polyphenols caused by food processing, may lead to different bioactivities from the obtained results based on unprocessed polyphenols. Therefore, to maximize the beneficial effects of polyphenols ingested by human from processed food, the stability of polyphenols in food processing must be thoroughly investigated to assess their real bioactivities. In addition, some available technologies for improving the stability of polyphenols in food processing have been proposed.
Collapse
Affiliation(s)
- Haolin Zhang
- Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Minglong Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Ourense, Spain.
| |
Collapse
|
10
|
Hu Q, Lai P, Chen F, Yu Y, Zhang B, Li H, Liu R, Fan Y, Deng Z. Whole mulberry leaves as a promising functional food: From the alteration of phenolic compounds during spray drying and in vitro digestion. J Food Sci 2022; 87:1230-1243. [DOI: 10.1111/1750-3841.16015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/27/2021] [Accepted: 11/23/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Qi‐rui Hu
- State Key Laboratory of Food Science and Technology, College of Food Science Nanchang University Nanjing East Road Nanchang Jiangxi 330047 China
| | - Peng‐wei Lai
- State Key Laboratory of Food Science and Technology, College of Food Science Nanchang University Nanjing East Road Nanchang Jiangxi 330047 China
| | - Fang Chen
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health Nanchang University Bayi Avenue Nanchang Jiangxi 330000 China
| | - Yan‐fang Yu
- State Key Laboratory of Food Science and Technology, College of Food Science Nanchang University Nanjing East Road Nanchang Jiangxi 330047 China
- Jiangxi Sericulture and Tea Research Institute Nanchang Jiangxi 330202 China
| | - Bing Zhang
- State Key Laboratory of Food Science and Technology, College of Food Science Nanchang University Nanjing East Road Nanchang Jiangxi 330047 China
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology, College of Food Science Nanchang University Nanjing East Road Nanchang Jiangxi 330047 China
| | - Rong Liu
- State Key Laboratory of Food Science and Technology, College of Food Science Nanchang University Nanjing East Road Nanchang Jiangxi 330047 China
| | - Yawei Fan
- State Key Laboratory of Food Science and Technology, College of Food Science Nanchang University Nanjing East Road Nanchang Jiangxi 330047 China
| | - Ze‐yuan Deng
- State Key Laboratory of Food Science and Technology, College of Food Science Nanchang University Nanjing East Road Nanchang Jiangxi 330047 China
| |
Collapse
|
11
|
Ou J. Incorporation of polyphenols in baked products. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 98:207-252. [PMID: 34507643 DOI: 10.1016/bs.afnr.2021.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Bakery foods, including breads, cakes, cookies, muffins, rolls, buns, crumpets, pancakes, doughnuts, waffles, and bagels, etc., have been an important diet of humans for thousands of years. As the nutraceuticals with various biological activities, polyphenols, especially polyphenol-enriched products are widely used in bakery foods. The polyphenol-enriched products are mainly from fruits and vegetables, including fruits in whole, juice, puree, jam, and the powder of dried fruits, pomace, and peels. Incorporation of these products not only provide polyphenols, but also supply other nutrients, especially dietary fibers for bakery products. This chapter discussed the thermal stability of different types of polyphenols during baking, and the effect of polyphenols on the sensory attributes of baked foods. Moreover, their role in mitigation of reactive carbonyl species and the subsequent formation of advanced glycation end products, antioxidant and antimicrobial activities have been also discussed. Since polyphenols are subjected to high temperature for dozens of minutes during baking, future works need to focus on the chemical interactions of polyphenols and their oxidized products (quinones) with other food components, and the safety consequence of these interactions.
Collapse
Affiliation(s)
- Juanying Ou
- Institute of Food Safety & Nutrition, Jinan University, Guangzhou, China.
| |
Collapse
|
12
|
Ekaette I, Saldaña MDA. Ultrasound processing of rutin in food-grade solvents: Derivative compounds, antioxidant activities and optical rotation. Food Chem 2020; 344:128629. [PMID: 33272752 DOI: 10.1016/j.foodchem.2020.128629] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
The effect of ultrasound was studied on the flavonoid rutin to understand its hydrolysis to aglycones, antioxidant capacity and optical rotation. The total phenolic content increased >56% at 3.6-36 kJ/cm3, indicating production of phenolic compounds. In the water media, at 27 kJ/cm3 and 47 °C, the total flavonoid content increased from control 0.26 ± 0.01 to 0.45 ± 0.02 mg catechin equivalent/mg rutin hydrate. Quercetin yield in citric acid media increased with change in energy density from 0.34 ± 0.09% at 0.1 kJ/cm3 (68 °C) to 2.23 ± 0.04% at 7.0 kJ/cm3 (86 °C). A plummeting effect was only observed in water media after 27 kJ/cm3 by FRAP (47 °C) and DPPH (86 °C) antioxidant activities, indicating that the presence of solutes (citric acid and NaCl) after 27 kJ/cm3 reduced degradation of flavonoids. Furthermore, ultrasonication increased levorotatory rutin enantiomers, that can be used to further modify physico-chemical properties of other food components.
Collapse
Affiliation(s)
- Idaresit Ekaette
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Marleny D A Saldaña
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| |
Collapse
|
13
|
Liu Y, Zhao X, Zhang Q, Wang L, Li Y, Li Y. Characterization and Evaluation of the Solubility and Oral Bioavailability of Rutin-Ethanolate Solvate. AAPS PharmSciTech 2020; 21:241. [PMID: 32839899 DOI: 10.1208/s12249-020-01779-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/06/2020] [Indexed: 01/17/2023] Open
Abstract
Rutin has many biological activities, but poor solubility and absorption limit its oral application. This study aimed to investigate the characterization of metastable rutin-ethanolate and its solubility and oral bioavailability. In this research, a soluble rutin/CH3CH2OH solvate (Form Π) was prepared by solvent crystallization. High-performance liquid chromatography, gas chromatograph, and 1H-NMR showed that Form Π was formed by rutin and ethanol in a molar ratio of 1:1. The changes of Fourier transform infrared spectroscopy and 1H-NMR spectrum and the density functional theory (DFT) calculation predicted hydrogen bond formation between 4'-O of rutin and -OH of ethanol. The results of morphology, solid state CP/MAS 13C-NMR, X-ray diffraction, and differential scanning calorimetry (DSC) revealed that Form Π is a novel polymorph that differs from Form Ι (rutin trihydrate). Form Π can be stored for a long time under sealed and dry conditions at 40°C but would gradually transform into Form Ι under humid conditions. Although Form Π is a new metastable polymorph relative to Form Ι, Form Π has better solubility and faster dissolution rate. Moreover, the bioavailability of Form Π was 2.04 times higher than that of Form Ι. This outcome implied that Form Π would be a prospective raw material of oral preparation.
Collapse
|
14
|
Ekaette I, Saldaña MD. Barley starch behavior in the presence of rutin under subcritical water conditions. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Kim DS, Lim SB. Subcritical water extraction of rutin from the aerial parts of common buckwheat. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.104561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Chen XW, Chen YJ, Li JY, Wang YH, Yang XQ. Enzyme-assisted development of biofunctional polyphenol-enriched buckwheat protein: physicochemical properties, in vitro digestibility, and antioxidant activity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3176-3185. [PMID: 30548612 DOI: 10.1002/jsfa.9534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND During the last decade buckwheat was reported to have positive health effects. The present study investigated a high-polyphenol buckwheat protein (Fagopyrum esculentum Moench) prepared by enzyme-assisted processing, together with its physicochemical properties, in vitro digestibility, and antioxidant activity. RESULTS Buckwheat protein prepared from the synergistic enzymatic action of α-amylase and amyloglucosidase (E-BWP) had much higher polyphenol content than buckwheat protein prepared by isoelectric precipitation (I-BWP) or salt extraction (S-BWP). Rutin degraded during the process, giving quercetin. The protein constituents and amino acid composition of E-BWP were very similar to those of native buckwheat and were able to meet the WHO/FAO requirements for both children and adults. During in vitro digestion, E-BWP showed anti-digestive behavior with a nitrogen release that was lower than that of I-BWP or S-BWP. The positive effect of the polyphenol content of E-BWP resulted in a higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) content and greater reducing activity. CONCLUSION Buckwheat protein with high polyphenol content was successfully developed by enzyme-assisted processing. It had a well-balanced amino acid profile, antidigestive behavior, and high antioxidant activities. The results suggest that enzyme-assisted processing is promising in the production of polyphenol-enriched cereal protein, contributing higher functionality with good nutritional and antioxidant properties. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiao-Wei Chen
- Lipid Technology and Engineering, School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou, Henan Province, PR China
- Food Protein Research and Development Center, Department of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
| | - Ya-Jun Chen
- Food Protein Research and Development Center, Department of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
| | - Jin-Yu Li
- Food Protein Research and Development Center, Department of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
| | - Yong-Hui Wang
- Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety of Henan Province, Food and Bio-engineering College, Xuchang University, Xuchang, PR China
| | - Xiao-Quan Yang
- Food Protein Research and Development Center, Department of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
| |
Collapse
|
17
|
Positive and negative effects of polyphenol incorporation in baked foods. Food Chem 2019; 284:90-99. [PMID: 30744873 DOI: 10.1016/j.foodchem.2019.01.096] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/12/2018] [Accepted: 01/14/2019] [Indexed: 01/02/2023]
Abstract
Polyphenols are hot research topics worldwide owing to their physiological and pharmaceutical activities. Polyphenols and polyphenol-enriched by-products have been widely used in bakery foods because of their neutraceutical properties. This review summarizes the classification, biosynthesis, main source and analysis of polyphenols and intensively discusses the effects of their incorporation in baked foods. The positive effects of polyphenol incorporation include elevation of antioxidant activity of baked foods, scavenging of food-borne toxins produced during thermal processing and decreasing postprandial serum glucose level. Meanwhile, polyphenol incorporation negatively influences colour, texture and flavour of baked foods and bioavailability of the added polyphenols. Most polyphenols are thermally sensitive and reactive. Thus far, few studies have investigated on neoformed compounds from the reaction of polyphenols or their oxidised products (quinones) with other food components. Before launching polyphenol-incorporated bakery foods in the market, future work should focus on full toxicological evaluation of newly derived compounds from polyphenols.
Collapse
|
18
|
Hu K, Deng W, Zhu Y, Yao K, Li J, Liu A, Ao X, Zou L, Zhou K, He L, Chen S, Yang Y, Liu S. Simultaneous degradation of β-cypermethrin and 3-phenoxybenzoic acid by Eurotium cristatum ET1, a novel "golden flower fungus" strain isolated from Fu Brick Tea. Microbiologyopen 2018; 8:e00776. [PMID: 30548839 PMCID: PMC6612557 DOI: 10.1002/mbo3.776] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 01/24/2023] Open
Abstract
Beta-cypermethrin (β-CY) and its major metabolite 3-phenoxybenzoic acid (3-PBA) spread extensively in the environment because of utilization in agricultural and home formulations, exerting negative impact on environment as well as human health. Several golden flower fungi were isolated from fu brick tea, by which the biodegradation of β-CY and 3-PBA was evaluated, turning out strain Eurotium cristatum ET1 had the highest capacity. Furthermore, β-CY and 3-PBA degradation rates were positively correlated with biomass of E. cristatum ET1, and the processes of degradation fitted well with a first-order kinetic equation. The half-lives of β-CY and 3-PBA ranged from 3.382 to 11.517 days and 1.749 to 3.194 days, respectively, under different substrate concentrations, incubation temperatures, and pH values. The degraded products were analyzed using gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry, and results showed that E. cristatum ET1 degrades β-CY by transforming it into 3-PBA, which is then gradually metabolized into phenol and catechol. Moreover, E. cristatum ET1 showed efficiency in degrading these metabolites. Our results suggest that this strain is a potential microorganism for bioremediation of pesticide-contaminated environments and fermented foods.
Collapse
Affiliation(s)
- Kaidi Hu
- College of Food ScienceSichuan Agricultural UniversityYa’anSichuanChina
| | - Weiqin Deng
- College of Food ScienceSichuan Agricultural UniversityYa’anSichuanChina
| | - Yuanting Zhu
- College of Food ScienceSichuan Agricultural UniversityYa’anSichuanChina
| | - Kai Yao
- College of Light Industry and FoodSichuan UniversityChengduSichuanChina
| | - Jinyong Li
- College of Food ScienceSichuan Agricultural UniversityYa’anSichuanChina
| | - Aiping Liu
- College of Food ScienceSichuan Agricultural UniversityYa’anSichuanChina
| | - Xiaolin Ao
- College of Food ScienceSichuan Agricultural UniversityYa’anSichuanChina,Institute of Food Processing and SafetySichuan Agricultural UniversityYa’anSichuanChina
| | - Likou Zou
- College of ResourcesSichuan Agricultural UniversityChengduSichuanChina
| | - Kang Zhou
- College of Food ScienceSichuan Agricultural UniversityYa’anSichuanChina,Institute of Food Processing and SafetySichuan Agricultural UniversityYa’anSichuanChina
| | - Li He
- College of Food ScienceSichuan Agricultural UniversityYa’anSichuanChina
| | - Shujuan Chen
- College of Food ScienceSichuan Agricultural UniversityYa’anSichuanChina
| | - Yong Yang
- College of Food ScienceSichuan Agricultural UniversityYa’anSichuanChina,Institute of Food Processing and SafetySichuan Agricultural UniversityYa’anSichuanChina
| | - Shuliang Liu
- College of Food ScienceSichuan Agricultural UniversityYa’anSichuanChina,Institute of Food Processing and SafetySichuan Agricultural UniversityYa’anSichuanChina
| |
Collapse
|
19
|
Gimbun J, Nguang SL, Pang SF, Yeong YL, Kee KL, Chin SC. Assessment of Phenolic Compounds Stability and Retention during Spray Drying of Phyllanthus niruri Extracts. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jolius Gimbun
- Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), Universiti Malaysia Pahang, 26300 Gambang, Pahang, Gambang, 26300, Pahang, Malaysia
| | - Suok Ling Nguang
- Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), Universiti Malaysia Pahang, 26300 Gambang, Pahang, Gambang, 26300, Pahang, Malaysia
| | - Sook Fun Pang
- Faculty of Industrial Science & Technology, Universiti Malaysia Pahang, Gambang, 26300, Pahang, Malaysia
| | - Yi Ling Yeong
- Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Gambang, 26300, Pahang, Malaysia
| | - Keing Lee Kee
- Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Gambang, 26300, Pahang, Malaysia
| | - Siew Choo Chin
- Faculty of Civil Engineering and Earth Resources, Universiti Malaysia Pahang, Gambang, 26300, Pahang, Malaysia
| |
Collapse
|
20
|
Wagatsuma M, Watanabe M, Smith Jr. RL. Kinetic Analysis and Reaction Mechanism of Hydrothermal Hydrolysis of Rapeseed Hulls to Produce Polyphenols. KAGAKU KOGAKU RONBUN 2018. [DOI: 10.1252/kakoronbunshu.44.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Masaru Watanabe
- Graduate School of Environment, Tohoku Univesity
- Research Center of Supercritical Fluid Technology, Department of Chemical Engineering, Tohoku University
| | - Richard Lee Smith Jr.
- Graduate School of Environment, Tohoku Univesity
- Research Center of Supercritical Fluid Technology, Department of Chemical Engineering, Tohoku University
| |
Collapse
|
21
|
Knez Ž, Hrnčič MK, Čolnik M, Škerget M. Chemicals and value added compounds from biomass using sub- and supercritical water. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.08.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
22
|
CO2-intensified Hydrolysis of Rutin to Quercetin – A Comparison of Experimental Data and modelled Reaction Kinetics. J CO2 UTIL 2017. [DOI: 10.1016/j.jcou.2017.05.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Fan M, Zhang G, Hu X, Xu X, Gong D. Quercetin as a tyrosinase inhibitor: Inhibitory activity, conformational change and mechanism. Food Res Int 2017; 100:226-233. [PMID: 28873682 DOI: 10.1016/j.foodres.2017.07.010] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 07/02/2017] [Accepted: 07/02/2017] [Indexed: 11/30/2022]
Abstract
Quercetin, a flavonoid compound, was found to inhibit both monophenolase and diphenolase activities of tyrosinase, and its inhibition against diphenolase activity was in a reversible and competitive manner with an IC50 value of (3.08±0.74)×10-5molL-1. Quercetin bound to tyrosinase driven by hydrophobic interaction, thereby resulted in a conformational change of tyrosinase and its intrinsic fluorescence quenching. Tyrosinase had one binding site for quercetin with the binding constant in the order of magnitude of 104Lmol-1. The molecular docking revealed that quercetin bound to the active site of tyrosinase and chelated a copper with the 3', 4'-dihydroxy groups. It can be deduced that the chelation may prevent the entrance of substrate and then inhibit the catalytic activity of tyrosinase. These findings may be helpful to understand the inhibition mechanism of quercetin on tyrosinase and functional research of quercetin in the treatment of pigmentation disorders.
Collapse
Affiliation(s)
- Meihui Fan
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Xing Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Ximing Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, 1801 Avenue of Zhongwu, Changzhou 213001, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China; New Zealand Institute of Natural Medicine Research, 8 Ha Crescent, Auckland 2104, New Zealand
| |
Collapse
|