1
|
Haider A, Iqbal SZ, Bhatti IA, Alim MB, Waseem M, Iqbal M, Mousavi Khaneghah A. Food authentication, current issues, analytical techniques, and future challenges: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13360. [PMID: 38741454 DOI: 10.1111/1541-4337.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/29/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Food authentication and contamination are significant concerns, especially for consumers with unique nutritional, cultural, lifestyle, and religious needs. Food authenticity involves identifying food contamination for many purposes, such as adherence to religious beliefs, safeguarding health, and consuming sanitary and organic food products. This review article examines the issues related to food authentication and food fraud in recent periods. Furthermore, the development and innovations in analytical techniques employed to authenticate various food products are comprehensively focused. Food products derived from animals are susceptible to deceptive practices, which can undermine customer confidence and pose potential health hazards due to the transmission of diseases from animals to humans. Therefore, it is necessary to employ suitable and robust analytical techniques for complex and high-risk animal-derived goods, in which molecular biomarker-based (genomics, proteomics, and metabolomics) techniques are covered. Various analytical methods have been employed to ascertain the geographical provenance of food items that exhibit rapid response times, low cost, nondestructiveness, and condensability.
Collapse
Affiliation(s)
- Ali Haider
- Food Safety and Toxicology Lab, Department of Applied Chemistry, Government College University, Faisalabad, Punjab, Pakistan
| | - Shahzad Zafar Iqbal
- Food Safety and Toxicology Lab, Department of Applied Chemistry, Government College University, Faisalabad, Punjab, Pakistan
| | - Ijaz Ahmad Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | | | - Muhammad Waseem
- Food Safety and Toxicology Lab, Department of Applied Chemistry, Government College University, Faisalabad, Punjab, Pakistan
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | | |
Collapse
|
2
|
Koprivica M, Milojković-Opsenica D, Fotirić Akšić M, Dramićanin A, Lazarević K. Fatty acids composition and physical properties of stones and kernels from different peach cultivars as biomarker of origin and ripening time. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Xu Y, Li X, Zeng X, Cao J, Jiang W. Application of blockchain technology in food safety control:current trends and future prospects. Crit Rev Food Sci Nutr 2020; 62:2800-2819. [PMID: 33307729 DOI: 10.1080/10408398.2020.1858752] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Blockchain technology is a distributed ledger technology and is expected to face some difficulties and challenges in various industries due to its transparency, decentralization, tamper-proof nature, and encryption security. Food safety has been paid increasing attention in recent years with economic development. Based on a systematic literature critical analysis, the causes of food safety problems and the state-of-the-art blockchain technology overview, including the definition of blockchain, development history, classification, structure, characteristics, and main applications, the feasibility and application prospects of blockchain technology in plant food safety, animal food safety, and processed food safety were proposed in this review. Finally, the challenges of the blockchain technology itself and the difficulties in the application of food safety were analyzed. This study contributes to the extant literature in the field of food safety by discovering the excellent potential of blockchain technology and its implications for food safety control. Our results indicated that blockchain is a promising technology toward a food safety control, with many ongoing initiatives in food products, but many food-related issues, barriers, and challenges still exist. Nevertheless, it is expected to provide a feasible solution for controlling food safety risks.
Collapse
Affiliation(s)
- Yan Xu
- College of Food Science and Nutritional Engineering, China Agricultural, University, Beijing, PR, China
| | - Xiangxin Li
- College of Food Science and Nutritional Engineering, China Agricultural, University, Beijing, PR, China
| | - Xiangquan Zeng
- College of Food Science and Nutritional Engineering, China Agricultural, University, Beijing, PR, China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural, University, Beijing, PR, China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural, University, Beijing, PR, China
| |
Collapse
|
4
|
Tichy HV, Bruhs A, Palisch A. Development of Real-Time Polymerase Chain Reaction Systems for the Detection of So-Called "Superfoods" Chia and Quinoa in Commercial Food Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14334-14342. [PMID: 32648753 DOI: 10.1021/acs.jafc.0c02441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chia (Salvia hispanica) and quinoa (Chenopodium quinoa) seeds are often referred to as a "superfood" or functional food as a result of the claims of numerous health benefits. This often resulted in a sudden increase in demand, which frequently exceeds existing supply capacities, fostering fraudulent practices, such as mislabeling and use of other species of inferior quality. To assess the authenticity of food products containing chia and quinoa, we developed real-time polymerase chain reaction systems for the detection of seeds of these plant species. The developed methodology using chia- and quinoa-specific primer-probe sets based on TaqMan technology was validated, and specificity, cross-reactivity, limit of detection, efficiency, and robustness were determined. The methods were successfully applied to 12 (chia) and 7 (quinoa) commercial samples, proving its suitability for the verification of the authenticity of chia- and quinoa-containing products in commercial trade.
Collapse
Affiliation(s)
| | - Anika Bruhs
- AGROLAB LUFA GmbH, Doktor-Hell-Straße 6, 24107 Kiel, Germany
| | - Anja Palisch
- AGROLAB LUFA GmbH, Doktor-Hell-Straße 6, 24107 Kiel, Germany
| |
Collapse
|
5
|
Köppel R, Ledermann R, van Velsen F, Ganeshan A, Guertler P. Duplex digital droplet PCR for the determination of apricot kernels in marzipan. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03463-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Uncu AO. A trnH-psbA barcode genotyping assay for the detection of common apricot (Prunus armeniaca L.) adulteration in almond (Prunus dulcis Mill.). CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2020.1727961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ayse Ozgur Uncu
- Department of Biotechnology, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
7
|
|
8
|
Creydt M, Fischer M. Original oder Fälschung? CHEM UNSERER ZEIT 2019. [DOI: 10.1002/ciuz.201900830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Markus Fischer
- University of HamburgHAMBURG SCHOOL OF FOOD SCIENCEInstitute of Food Chemistry Grindelallee 117 D‐20146 Hamburg / Germany
| |
Collapse
|
9
|
Schulz A, Lautner S, Fromm J, Fischer M. Not stealing from the treasure chest (or just a bit): Analyses on plant derived writing supports and non-invasive DNA sampling. PLoS One 2018; 13:e0198513. [PMID: 29874294 PMCID: PMC5991405 DOI: 10.1371/journal.pone.0198513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/21/2018] [Indexed: 11/25/2022] Open
Abstract
Written communication plays a crucial role in the history of modern civilizations as manuscripts do not only exist contemporarily, but are passed on to subsequent generations. Besides a document's content, information is stored in the materials used for its production. Analyses of the composition allow, for example, identifying the biological origins of materials, dating, and help to understand degradation patterns. A combination of microscopic and DNA approaches was applied in order to analyze various plant derived writing sheets. Given their diversity and abundance in museum collections, plant based writing supports are yet an underexplored target for DNA studies. DNA retrieval of paper is low compared to raw paper plant material, which is likely due to the loss of organic components during paper production. Optimizing DNA extraction for each respective material drastically increased DNA recovery. Finally, we present a non-invasive DNA sampling method that utilizes nylon membranes, commonly used for bacterial DNA sampling and that is applicable to delicate material. Although bacterial infestation was visible on one sample, as indicated by scanning electron microscopy, endogenous DNA was retrieved. The results presented here are promising as they extend the scope of sources for DNA analyses by demonstrating that DNA molecules can be retrieved from a variety of plant derived writing supports. In future, such analyses can help to explore the biological diversity not only of plants and of additives utilized for producing writing supports, but also of the plenty products made from paper.
Collapse
Affiliation(s)
- Anna Schulz
- Hamburg School of Food Science, University of Hamburg, Hamburg, Germany
| | - Silke Lautner
- Centre for Wood Science, University of Hamburg, Hamburg, Germany
| | - Jörg Fromm
- Centre for Wood Science, University of Hamburg, Hamburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science, University of Hamburg, Hamburg, Germany
| |
Collapse
|
10
|
Creydt M, Fischer M. Omics approaches for food authentication. Electrophoresis 2018; 39:1569-1581. [DOI: 10.1002/elps.201800004] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Marina Creydt
- Hamburg School of Food Science; Institute of Food Chemistry; University of Hamburg; Hamburg Germany
| | - Markus Fischer
- Hamburg School of Food Science; Institute of Food Chemistry; University of Hamburg; Hamburg Germany
| |
Collapse
|