1
|
Bi H, Teng W, Wang J, Wang X, Zhang Z, Wang M. Extraction and purification, structural characteristics, pharmacological activities, structure-activity relationships, applications, and quality assessments of Prunella vulgaris L. polysaccharides: A review. Int J Biol Macromol 2025; 306:141665. [PMID: 40037438 DOI: 10.1016/j.ijbiomac.2025.141665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/16/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Prunella vulgaris L. (P. vulgaris) is a representative natural medicinal plant in the Prunella L. genus of the Lamiaceae family, widely distributed around the world. It has high value in both medicinal and edible aspects. As a highly representative class of macromolecular substances in P. vulgaris, polysaccharides from P. vulgaris have been extensively studied. P. vulgaris polysaccharides have various pharmacological activities, including anti-HSV, anti-hyperlipidemic, anti-complement, anti-hyperplasia, anti-inflammatory, anti-oxidant, anti-tumor, and immunomodulatory. It is meaningful and necessary to review it to enable better research and application. This article integrates the research results on the extraction and purification, structure, pharmacological activities, structure-activity relationships, applications, and quality assessments of polysaccharides from P. vulgaris over the past 25 years. We look forward to promoting the research and application of polysaccharides from P. vulgaris while providing references for developing polysaccharides from other traditional natural medicinal plants.
Collapse
Affiliation(s)
- Haizheng Bi
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Harbin 150000, China
| | - Wenjing Teng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Jingyuan Wang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Harbin 150000, China
| | - Xingyu Wang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Harbin 150000, China
| | - Zhaojiong Zhang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Harbin 150000, China
| | - Meng Wang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Harbin 150000, China.
| |
Collapse
|
2
|
ALNasser MN, Alboraiy GM, Alsowig EM, Alqattan FM. Cholinesterase Inhibitors from Plants and Their Potential in Alzheimer's Treatment: Systematic Review. Brain Sci 2025; 15:215. [PMID: 40002547 PMCID: PMC11852592 DOI: 10.3390/brainsci15020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) is a neurodegenerative disorder characterized by memory loss and cognitive decline, primarily due to dysfunction of acetylcholine caused by acetylcholinesterase and butyrylcholinesterase. While synthetic cholinesterase inhibitors like donepezil, rivastigmine, and galantamine are commonly used, they have notable side effects, prompting interest in natural alternatives. Medicinal plants, rich in bioactive compounds like flavonoids and alkaloids, have shown potential as cholinesterase inhibitors with additional antioxidants and anti-inflammatory benefits. This study aimed to evaluate the cholinesterase-inhibiting effects of various plant species and their compounds to identify new therapeutic candidates and reduce side effects. METHOD A PRISMA-compliant review was conducted, screening studies from multiple databases, with a final inclusion of 64 in vivo studies. RESULTS These studies highlighted plant extracts such as Ferula ammoniacum, Elaeagnus umbellata, Bacopa monnieri, and Centella asiatica, which improved memory, reduced oxidative stress, and provided neuroprotection. Some extracts also reduced amyloid plaques, enhanced neuronal integrity, and restored cholinesterase activity, indicating their potential as therapeutic agents for AD and other neurodegenerative diseases. CONCLUSIONS The findings underscore the promise of plant-based compounds in treating cognitive decline and cholinergic dysfunction in AD, advocating for further research into their therapeutic potential.
Collapse
Affiliation(s)
- Maryam N. ALNasser
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box No. 400, Al-Ahsa 31982, Saudi Arabia; (G.M.A.); (E.M.A.); (F.M.A.)
| | | | | | | |
Collapse
|
3
|
Petkova-Kirova P, Anastassova N, Minchev B, Uzunova D, Grigorova V, Tsvetanova E, Georgieva A, Alexandrova A, Stefanova M, Yancheva D, Kalfin R, Tancheva L. Behavioral and Biochemical Effects of an Arylhydrazone Derivative of 5-Methoxyindole-2-Carboxylic Acid in a Scopolamine-Induced Model of Alzheimer's Type Dementia in Rats. Molecules 2024; 29:5711. [PMID: 39683869 DOI: 10.3390/molecules29235711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease (AD) has long proven to be a complex neurodegenerative disorder, with cholinergic dysfunction, oxidative stress, and neuroinflammation being just a few of its pathological features. The complexity of the disease requires a multitargeted treatment covering its many aspects. In the present investigation, an arylhydrazone derivative of 5-methoxyindole-2-carboxylic acid (5MeO), with in vitro strong antioxidant, neuroprotective and monoamine oxidase B-inhibiting effects, was studied in a scopolamine-induced Alzheimer-type dementia in rats. Using behavioral and biochemical methods, we evaluated the effects of 5MeO on learning and memory, and elucidated the mechanisms of these effects. Our experiments demonstrated that 5MeO had a beneficial effect on different types of memory as assessed by the step-through and the Barnes maze tasks. It efficiently restored the decreased by scopolamine brain-derived neurotrophic factor and acetylcholine levels and normalized the increased by scopolamine acetylcholine esterase activity in hippocampus. Most effective 5MeO was in counteracting the induced by scopolamine oxidative stress by decreasing the increased by scopolamine levels of lipid peroxidation and by increasing the reduced by scopolamine catalase activity. Blood biochemical analyses demonstrated a favorable safety profile of 5MeO, prompting further pharmacological studies suggesting 5MeO as a safe and efficient candidate in a multitargeted treatment of AD.
Collapse
Affiliation(s)
- Polina Petkova-Kirova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Neda Anastassova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Building 9, 1113 Sofia, Bulgaria
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria
| | - Borislav Minchev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Diamara Uzunova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Valya Grigorova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Elina Tsvetanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Almira Georgieva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Albena Alexandrova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
- Department of Physiology and Biochemistry, National Sports Academy, Acad. S. Mladenov Str. 21, 1700 Sofia, Bulgaria
| | - Miroslava Stefanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Denitsa Yancheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Building 9, 1113 Sofia, Bulgaria
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
- Department of Healthcare, Faculty of Public Health, Healthcare and Sport, South-West University, Ivan Mihailov 66, 2700 Blagoevgrad, Bulgaria
| | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| |
Collapse
|
4
|
Park HJ, Nam MH, Park JH, Lee JM, Hong HS, Kim TW, Lee IH, Shin CH, Lee SH, Seo YK. Comparison of Malondialdehyde, Acetylcholinesterase, and Apoptosis-Related Markers in the Cortex and Hippocampus of Cognitively Dysfunctional Mice Induced by Scopolamine. Biomedicines 2024; 12:2475. [PMID: 39595042 PMCID: PMC11592181 DOI: 10.3390/biomedicines12112475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Objectives: Until now, many researchers have conducted evaluations on hippocampi for analyses of cognitive dysfunction models using scopolamine. However, depending on the purposes of these analyses, there are differences in the experimental results for the hippocampi and cortexes. Therefore, this study intends to compare various analyses of cognitive dysfunction after scopolamine administration with each other in hippocampi and cortexes. Methods: Scopolamine was administered at three dosages in mice: 0.5, 1, and 3 mg/kg. And this study evaluates the differences in cognitive function and the expression of malondialdehyde (MDA), acetylcholinesterase (AChE), and brain-derived neurotrophic factor (BDNF) in mice's hippocampi and cortexes based on scopolamine dosages. Results: The Morris water maze test was conducted between 1 and 3 h after scopolamine injection to assess its duration. A significant decrease in behavioral ability was evaluated at 1 h, and we observed a similar recovery to the normal group at 3 h. And the Morris water maze escape latency showed differences depending on scopolamine concentration. While the escape waiting time in the control group and scop 0.5 administration group remained similar to that seen before administration, the administration of scop 1 and 3 increased it. In the experimental group administered scop 1 and 3, cerebral MDA levels in the cerebral cortex significantly increased. In the hippocampus, the MDA level in the scopolamine-administered groups slightly increased compared to the cortex. A Western blotting assay shows that Bax and Bcl-xl showed a tendency to increase or decrease depending on the concentration, but BDNF increased in scop 0.5, and scop 1 and 3 did not show a significant decrease compared to the control at the cerebral cortex. In the hippocampus, BDNF showed a concentration-dependent decrease in expression. Conclusions: This study's findings indicate that chemical analyses for MDA and AChE can be performed in the cerebral cortex, while the hippocampus is better suited for protein analysis of apoptosis and BDNF.
Collapse
Affiliation(s)
- Hee-Jung Park
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Myeong-Hyun Nam
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Ji-Hoon Park
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Ji-Min Lee
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Hye-Sun Hong
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Tae-Woo Kim
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - In-Ho Lee
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Chang-Ho Shin
- Department of AI Convergence Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
- AriBio Co., Ltd., Seongnam-si 13535, Republic of Korea
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Young-Kwon Seo
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
- Department of AI Convergence Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| |
Collapse
|
5
|
Zhang S, Meng F, Pan X, Qiu X, Li C, Lu S. Chromosome-level genome assembly of Prunella vulgaris L. provides insights into pentacyclic triterpenoid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:731-752. [PMID: 38226777 DOI: 10.1111/tpj.16629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 12/08/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Prunella vulgaris is one of the bestselling and widely used medicinal herbs. It is recorded as an ace medicine for cleansing and protecting the liver in Chinese Pharmacopoeia and has been used as the main constitutions of many herbal tea formulas in China for centuries. It is also a traditional folk medicine in Europe and other countries of Asia. Pentacyclic triterpenoids are a major class of bioactive compounds produced in P. vulgaris. However, their biosynthetic mechanism remains to be elucidated. Here, we report a chromosome-level reference genome of P. vulgaris using an approach combining Illumina, ONT, and Hi-C technologies. It is 671.95 Mb in size with a scaffold N50 of 49.10 Mb and a complete BUSCO of 98.45%. About 98.31% of the sequence was anchored into 14 pseudochromosomes. Comparative genome analysis revealed a recent WGD in P. vulgaris. Genome-wide analysis identified 35 932 protein-coding genes (PCGs), of which 59 encode enzymes involved in 2,3-oxidosqualene biosynthesis. In addition, 10 PvOSC, 358 PvCYP, and 177 PvUGT genes were identified, of which five PvOSCs, 25 PvCYPs, and 9 PvUGTs were predicted to be involved in the biosynthesis of pentacyclic triterpenoids. Biochemical activity assay of PvOSC2, PvOSC4, and PvOSC6 recombinant proteins showed that they were mixed amyrin synthase (MAS), lupeol synthase (LUS), and β-amyrin synthase (BAS), respectively. The results provide a solid foundation for further elucidating the biosynthetic mechanism of pentacyclic triterpenoids in P. vulgaris.
Collapse
Affiliation(s)
- Sixuan Zhang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Fanqi Meng
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Xian Pan
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Xiaoxiao Qiu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Caili Li
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Shanfa Lu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| |
Collapse
|
6
|
Li Z, He Q, Xu F, Yin X, Guan Z, Song J, He Z, Yang X, Situ C. Exploring the Antibacterial Potential and Underlying Mechanisms of Prunella vulgaris L. on Methicillin-Resistant Staphylococcus aureus. Foods 2024; 13:660. [PMID: 38472772 DOI: 10.3390/foods13050660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Prunella vulgaris L. (PV) is a widely distributed plant species, known for its versatile applications in both traditional and contemporary medicine, as well as in functional food development. Despite its broad-spectrum antimicrobial utility, the specific mechanism of antibacterial action remains elusive. To fill this knowledge gap, the present study investigated the antibacterial properties of PV extracts against methicillin-resistant Staphylococcus aureus (MRSA) and assessed their mechanistic impact on bacterial cells and cellular functions. The aqueous extract of PV demonstrated greater anti-MRSA activity compared to the ethanolic and methanolic extracts. UPLC-ESI-MS/MS tentatively identified 28 phytochemical components in the aqueous extract of PV. Exposure to an aqueous extract at ½ MIC and MIC for 5 h resulted in a significant release of intracellular nucleic acid (up to 6-fold) and protein (up to 10-fold) into the extracellular environment. Additionally, this treatment caused a notable decline in the activity of several crucial enzymes, including a 41.51% reduction in alkaline phosphatase (AKP), a 45.71% decrease in adenosine triphosphatase (ATPase), and a 48.99% drop in superoxide dismutase (SOD). Furthermore, there was a decrease of 24.17% at ½ MIC and 27.17% at MIC in tricarboxylic acid (TCA) cycle activity and energy transfer. Collectively, these findings indicate that the anti-MRSA properties of PV may stem from its ability to disrupt membrane and cell wall integrity, interfere with enzymatic activity, and impede bacterial cell metabolism and the transmission of information and energy that is essential for bacterial growth, ultimately resulting in bacterial apoptosis. The diverse range of characteristics exhibited by PV positions it as a promising antimicrobial agent with broad applications for enhancing health and improving food safety and quality.
Collapse
Affiliation(s)
- Ziyin Li
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 500515, China
| | - Qiqi He
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, UK
| | - Feifei Xu
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 500515, China
| | - Xinxin Yin
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 500515, China
| | - Zhuofan Guan
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 500515, China
| | - Jia Song
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 500515, China
| | - Zhini He
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 500515, China
| | - Xingfen Yang
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 500515, China
| | - Chen Situ
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, UK
| |
Collapse
|
7
|
Assaran AH, Hosseini M, Shirazinia M, Ghalibaf MHE, Beheshti F, Mobasheri L, Mirzavi F, Rajabian A. Neuro-protective Effect of Acetyl-11-keto-β-boswellic Acid in a Rat Model of Scopolamine-induced Cholinergic Dysfunction. Curr Pharm Des 2024; 30:140-150. [PMID: 38532323 DOI: 10.2174/0113816128269289231226115446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/07/2023] [Indexed: 03/28/2024]
Abstract
BACKGROUND Acetyl-11-keto-β-boswellic acid (AKBA) is a major component of the oleo-gum resin of B. serrata with multiple pharmacological activities. The objective of this study was to explore the underlying mechanisms of neuroprotective potential of AKBA against scopolamine-mediated cholinergic dysfunction and memory deficits in rats. METHODS The rats received AKBA (2.5, 5, and 10 mg/kg, oral) for 21 days. In the third week, scopolamine was administered 30 min before the Morris water maze and passive avoidance tests. In order to perform biochemical assessments, the hippocampus and prefrontal cortex were extracted from the rats euthanized under deep anesthesia. RESULTS In the MWM test, treatment with AKBA (5 and 10 mg/kg) decreased the latency and distance to find the platform. Moreover, in the PA test, AKBA remarkably increased latency to darkness and stayed time in lightness while decreasing the frequency of entry and time in the darkness. According to the biochemical assessments, AKBA decreased acetylcholinesterase activity and malondialdehyde levels while increasing antioxidant enzymes and total thiol content. Furthermore, AKBA administration restored the hippocampal mRNA and protein levels of brain-derived neurotrophic factor (BDNF) and mRNA expression of B-cell lymphoma (Bcl)- 2 and Bcl-2- associated X genes in brain tissue of scopolamine-injured rats. CONCLUSION The results suggested the effectiveness of AKBA in preventing learning and memory dysfunction induced by scopolamine. Accordingly, these protective effects might be produced by modulating BDNF, cholinergic system function, oxidative stress, and apoptotic markers.
Collapse
Affiliation(s)
- Amir Hossein Assaran
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matin Shirazinia
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Medical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Leila Mobasheri
- Department of Pharmacology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Arezoo Rajabian
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Cao LP, Li YM, Li SG, Ren Q. Analysis of the phytochemical components of Prunella vulgaris using high-performance liquid chromatography quadrupole time-of-flight mass spectrometry combined with molecular networking and assessment of their antioxidant and anti-α-glucosidase activities. Biomed Chromatogr 2024; 38:e5771. [PMID: 37942879 DOI: 10.1002/bmc.5771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/28/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023]
Abstract
Prunella vulgaris has long been used in traditional medicine and is consumed as a tea in China. Here, the total phenolic and flavonoid concentrations of plants from different geographical regions were measured. It was found that the total phenolic acid concentration ranged from 4.15 to 8.82 g of gallic acid equivalent per 100 g of dry weight (DW), and the total flavonoid concentration was 4.67-7.33 g of rutin equivalent per 100 g DW. Antioxidant activities were measured using 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, and the results ranged from 73.47% to 94.43% and 74.54% to 93.39%, respectively, whereas α-glucosidase inhibition was between 75.31% and 95.49%. Correlation analysis showed that the total flavonoids in P. vulgaris had superior antioxidant and anti-α-glucosidase activities compared to the total phenolic compounds. The active components of P. vulgaris were analyzed using high-performance liquid chromatography quadrupole time-of-flight mass spectrometry combined with both classical molecular networking and feature-based molecular networking on the Global Natural Products Social platform, identifying 32 compounds, namely 14 flavonoids, 12 phenolic compounds, and 6 other chemical components. These results could provide useful information on the use of P. vulgaris as a functional tea.
Collapse
Affiliation(s)
- Li-Ping Cao
- Shenzhen Baoan Traditional Chinese Medicine Hospital Group, Shenzhen, China
| | - Yi-Min Li
- Department of Pharmacy, Jining Medical University, Rizhao, China
| | - Shu-Guang Li
- Shenzhen Baoan Traditional Chinese Medicine Hospital Group, Shenzhen, China
| | - Qiang Ren
- Department of Pharmacy, Jining Medical University, Rizhao, China
| |
Collapse
|
9
|
Abuelezz SA, Hendawy N. Spotlight on Coenzyme Q10 in scopolamine-induced Alzheimer's disease: oxidative stress/PI3K/AKT/GSK 3ß/CREB/BDNF/TrKB. J Pharm Pharmacol 2023:rgad048. [PMID: 37315215 DOI: 10.1093/jpp/rgad048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/28/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVES Excess amyloid beta (Aβ) and oxidative stress (OS) are inextricable hallmarks of the neuronal damage associated Alzheimer's disease. Aβ-induced cognitive and memory dysfunctions are mediated through different signalling pathways as phosphatidylinositol-3-kinase (PI3K) and their downstream intermediates including protein-kinase-B, known as Akt, glycogen-synthase-kinase-3β (GSK-3β), cAMP-response-element-binding-protein (CREB), brain-derived-neurotrophic factor (BDNF) and tropomyosin-related-kinase receptor-B (TrKB). The current work aims to investigate the protective potentials of CoQ10 against scopolamine (Scop)-induced cognitive disability and the contribution of PI3K/Akt/GSK-3β/CREB/BDNF/TrKB in the neuroprotection effects. METHODS The chronic co-administration of CQ10 (50, 100 and 200 mg/kg/day i.p.) with Scop in Wistar rats for 6 weeks were assayed both behaviourally and biochemically. KEY FINDINGS CoQ10 ameliorated the Scop-induced cognitive and memory defects by restoring alterations in novel object recognition and Morris water maze behavioural tests. CoQ10 favourably changed the Scop-induced deleterious effects in hippocampal malondialdehyde, 8-hydroxy-2' deoxyguanosine, antioxidants and PI3K/Akt/GSK-3β/CREB/BDNF/TrKB levels. CONCLUSIONS These results exhibited the neuroprotective effects of CoQ10 on Scop-induced AD and revealed its ability to inhibit oxidative stress, amyloid deposition and to modulate PI3K/Akt/GSK-3β/CREB/BDNF/TrKB pathway.
Collapse
Affiliation(s)
- Sally A Abuelezz
- Clinical Pharmacology Department, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Nevien Hendawy
- Clinical Pharmacology Department, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
- Basic Medical Sciences Department, Faculty of Medicine, Faculty of Medicine, Galala University, Suez, Egypt
| |
Collapse
|
10
|
de Campos DL, Queiroz LY, Fontes-Junior EA, Pinheiro BG, da Silva JKR, Maia CSF, Maia JGS. Aniba canelilla (Kunth) Mez essential oil and its primary constituent, 1-nitro-2-phenylethane, inhibits acetylcholinesterase and reverse memory impairment in rodents. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:116036. [PMID: 36493997 DOI: 10.1016/j.jep.2022.116036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aniba canelilla, distributed in the Amazon region, stands out for its diverse economic and medicinal applications. Studies of the A. canelilla essential oil and its primary constituent, 1-nitro-2-phenylethane, have confirmed its anti-inflammatory, antinociceptive, anti-hypertensive potential, and anticholinesterase, among other therapeutic activities. AIM OF THE STUDY In addition, the present work aims to evaluate the potential of oil and NPE in the learning and memory of rodents. MATERIAL AND METHODS The oil was hydrodistilled and analyzed by GC and GC-MS. The learning and memory action in mice was evaluated through the scopolamine-induced cognitive deficit model, followed by behavioral analysis using Morris's water maze paradigm. RESULTS Oil provided a yield of 0.5%, and in its chemical composition, 1-nitro-2-phenylethane (NPE) (76.2%) and methyleugenol (19.6%) were identified as primary constituents. Oil fractionation furnished NPE with 99.4%, which was used to evaluate its effects in animal models. Wistar rats were submitted to the mnemonic impairment-scopolamine-induced protocol for 7 days. The oil, NPE, and the positive control donepezil were administered from the 8th to 12th days. Morris water maze results demonstrated that oil and NPE reversed spatial learning and long-term memory similarly induced by muscarinic antagonist scopolamine to donepezil, the positive control. CONCLUSION These beneficial effects have led the work to further investigations of the oil and NPE to elucidate their pharmacological mechanism, focusing on the cholinergic pathway of the central nervous system and opening up to the knowledge of other adjacent mechanisms, whose results are still under analysis.
Collapse
Affiliation(s)
- Daniele L de Campos
- Laboratório de Farmacologia da Inflamação e Comportamento, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil.
| | - Letícia Y Queiroz
- Laboratório de Farmacologia da Inflamação e Comportamento, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil.
| | - Enéas A Fontes-Junior
- Laboratório de Farmacologia da Inflamação e Comportamento, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil.
| | - Bruno G Pinheiro
- Centro de Ciências Biológicas, Universidade do Estado do Pará, 66087-662, Belém, PA, Brazil.
| | - Joyce Kelly R da Silva
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, 66075-900, Belém, PA, Brazil.
| | - Cristiane Socorro F Maia
- Laboratório de Farmacologia da Inflamação e Comportamento, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil.
| | - José Guilherme S Maia
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil; Programa de Pós-Graduação em Química, Universidade Federal do Maranhão, 65080-040, São Luís, MA, Brazil.
| |
Collapse
|
11
|
Yun D, Wang Y, Zhang Y, Jia M, Xie T, Zhao Y, Yang C, Chen W, Guo R, Liu X, Dai X, Liu Z, Yuan T. Sesamol Attenuates Scopolamine-Induced Cholinergic Disorders, Neuroinflammation, and Cognitive Deficits in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13602-13614. [PMID: 36239029 DOI: 10.1021/acs.jafc.2c04292] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, characterized by memory loss and cognitive deficits accompanied by neuronal damage and cholinergic disorders. Sesamol, a lignan component in sesame oil, has been proven to have neuroprotective effects. This research aimed to investigate the preventive effects of sesamol on scopolamine (SCOP)-induced cholinergic disorders in C57BL/6 mice. The mice were pretreated with sesamol (100 mg/kg/d, p.o.) for 30 days. Behavioral tests indicated that sesamol supplement prevented SCOP-induced cognitive deficits. Sesamol enhanced the expression of neurotrophic factors and postsynaptic density (PSD) in SCOP-treated mice, reversing neuronal damage and synaptic dysfunction. Importantly, sesamol could balance the cholinergic system by suppressing the AChE activity and increasing the ChAT activity and M1 mAChR expression. Sesamol treatment also inhibited the expression of inflammatory factors and overactivation of microglia in SCOP-treated mice. Meanwhile, sesamol improved the antioxidant enzyme activity and suppressed oxidative stress in SCOP-treated mice and ameliorated the oxidized cellular status and mitochondrial dysfunction in SCOP-treated SH-SY5Y cells. In conclusion, these results indicated that sesamol attenuated SCOP-induced cognitive dysfunction via balancing the cholinergic system and reducing neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
- Duo Yun
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Yajie Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Yuyu Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Mengzhen Jia
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Tianzhi Xie
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Yihang Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Cong Yang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Weixuan Chen
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Rui Guo
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Xiaoshuang Dai
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, Guangdong518120, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Tian Yuan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi712100, China
| |
Collapse
|
12
|
Pan J, Wang H, Chen Y. Prunella vulgaris L. - A Review of its Ethnopharmacology, Phytochemistry, Quality Control and Pharmacological Effects. Front Pharmacol 2022; 13:903171. [PMID: 35814234 PMCID: PMC9261270 DOI: 10.3389/fphar.2022.903171] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Prunella vulgaris L. (PVL) is dried fruit spike of Lamiacea plant Prunella vulgaris L., which is a perennial herb with medicinal and edible homology used for thousands of years. PVL is bitter, acrid, cold, and belongs to the liver and gallbladder meridians. It clears the liver and dissipate fire, improve vision, disperse swelling, and has satisfactory clinical therapeutic effects on many diseases such as photophobia, dizziness, scrofula, goiter, breast cancer. The collection of information and data related to PVL comes from literatures retrieved and collated from various online scientific databases (such as CNKI, VIP, PubMed, Web of Science, Research Gate, Science Database), ancient books of traditional chinese medicine (Encyclopedia of Traditional Chinese Medicine, Classics of Traditional Chinese Medicine, Dictionary of Traditional Chinese Medicine), and Doctoral and Master's Dissertations. Currently, the major chemical constituents isolated and identified from PVL are triterpenoids, steroids, flavonoids, phenylpropanoids, organic acids, volatile oils and polysaccharides. Modern pharmacological studies have shown that PVL has a wide range of pharmacological activities, including anti-inflammatory, anti-tumor, antibacterial and antiviral effects, as well as immune regulation, antihypertensive, hypoglycemic, lipid-lowering, antioxidant, free radical scavenging, liver protection, sedative and hypnotic effects. This paper reviewes the botany, ethnopharmacology, traditional application, phytochemistry, analytical methods, quality control, pharmacological effects of PVL. It can be used not only as medicine, but also gradually integrated into the "medicine and food homology" and "Chinese medicine health" boom. More importantly, it has great potential for drug resources development. This paper deeply discusses the shortcomings of current PVL research, and proposes corresponding solutions, in order to find a breakthrough point for PVL research in the future. At the same time, it is necessary to further strengthen the research on its medicinal chemistry, mechanism of action and clinical application efficacy in the future, and strive to extract, purify and synthesize effective components with high efficiency and low toxicity, so as to improve the safety and rationality of clinical medication.
Collapse
Affiliation(s)
| | | | - Yinghua Chen
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
13
|
Ma F, Deng Q, Lou H, Li J, Xu S, Wu W, Wen Q, Tang L, Wang X, Pan W. Vulgarisin-type diterpenoids from self-heal ( Prunella vulgaris) and their neuroprotective effects against ischemia/reperfusion (I/R) via a mitochondria-related pathway. Food Funct 2022; 13:7062-7074. [PMID: 35678758 DOI: 10.1039/d2fo00150k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-heal (Prunella vulgaris L.) is a perennial edible plant that is widely distributed across the world and is traditionally consumed as a food additive in soft drink beverages. In this study, to explore the functional components of P. vulgaris, an investigation of its ethanol extracts has been conducted by our group. As a result, twelve (1-12) vulgarisin-type diterpenoids with a special 5/6/4/5-fused ring skeleton, including six new ones (1-6), were obtained. Their structures including the absolute configuration were elucidated based on comprehensive spectroscopic evidence, ECD calculations, as well as single-crystal X-ray diffraction analyses. All the isolates were tested for neuroprotective effects against ischemia/reperfusion (I/R) on primary neuron cells through the oxygen and glucose deprivation and reperfusion (OGD/R) induced injury model. The results showed that all twelve vulgarisin-type diterpenoids possess promising neuroprotective activity at a concentration of 10 μM. Among them, compound 3 can significantly suppress cell apoptosis by regulating Bax/Bcl-2 protein expression and inhibiting cleaved caspase-3 and caspase-9 expression with a western blotting assay. Further research revealed that compound 3 could improve mitochondrial function by inhibiting mitochondrial cytochrome c release, reducing ROS levels, and maintaining the membrane potential. This work firstly reports vulgarisin-type diterpenoids possessing neuroprotective activity. These findings also suggest that daily consumption of P. vulgaris might prevent cerebral disorders via a mitochondria-related pathway.
Collapse
Affiliation(s)
- Fengwei Ma
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China. .,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China. .,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang 550014, China.,Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, Guizhou, 550005, China
| | - Qingfang Deng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China. .,Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guiyang Normal University, Guiyang, Guizhou, 550001, China
| | - Huayong Lou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China. .,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang 550014, China
| | - Jinyu Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China. .,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang 550014, China
| | - Su Xu
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, Guizhou, 550005, China
| | - Wenneng Wu
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, Guizhou, 550005, China
| | - Qihua Wen
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, Guizhou, 550005, China
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China.
| | - Weidong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China. .,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang 550014, China
| |
Collapse
|
14
|
Antiosteoporosis Studies of 20 Medicine Food Homology Plants Containing Quercetin, Rutin, and Kaempferol: TCM Characteristics, In Vivo and In Vitro Activities, Potential Mechanisms, and Food Functions. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5902293. [PMID: 35399639 PMCID: PMC8989562 DOI: 10.1155/2022/5902293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/28/2022] [Accepted: 03/05/2022] [Indexed: 11/24/2022]
Abstract
Dietary nutraceutical compounds have been evidenced as backbone for bone health in recent years. It is reported that medicine food homology (MFH) plants have multiple nutraceutical compounds. Based on our literature research, 20 MFH plants caught our attention because they contain three popular antiosteoporosis compounds simultaneously: quercetin, rutin, and kaempferol. According to traditional Chinese medicine (TCM), their characteristics including natures, flavors, attributive to meridian tropism, and efficacies were listed. The relationships between TCM efficacies, such as “heat clearing,” “tonic,” and “the interior warming,” and antiosteoporosis pharmacological actions such as antioxidant and immune regulation were discussed. The in vivo antiosteoporosis effects of the 20 MFH plants were summarized. The in vitro antiosteoporosis activities and related mechanisms of the 20 plants and quercetin, rutin, kaempferol were detailed. The TGF-β-Smad signaling, fibroblast growth factor, and Wnt/β-catenin signaling on bone formation and the RANKL signaling, NF-κB signaling, and macrophage-colony-stimulating factor on bone resorption were identified. From food point, these 20 MFH plants could be classified as condiment, vegetable, fruit, tea and related products, beverage, etc. Based on the above discussion, these 20 MFH plants could be used as daily food supplements for the prevention and treatment against osteoporosis.
Collapse
|
15
|
Sun CC, Yin ZP, Chen JG, Wang WJ, Zheng GD, Li JE, Chen LL, Zhang QF. Dihydromyricetin Improves Cognitive Impairments in d-Galactose-Induced Aging Mice through Regulating Oxidative Stress and Inhibition of Acetylcholinesterase. Mol Nutr Food Res 2022; 66:e2101002. [PMID: 34932880 DOI: 10.1002/mnfr.202101002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/02/2021] [Indexed: 02/05/2023]
Abstract
SCOPE Alzheimer's disease (AD) is a neurodegenerative disease with phenomena of cognitive impairments. Oxidative stress and cholinergic system dysfunction are two widely studied pathogenesis of AD. Dihydromyricetin (DMY) is a natural dihydroflavonol with many bioactivities. In this study, it is aimed to investigate the effects of DMY on cognitive impairment in d-galactose (d-gal) induced aging mice. METHODS AND RESULTS Mice are intraperitoneally injected with d-gal for 16 weeks, and DMY is supplemented in drinking water. The results show that DMY significantly improves d-gal-induced cognitive impairments in novel object recognition and Y-maze studies. H&E and TUNEL staining show that DMY could improve histopathological changes and cell apoptosis in mice brain. DMY effectively induces the activities of catalase, superoxide dismutase and glutathione peroxidase, and reduces malondialdehyde level in mice brain and liver. Furthermore, DMY reduces cholinergic injury by inhibiting the activity of Acetylcholinesterase (AChE) in mice brain. In vitro studies show that DMY is a non-competitive inhibitor of AChE with IC50 value of 161.2 µg mL-1 . CONCLUSION DMY alleviates the cognitive impairments in d-gal-induced aging mice partly through regulating oxidative stress and inhibition of acetylcholinesterase.
Collapse
Affiliation(s)
- Cui-Cui Sun
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhong-Ping Yin
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ji-Guang Chen
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wen-Jun Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Guo-Dong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jing-En Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ling-Li Chen
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qing-Feng Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
16
|
Singh B, Singh H, Singh B, Kumar N, Rajput A, Sidhu D, Kaur A, Arora S, Kaur S. A comprehensive review on medicinal herbs and novel formulations for the prevention of Alzheimer's disease. Curr Drug Deliv 2021; 19:212-228. [PMID: 34779370 DOI: 10.2174/1567201818666211015152733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/13/2021] [Accepted: 08/09/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases reported in the aging population across the globe. About 46.8 million people are reported to have dementia, and AD is mainly responsible for dementia in aged people. Alzheimer's disease (AD) is thought to occur due to the accumulation of β-amyloid (Aβ) in the neocortex portion of the brain, nitric oxide mediated dysfunctioning of blood-brain barrier, reduced activity of serine racemase enzyme, cell cycle disturbances, damage of N-methyl-D-aspartate (NMDA) receptors and glutamatergic neurotransmission. Modern treatment methods target the pathways responsible for the disease. To date, solely symptomatic treatments exist for this disease, all making an attempt to counterbalance the neurotransmitter disturbance. Treatments able to prevent or at least effectively modifying the course of AD, referred to as 'disease-modifying' drugs, are still under extensive research. Effective treatments entail a better indulgence of the herbal bioactives by novel drug delivery systems. The herbal bioactive administered by novel drug delivery systems have proved beneficial in treating this disease. This review provides detailed information about the role of medicinal plants and their formulations in treating Alzheimer disease which will be highly beneficial for the researchers working in this area.
Collapse
Affiliation(s)
- Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Hasandeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Brahmjot Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Navkaran Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Ankita Rajput
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Disha Sidhu
- Department Pharmaceutical Sciences, Guru Nanak Dev University, Grand Trunk Road, Off, NH 1 . India
| | - Amandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Sarabjit Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| |
Collapse
|
17
|
Protective Effects of Inosine on Memory Consolidation in a Rat Model of Scopolamine-Induced Cognitive Impairment: Involvement of Cholinergic Signaling, Redox Status, and Ion Pump Activities. Neurochem Res 2021; 47:446-460. [PMID: 34623562 DOI: 10.1007/s11064-021-03460-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 02/06/2023]
Abstract
This study investigated the effects of inosine on memory acquisition and consolidation, cholinesterases activities, redox status and Na+, K+-ATPase activity in a rat model of scopolamine-induced cognitive impairment. Adult male rats were divided into four groups: control (saline), scopolamine (1 mg/kg), scopolamine plus inosine (50 mg/kg), and scopolamine plus inosine (100 mg/kg). Inosine was pre-administered for 7 days, intraperitoneally. On day 8, scopolamine was administered pre (memory acquisition protocol) or post training (memory consolidation protocol) on inhibitory avoidance tasks. The animals were subjected to the step-down inhibitory avoidance task 24 hours after the training. Scopolamine induced impairment in the acquisition and consolidation phases; however, inosine was able to prevent only the impairment in memory consolidation. Also, scopolamine increased the activity of acetylcholinesterase and reduced the activity of Na+, K+-ATPase and the treatment with inosine protected against these alterations in consolidation protocol. In the animals treated with scopolamine, inosine improved the redox status by reducing the levels of reactive oxygen species and thiobarbituric acid reactive substances and restoring the activity of the antioxidant enzymes, superoxide dismutase and catalase. Our findings suggest that inosine may offer protection against scopolamine-induced memory consolidation impairment by modulating brain redox status, cholinergic signaling and ion pump activity. This compound may provide an interesting approach in pharmacotherapy and as a prophylactic against neurodegenerative mechanisms involved in Alzheimer's disease.
Collapse
|
18
|
Non-targeted analysis of vulgarisins by using collisional dissociation mass spectrometry for the discovery of analogues from Prunella vulgaris. Anal Bioanal Chem 2021; 413:6513-6521. [PMID: 34476524 DOI: 10.1007/s00216-021-03615-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/20/2021] [Accepted: 08/10/2021] [Indexed: 01/09/2023]
Abstract
Vulgarisins are members of diterpenoids with rare 5/6/4/5 ring skeleton from Prunella vulgaris Linn. (P. vulgaris). Their molecular scaffolds comprise different hydroxylation and degree of esterification. Vulgarisins have attracted many attentions in the fields of food and medicine for their potent bioactivities. Firstly, four reference compounds were analyzed by higher-energy collisional dissociation mass spectrometry (HCD MS/MS) and the fragmentation patterns for molecular scaffold were summarized. And then, a high-performance liquid chromatography/electrospray ionization/high-resolution mass spectrometry (HPLC-ESI-HR-MS) method was adopted to investigate the P. vulgaris extracts. Finally, the proposed analysis results were successfully applied to facilitate the discovery of the vulgarisins analogues from P. vulgaris. For the four reference compounds, the sodium adduct was the predominate ion in full scan. A specific fragmentation pathway of [M+Na]+ ions leads to produce diagnostic ions of vulgarisins at m/z 325 under HCD, which was formed through consecutive-side chains lost. Twenty-three diterpenoids, including 18 vulgarisins analogues, were identified or tentatively characterized in the botanical extracts of P. vulgaris based on their elemental constituents and characteristic fragment ion profiles. Two new vulgarisins analogues in the plant were isolated and their structures were illustrated based on extensive spectroscopic analysis using 1D and 2D nuclear magnetic resonance (NMR) spectroscopy. The HCD MS/MS method, including the profiles of the diagnostic ions induced by characteristic fragmentation, is an effective technique for the discovery of vulgarisins analogues in P. vulgaris. The expected fragmentation pattern knowledge will also facilitate the analysis of other natural products.
Collapse
|
19
|
da Silva DS, Soares MSP, Teixeira FC, de Mello JE, de Souza AA, Luduvico KP, de Andrade CM, Spanevello RM, Cunico W. Multitarget Effect of 2-(4-(Methylthio)phenyl)-3-(3-(piperidin-1-yl)propyl)thiazolidin-4-one in a Scopolamine-Induced Amnesic Rat Model. Neurochem Res 2021; 46:1554-1566. [PMID: 33755857 DOI: 10.1007/s11064-021-03295-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 01/24/2023]
Abstract
Cholinergic system dysfunction, oxidative damage, and alterations in ion pump activity have been associated with memory loss and cognitive deficits in Alzheimer's disease. 1,3-thiazolidin-4-ones have emerged as a class of compounds with potential therapeutic effects due to their potent anticholinesterase activity. Accordingly, this study investigated the effect of the 2-(4-(methylthio)phenyl)-3-(3-(piperidin-1-yl)propyl)thiazolidin-4-one (DS12) compound on memory, cholinergic and oxidative stress parameters, ion pump activity, and serum biochemical markers in a scopolamine-induced memory deficit model. Male Wistar rats were divided into four groups: I-Control; II-Scopolamine; III-DS12 (5 mg/kg) + scopolamine; and IV-DS12 (10 mg/kg) + scopolamine. The animals from groups III and IV received DS12 diluted in canola oil and administered for 7 days by gavage. On the last day of treatment, scopolamine (1 mg/kg) was administered intraperitoneally (i.p.) 30 min after training in an inhibitory avoidance apparatus. Twenty-four hours after scopolamine administration, the animals were subjected to an inhibitory avoidance test and were thereafter euthanized. Scopolamine induced memory deficits, increased acetylcholinesterase activity and oxidative damage, and decreased Na+/K+-ATPase activity in cerebral cortex and hippocampus. Pretreatment with DS12 prevented these brain alterations. Scopolamine also induced an increase in acetylcholinesterase activity in lymphocytes and whereas butyrylcholinesterase in serum and treatment with DS12 prevented these changes. In animals treated with DS12, no changes were observed in renal and hepatic parameters when compared to the control group. In conclusion, DS12 emerged as an important multitarget compound capable of preventing neurochemical changes associated with memory deficits.
Collapse
Affiliation(s)
- Daniel Schuch da Silva
- Laboratório de Química Aplicada a Bioativos, Centro Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brasil
| | - Mayara Sandrielly Pereira Soares
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Capão do Leão, RS, CEP 96010-900, Brazil
| | - Fernanda Cardoso Teixeira
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Capão do Leão, RS, CEP 96010-900, Brazil
| | - Júlia Eisenhardt de Mello
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Capão do Leão, RS, CEP 96010-900, Brazil
| | - Anita Avila de Souza
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Capão do Leão, RS, CEP 96010-900, Brazil
| | - Karina Pereira Luduvico
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Capão do Leão, RS, CEP 96010-900, Brazil
| | - Cinthia Melazzo de Andrade
- Departamento de Clínica de Pequenos Animais, Laboratório de Análises Clínicas Veterinário, Hospital Veterinário, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - Roselia Maria Spanevello
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Capão do Leão, RS, CEP 96010-900, Brazil.
| | - Wilson Cunico
- Laboratório de Química Aplicada a Bioativos, Centro Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brasil.
| |
Collapse
|
20
|
Zhao J, Li K, Wang Y, Li D, Wang Q, Xie S, Wang J, Zuo Z. Enhanced anti-amnestic effect of donepezil by Ginkgo biloba extract (EGb 761) via further improvement in pro-cholinergic and antioxidative activities. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113711. [PMID: 33352242 DOI: 10.1016/j.jep.2020.113711] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/27/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE EGb 761 is a standardized dry extract of Ginkgo biloba L. leaves traditionally used by Eastern Asia and has been associated with beneficial effects on neurodegeneration disorders, including Alzheimer's disease. AIM OF THE STUDY Since beneficial interactions between EGb 761 and donepezil have been observed in previous clinical studies, the current study was proposed aiming to further explore related mechanisms from both pharmacokinetics and pharmacodynamics aspects. MATERIALS AND METHODS Pharmacodynamic interactions were studied in scopolamine-induced cognitive impairment rats received two-weeks treatment of vehicle, EGb 761 and/or donepezil by the Morris water maze test and ex vivo evaluation of biomarkers of cholinergic transmission and oxidative stress in rat brain. In the meantime, pharmacokinetic profiles of donepezil and bilobalide were obtained and compared among all treatment groups. In addition, impact of the bioavailable EGb 761 components on donepezil brain penetration was evaluated with the hCMEC/D3 cell monolayer model. RESULTS Scopolamine-induced rats with co-treatment of EGb 761 and donepezil had significantly improved cognitive function in the Morris water maze test with increased brain levels of superoxide dismutase and decreased brain levels of acetylcholinesterase and malondialdehyde than that with treatment of only EGb 761 or donepezil. Despite such beneficial pharmacodynamics outcomes, the two-week co-treatment of EGb 761 and donepezil did not alter the plasma pharmacokinetics and brain uptake of donepezil or bilobalide, which was further verified in the hCMEC/D3 monolayer model. CONCLUSION Co-administration of EGb 761 and donepezil exerted better anti-amnestic effect via further enhanced pro-cholinergic and antioxidative effects of EGb 761 or donepezil in scopolamine-induced cognitive impairment rat without alteration in their systemic/brain exposure.
Collapse
Affiliation(s)
- Jiajia Zhao
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Kun Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.
| | - Yingying Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China.
| | - Dan Li
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Qianwen Wang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Shengsheng Xie
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China.
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China; Institute of Integrated Chinese and Western Medicine, Fudan University, Shanghai, 200040, People's Republic of China.
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China; Institute of Integrated Chinese and Western Medicine, Fudan University, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
21
|
Aluko RE. Food-derived Acetylcholinesterase Inhibitors as Potential Agents against Alzheimer’s Disease. EFOOD 2021. [DOI: 10.2991/efood.k.210318.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
22
|
Yang AP, Zheng ZG, Liu F, Liu J, Wang RX, Yang H, Huang ZJ, Huang PY, Liu H. Screening for Potential Antibreast Cancer Components From Prunellae Spica Using MCF-7 Cell Extraction Coupled with HPLC-ESI-MS/MS. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20931965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Prunellae Spica (PS), the dry spikes of Prunella vulgaris L., is a medicinal herb widely distributed in Asia and Europe. As a traditional Chinese medicine, PS has been used for the treatment of mastitis, infectious hepatitis, and hypertension. The oral solution and some compounds (polysaccharide, ursolic acid, and betulinic acid) of PS have been reported to show activities against breast cancer. In this study, Michigan Cancer Foundation-7 (MCF-7) cell extraction coupled with high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) analysis was applied to screen for potential antibreast cancer ingredients from PS. Protocatechuic acid (1), protocatechualdehyde (2), caffeic acid (3), and rosmarinic acid (4) were identified as high-affinity components. The cytotoxic activities of these compounds were evaluated in MCF-7 cells using Cell Counting Kit-8 assay. All the compounds displayed cytotoxicity to MCF-7 cells, but protocatechualdehyde and caffeic acid exhibited significant cytotoxicity with half-maximal inhibitory concentration values of 10.9 μM and 26.8 μM, respectively. This study provides the first report of the successful usage of cell extraction coupled with LC-MS/MS to screen active ingredients from PS. This method can be used as a screening tool for bioactive constituents in natural products.
Collapse
Affiliation(s)
- An-ping Yang
- School of Stomatology and Medicine, Foshan University, People’s Republic of China
| | - Zhao-guang Zheng
- School of Stomatology and Medicine, Foshan University, People’s Republic of China
| | - Fang Liu
- School of Stomatology and Medicine, Foshan University, People’s Republic of China
| | - Jing Liu
- School of Stomatology and Medicine, Foshan University, People’s Republic of China
| | - Rui-xue Wang
- School of Stomatology and Medicine, Foshan University, People’s Republic of China
| | - Hua Yang
- School of Stomatology and Medicine, Foshan University, People’s Republic of China
| | - Zai-jun Huang
- Department of Research and Development, Foshan Renhui Medical Technology Co., Ltd., Foshan, People’s Republic of China
| | - Pei-ying Huang
- School of Stomatology and Medicine, Foshan University, People’s Republic of China
| | - Hui Liu
- School of Stomatology and Medicine, Foshan University, People’s Republic of China
| |
Collapse
|
23
|
Deepa P, Bae HJ, Park HB, Kim SY, Choi JW, Kim DH, Liu XQ, Ryu JH, Park SJ. Dracocephalum moldavica attenuates scopolamine-induced cognitive impairment through activation of hippocampal ERK-CREB signaling in mice. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112651. [PMID: 32035879 DOI: 10.1016/j.jep.2020.112651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 01/03/2020] [Accepted: 02/02/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dracocephalum moldavica (Moldavian balm) has been traditionally used for the treatment of intellectual disabilities, migraines and cardiovascular problems in East Asia. Recent scientific studies have demonstrated the usefulness of this plant to treat neurodegenerative disorders, including Alzheimer's disease. AIM OF THE STUDY This study aimed to investigate the effects of the ethanolic extract of D. moldavica leaves (EEDM) on scopolamine-induced cognitive impairment in mice and the underlying mechanisms of action. MATERIALS AND METHODS The behavioral effects of EEDM were examined using the step-through passive avoidance and Morris water maze tasks. To elucidate the underlying mechanism, we tested whether EEDM affects acetylcholinesterase activity and the expression of memory-related signaling molecules including extracellular signal-regulated kinase (ERK) and cAMP response element-binding protein (CREB) in the hippocampus. RESULTS EEDM (25, 50 or 100 mg/kg) significantly ameliorated the scopolamine-induced step-through latency reduction in the passive avoidance task in mice. In the Morris water maze task, EEDM (50 mg/kg) significantly attenuated scopolamine-induced memory impairment. Furthermore, the administration of EEDM increased the phosphorylation levels of ERK and CREB in the hippocampus but did not alter acetylcholinesterase activity. CONCLUSIONS These findings suggest that EEDM significantly attenuates scopolamine-induced memory impairment in mice and may be a promising therapeutic agent for improving memory impairment.
Collapse
Affiliation(s)
- Ponnuvel Deepa
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea.
| | - Ho Jung Bae
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea.
| | - Hyeon-Bae Park
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea.
| | - So-Yeon Kim
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea.
| | - Ji Woong Choi
- Laboratory of Neuropharmacology, College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea.
| | - Dong Hyun Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Institute of Convergence Bio-Health, Dong-A University, Busan, Republic of Korea.
| | - Xiang-Qian Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea.
| | - Se Jin Park
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea.
| |
Collapse
|
24
|
Liu YH, Lee CJ, Chen LC, Lee TL, Hsieh YY, Han CH, Yang CH, Huang WJ, Hou WC. Acetylcholinesterase inhibitory activity and neuroprotection in vitro, molecular docking, and improved learning and memory functions of demethylcurcumin in scopolamine-induced amnesia ICR mice. Food Funct 2020; 11:2328-2338. [PMID: 32118214 DOI: 10.1039/c9fo02339a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this study, demethylcurcumin (DC), a minor constituent in curcuminoids, showed better anti-acetylcholinesterase (anti-AChE) activities, anti-amyloid β peptide aggregation, neuroprotective activities in 6-hydroxydopamine-treated SH-SY5Y cell models, and anti-nitric oxide production in lipopolysaccharide-treated RAW 264.7 macrophages than those of curcumin. Based on molecular docking analyses with AChE, the meta-hydroxyl group in DC, nonexistent in curcumin, showed the formation of hydrogen bonds with Ser293 and Tyr341 in the binding sites of AChE. For animal experiments, scopolamine-induced amnesia ICR mice were used to analyze the learning and memory functions of DC in comparison with the positive control donepezil. Mice fed with DC (50 mg kg-1) or donepezil (5 mg kg-1) showed improvement and a significant difference compared to those in the control group (P < 0.05, 0.01, or 0.001) in a passive avoidance test and in a water maze probe test. The brain extracts of the mice in the DC or donepezil group showed reduced AChE activities and higher ORAC activities and also showed a significant difference compared to those in the control group (P < 0.05, 0.01, or 0.001). DC might be beneficial for developing functional foods or as a lead compound for the treatment of degenerative disorders.
Collapse
Affiliation(s)
- Yuh-Hwa Liu
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lee SB, Yang SY, Thao NP, Seo DG, Kim S, Ma CT, Park SY, Kim YH, Yang HO. Protective Effects of Compounds from Cimicifuga dahurica against Amyloid Beta Production in Vitro and Scopolamine-Induced Memory Impairment in Vivo. JOURNAL OF NATURAL PRODUCTS 2020; 83:223-230. [PMID: 32031796 DOI: 10.1021/acs.jnatprod.9b00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cimicifuga dahurica has traditionally been used as an antipyretic, analgesic, and anti-inflammatory agent and as a treatment for uterine and anal prolapse. This study has investigated the potential beneficial effects of this medicinal plant and its components on Alzheimer's disease (AD) with a focus on amyloid beta (Aβ) production and scopolamine-induced memory impairment in mice. An ethanol extract from C. dahurica roots decreased Aβ production in APP-CHO cells [Chinese hamster ovarian (CHO) cells stably expressing amyloid precursor protein (APP)], as determined by an enzyme-linked immunosorbent assay and Western blot analysis. Then, the compounds isolated from C. dahurica were tested for their antiamyloidogenic activities. Four compounds (1-4) efficiently interrupted Aβ generation by suppressing the level of β-secretase in APP-CHO cells. Moreover, the in vivo experimental results demonstrated that compound 4 improved the cognitive performances of mice with scopolamine-induced disruption on behavioral tests and the expression of memory-related proteins. Taken together, these results suggest that C. dahurica and its constituents are potential agents for preventing or alleviating the symptoms of AD.
Collapse
Affiliation(s)
- Sang-Bin Lee
- Natural Products Research Center , Korea Institute of Science and Technology , Gangneung 25451 , Gangwon-do , Republic of Korea
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Seo Young Yang
- College of Pharmacy , Chungnam National University , Daejeon 34134 , Republic of Korea
| | - Nguyen Phuong Thao
- Institute of Marine Biochemistry (IMBC) , Vietnam Academy of Science and Technology (VAST) , 18-Hoang Quoc Viet , Hanoi , Vietnam
| | - Dae-Gun Seo
- Laboratory of Pharmacognosy, College of Pharmacy , Dankook University , Dongnam-gu , Cheonan 31116 , Korea
| | - Sunggun Kim
- Laboratory of Pharmacognosy, College of Pharmacy , Dankook University , Dongnam-gu , Cheonan 31116 , Korea
| | - Chi Thanh Ma
- Natural Products Research Center , Korea Institute of Science and Technology , Gangneung 25451 , Gangwon-do , Republic of Korea
| | - So-Young Park
- Laboratory of Pharmacognosy, College of Pharmacy , Dankook University , Dongnam-gu , Cheonan 31116 , Korea
| | - Young Ho Kim
- College of Pharmacy , Chungnam National University , Daejeon 34134 , Republic of Korea
| | - Hyun Ok Yang
- Natural Products Research Center , Korea Institute of Science and Technology , Gangneung 25451 , Gangwon-do , Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School , Korea University of Science and Technology , Seoul 02792 , Republic of Korea
| |
Collapse
|
26
|
Wang SJ, Wang XH, Dai YY, Ma MH, Rahman K, Nian H, Zhang H. Prunella vulgaris: A Comprehensive Review of Chemical Constituents, Pharmacological Effects and Clinical Applications. Curr Pharm Des 2020; 25:359-369. [PMID: 30864498 DOI: 10.2174/1381612825666190313121608] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/08/2019] [Indexed: 12/17/2022]
Abstract
Prunella vulgaris (PV) is a perennial herb belonging to the Labiate family and is widely distributed in the northeastern Asian countries such as Korea, Japan, and China. It is reported to display diverse biological activities including anti-microbial, anti-cancer, and anti-inflammation as determined by in vitro or in vivo studies. So far, about 200 compounds have been isolated from PV plant and a majority of these have been characterized mainly as triterpenoids, sterols and flavonoids, followed by coumarins, phenylpropanoids, polysaccharides and volatile oils. This review summarizes and analyzes the current knowledge on the chemical constituents, pharmacological activities, mechanisms of action and clinical applications of the PV plant including its potential as a future medicinal plant. Although some of the chemical constituents of the PV plant and their mechanisms of action have been investigated, the biological activities of many of these remain unknown and further clinical trials are required to further enhance its reputation as a medicinal plant.
Collapse
Affiliation(s)
- Su-Juan Wang
- Pharmaceutical Center of Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.,Department of Drug Preparation, Hospital of TCM and Hui Nationality Medicine, Ningxia Medical University, Ningxia 751100, China
| | - Xiao-He Wang
- Pharmaceutical Center of Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yuan-Yuan Dai
- Pharmaceutical Center of Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Ming-Hua Ma
- Department of Pharmacy, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Khalid Rahman
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool L3 3AF, England, United Kingdom
| | - Hua Nian
- Pharmaceutical Center of Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
27
|
Wang K, Wan Z, Ou A, Liang X, Guo X, Zhang Z, Wu L, Xue X. Monofloral honey from a medical plant, Prunella Vulgaris, protected against dextran sulfate sodium-induced ulcerative colitis via modulating gut microbial populations in rats. Food Funct 2020; 10:3828-3838. [PMID: 31187840 DOI: 10.1039/c9fo00460b] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Honeys produced from medicinal plants hold great promise for human health. Herein, we determined the chemical composition and gastrointestinal protective effects of a novel monofloral honey from Prunella vulgaris (PVH). The physicochemical parameters (moisture, sugars, pH, protein content, diastase activity, and hydroxymethylfurfural) of the PVH samples met the criteria specified in European Union regulations and Chinese National Standards. Fifteen phenolic compounds were identified and quantified via high-performance liquid chromatography with a diode array detector and with time of flight tandem mass spectrometry detection (HPLC-DAD/Q-TOF-MS). Rosmarinic acid was found to be a potential marker for PVH identification. Using a dextran sulfate sodium (DSS)-induced acute colitis model, we demonstrated that the administration of PVH (5 g per kg b.w., p.o.) significantly decreased the disease activity index and mitigated colonic histopathological changes in rats. PVH also modulated the gut microbiota composition in the colitic rats, reversing the increase in the Bacteroidetes/Firmicutes ratio and restoring Lactobacillus spp. populations in DSS-challenged rats. The results of this study provide fundamental data on PVH, supporting its future application in the prevention of colitis.
Collapse
Affiliation(s)
- Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Zhengrui Wan
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Aiqun Ou
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinwen Liang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Xiaoxuan Guo
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhongyin Zhang
- School of Resource and Environmental Science, Henan Institute of Science and Technology, Xinxiang, Henan 4530032, China
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
28
|
Tang KS. The cellular and molecular processes associated with scopolamine-induced memory deficit: A model of Alzheimer's biomarkers. Life Sci 2019; 233:116695. [DOI: 10.1016/j.lfs.2019.116695] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
|
29
|
Zhao J, Ren T, Yang M, Zhang Y, Wang Q, Zuo Z. Reduced systemic exposure and brain uptake of donepezil in rats with scopolamine-induced cognitive impairment. Xenobiotica 2019; 50:389-400. [DOI: 10.1080/00498254.2019.1643514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Jiajia Zhao
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Tianjing Ren
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Mengbi Yang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Yufeng Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Qianwen Wang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| |
Collapse
|
30
|
Wang Y, Sun J, Ma D, Li X, Gao X, Miao J, Gao W. Improving the contents of the active components and bioactivities of Chrysanthemum morifolium Ramat.: The effects of drying methods. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Yu Y, Li Z, Cao G, Li S, Yang H. Effects of ball milling micronization on amino acids profile and antioxidant activities of Polygonatumcyrtonema Hua tuber powder. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00131-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Sun K, Bai Y, Zhao R, Guo Z, Su X, Li P, Yang P. Neuroprotective effects of matrine on scopolamine-induced amnesia via inhibition of AChE/BuChE and oxidative stress. Metab Brain Dis 2019; 34:173-181. [PMID: 30406376 DOI: 10.1007/s11011-018-0335-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/30/2018] [Indexed: 12/29/2022]
Abstract
The present study was designed to evaluate the effects of matrine (MAT) on scopolamine (SCOP)-induced learning and memory impairment. After successive oral administration of MAT to mice for three days at doses of 0.4, 2, and 10 mg/kg, we assessed improvements in learning and memory and investigated the mechanism of action of SCOP-induced amnesia. Donepezil at a dose of 3 mg/kg was used as a standard memory enhancer. MAT significantly improved SCOP-induced learning and memory impairment in novel object recognition and Y-maze tests at doses of 0.4, 2, and 10 mg/kg. Furthermore, MAT inhibited acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities and decreased oxidative stress in the brain, as evidenced by increased total antioxidant capacity, total superoxide dismutase levels, and catalase activities as well as decreased malondialdehyde levels. Additionally, there was a significant negative correlation between the percentage of spontaneous alternation in the Y maze and AChE activity in the cortex and hippocampus. MAT ameliorated SCOP-induced amnesia by the inhibition of both AChE/BuChE activities and oxidative stress. This study provides further evidence to encourage the development of MAT as a drug for the prevention or treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Kaiyue Sun
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China.
| | - Yuting Bai
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China
| | - Rong Zhao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China
| | - Zijiao Guo
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China
| | - Xiang Su
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China
| | - Peiqi Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China
| | - Pengyu Yang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China
| |
Collapse
|
33
|
Patel SS, Raghuwanshi R, Masood M, Acharya A, Jain SK. Medicinal plants with acetylcholinesterase inhibitory activity. Rev Neurosci 2018; 29:491-529. [PMID: 29303784 DOI: 10.1515/revneuro-2017-0054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/23/2017] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease, a progressive neurodegenerative disease, is characterised by hypofunction of acetylcholine (ACh) neurotransmitter in the distinct region of brain. Acetylcholinesterase (AChE) is an enzyme that metabolises the ACh at synaptic cleft resulting in Alzheimer's disease. Medicinal plants have been used to treat numerous ailments and improve human health from ancient time. A traditional system of medicine is long recognised for its effective management of neurological disorders. The present review confers the scope of some common medicinal plants with a special focus on AChE-mediated central nervous system complications especially Alzheimer's disease. Literature suggests that medicinal plants reduce neuronal dysfunctions by reducing AChE activity in different brain regions. In some instances, activation of AChE activity by medicinal plants also showed therapeutic potential. In conclusion, medicinal plants have a wide scope and possess therapeutic potential to efficiently manage neurological disorders associated with AChE dysregulation.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacology, Sagar Institute of Research and Technology-Pharmacy, Bhopal 462041, Madhya Pradesh, India
| | - Ramsaneh Raghuwanshi
- Department of Pharmacology, Sagar Institute of Research and Technology-Pharmacy, Bhopal 462041, Madhya Pradesh, India
| | - Misha Masood
- Department of Pharmacology, Sagar Institute of Research and Technology-Pharmacy, Bhopal 462041, Madhya Pradesh, India
| | - Ashish Acharya
- Department of Pharmacology, Sagar Institute of Research and Technology-Pharmacy, Bhopal 462041, Madhya Pradesh, India
| | - Surendra Kumar Jain
- Department of Pharmacology, Sagar Institute of Research and Technology-Pharmacy, Bhopal 462041, Madhya Pradesh, India
| |
Collapse
|
34
|
Zhao J, Ji D, Zhai X, Zhang L, Luo X, Fu X. Oral Administration of Prunella vulgaris L Improves the Effect of Taxane on Preventing the Progression of Breast Cancer and Reduces Its Side Effects. Front Pharmacol 2018; 9:806. [PMID: 30123125 PMCID: PMC6085460 DOI: 10.3389/fphar.2018.00806] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/04/2018] [Indexed: 12/15/2022] Open
Abstract
We aimed to explore the efficacy and safety of Prunella vulgaris L (PVL) combined with taxane for treatment of patients with breast cancer (BC). The main ingredients of PVL were analyzed by high-performance liquid chromatography (HPLC). In the experiment, 424 patients with BC were evenly assigned into two groups: experimental group (EG, oral administration of PVL and taxane) and control group (CG, oral administration of placebo and taxane). The primary endpoint was pathologic complete response (pCR), which was evaluated using Miller and Payne system. The secondary endpoints included adverse events (AE) and overall survival (OS), which were evaluated by Common Terminology Criteria for Adverse Event version and Kaplan-Meier curves, respectively. Response Evaluation Criteria in Solid Tumors was used to evaluate the clinical efficacy of PVL. Estrogen receptor (ER) status was also measured. The main side effects were compared between the two groups. The main ingredients of PVL were caffeic acid and rosmarinic acid, which both exert anti-tumor properties. The average follow-up time was 41 months. Eighteen and 31 patients dropped out from EG and CG, respectively. Overall, pCRs were detected in 94 cases (25.1%), comprising 61 cases (31.4%) from EG and 33 cases (18.2%) from CG (P < 0.05). PVL treatment improved the pCR rate and OS time compared with those in CG (P < 0.05). The 3-year OS rates were 86.5 and 77.2% in patients from EG and CG, respectively (P < 0.05). Moreover, ER status was associated with pCR rate and could be an independent prognostic factor in BC. Moreover, treatment with PVL prevented side effects, namely, neutrophil-reduced fever and anemia caused by chemotherapy. Hence, chemotherapy using PVL and taxane could be a safe and effective treatment for patients with BC. PVL may be a potential adjuvant medicine for BC treatment.
Collapse
Affiliation(s)
- Jixue Zhao
- Department of Pediatric Surgery, The First Hospital of Jilin University, Changchun, China
| | - Degang Ji
- Department of Hepatobiliary Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xujie Zhai
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lirong Zhang
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiao Luo
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xin Fu
- Department of Nursing, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
35
|
El-Marasy SA, Abd-Elsalam RM, Ahmed-Farid OA. Ameliorative Effect of Silymarin on Scopolamine-induced Dementia in Rats. Open Access Maced J Med Sci 2018; 6:1215-1224. [PMID: 30087724 PMCID: PMC6062269 DOI: 10.3889/oamjms.2018.257] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 12/14/2022] Open
Abstract
AIM: This study aims to elucidate the possible ameliorative effect of silymarin on scopolamine-induced dementia using the object recognition test (ORT) in rats. METHODS: The study was extended to demonstrate the role of cholinergic activity, oxidative stress, neuroinflammation, brain neurotransmitters and histopathological changes in the anti-amnestic effect of silymarin in demented rats. Wistar rats were pre-treated with silymarin (200, 400, 800 mg/kg) or donepezil (10 mg/kg) orally for 14 consecutive days. Dementia was induced after the last drug administration by a single intraperitoneal dose of scopolamine (16 mg/kg). Then behavioural, biochemical, histopathological, and immunohistochemical analyses were then performed. RESULTS: Rats pre-treated with silymarin counteracted scopolamine-induced non-spatial working memory impairment in the ORT and decreased acetylcholinesterase (AChE) activity, reduced malondialdehyde (MDA), elevated reduced glutathione (GSH), restored gamma-aminobutyric acid (GABA) and dopamine (DA) contents in the cortical and hippocampal brain homogenates. Silymarin reversed scopolamine-induced histopathological changes. Immunohistochemical analysis showed that silymarin mitigated protein expression of the glial fibrillary acidic protein (GFAP) and nuclear factor kappa-B (NF-κB) in the brain cortex and hippocampus. All these effects of silymarin were similar to that of the standard anti-amnestic drug, donepezil. CONCLUSION: This study reveals that the ameliorative effect of silymarin on scopolamine-induced dementia in rats using the ORT maybe in part mediated by, enhancement of cholinergic activity, anti-oxidant and anti-inflammatory activities as well as mitigation in brain neurotransmitters and histopathological changes.
Collapse
Affiliation(s)
| | - Reham M Abd-Elsalam
- Pathology Department, Faculty of Veterinary Medicine, Giza, Cairo University, Cairo, Egypt
| | - Omar A Ahmed-Farid
- Physiology Department, National Organization for Drug Control and Research, Giza, Egypt
| |
Collapse
|
36
|
Han YW, Zheng TY. The complete chloroplast genome of the common self-heal, Prunella vulgaris (Lamiaceae). MITOCHONDRIAL DNA PART B-RESOURCES 2018; 3:125-126. [PMID: 33474090 PMCID: PMC7800226 DOI: 10.1080/23802359.2018.1424587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Prunella vulgaris L. is an important medicinal herb widely used in China and western countries. Its natural distribution occurs in various habitats throughout northern hemisphere. In present study, we assembled and characterized its whole chloroplast (cp) genome based on Illumina pair-end sequencing data. The complete chloroplast genome size is 156,132 bp. It contained 134 genes, including 89 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. 8 gene species had two copies. The overall GC content of this genome was 37.9%. A further phylogenomic analysis of Lamiaceae, including 29 taxa, was conducted for the placement of P. vulgaris.
Collapse
Affiliation(s)
- Yu-Wei Han
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ting-Yun Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
37
|
Balmus IM, Ciobica A. Main Plant Extracts' Active Properties Effective on Scopolamine-Induced Memory Loss. Am J Alzheimers Dis Other Demen 2017; 32:418-428. [PMID: 28643520 PMCID: PMC10852862 DOI: 10.1177/1533317517715906] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease leads to progressive cognitive function loss, which may impair both intellectual capacities and psychosocial aspects. Although the current knowledge points to a multifactorial character of Alzheimer's disease, the most issued pathological hypothesis remains the cholinergic theory. The main animal model used in cholinergic theory research is the scopolamine-induced memory loss model. Although, in some cases, a temporary symptomatic relief can be obtained through targeting the cholinergic or glutamatergic neurotransmitter systems, no current treatment is able to stop or slow cognitive impairment. Many potentially successful therapies are often blocked by the blood-brain barrier since it exhibits permeability only for several classes of active molecules. However, the plant extracts' active molecules are extremely diverse and heterogeneous regarding the biochemical structure. In this way, many active compounds constituting the recently tested plant extracts may exhibit the same general effect on acetylcholine pathway, but on different molecular ground, which can be successfully used in Alzheimer's disease adjuvant therapy.
Collapse
Affiliation(s)
- Ioana-Miruna Balmus
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, Iasi, Romania
| | - Alin Ciobica
- Department of Research, Faculty of Biology, Alexandru Ioan Cuza University, Iasi, Romania
| |
Collapse
|
38
|
Ko YH, Kwon SH, Lee SY, Jang CG. Liquiritigenin ameliorates memory and cognitive impairment through cholinergic and BDNF pathways in the mouse hippocampus. Arch Pharm Res 2017; 40:1209-1217. [DOI: 10.1007/s12272-017-0954-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/08/2017] [Indexed: 12/14/2022]
|
39
|
Ionita R, Postu PA, Beppe GJ, Mihasan M, Petre BA, Hancianu M, Cioanca O, Hritcu L. Cognitive-enhancing and antioxidant activities of the aqueous extract from Markhamia tomentosa (Benth.) K. Schum. stem bark in a rat model of scopolamine. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2017; 13:5. [PMID: 28351401 PMCID: PMC5371259 DOI: 10.1186/s12993-017-0123-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/21/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND Plants of the genus Markhamia have been traditionally used by different tribes in various parts of West African countries, including Cameroun. Markhamia tomentosa (Benth.) K. Schum. (Bignoniaceae) is used as an antimalarial, anti-inflammatory, analgesic, antioxidant and anti-Alzheimer agent. The current study was undertaken in order to investigate its anti-amnesic and antioxidant potential on scopolamine-induced cognitive impairment and to determine its possible mechanism of action. METHODS Rats were pretreated with the aqueous extract (50 and 200 mg/kg, p.o.), for 10 days, and received a single injection of scopolamine (0.7 mg/kg, i.p.) before training in Y-maze and radial arm-maze tests. The biochemical parameters in the rat hippocampus were also assessed to explore oxidative status. Statistical analyses were performed using two-way ANOVA followed by Tukey's post hoc test. F values for which p < 0.05 were regarded as statistically significant. RESULTS In the scopolamine-treated rats, the aqueous extract improved memory in behavioral tests and decreased the oxidative stress in the rat hippocampus. Also, the aqueous extract exhibited anti-acetylcholinesterase activity. CONCLUSIONS These results suggest that the aqueous extract ameliorates scopolamine-induced spatial memory impairment by attenuation of the oxidative stress in the rat hippocampus.
Collapse
Affiliation(s)
- Radu Ionita
- Department of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No. 11, 700506 Iasi, Romania
| | - Paula Alexandra Postu
- Department of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No. 11, 700506 Iasi, Romania
| | - Galba Jean Beppe
- Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé I, PO Box, 812, Yaoundé, Cameroon
- Department of Biological Sciences, Faculty of Science, University of Maroua, PO Box, 814, Maroua, Cameroon
| | - Marius Mihasan
- Department of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No. 11, 700506 Iasi, Romania
| | - Brindusa Alina Petre
- Department of Chemistry, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No. 11, 700506 Iasi, Romania
| | - Monica Hancianu
- Faculty of Pharmacy, University of Medicine and Pharmacy “Gr. T. Popa”, 16 University Str., 700115 Iasi, Romania
| | - Oana Cioanca
- Faculty of Pharmacy, University of Medicine and Pharmacy “Gr. T. Popa”, 16 University Str., 700115 Iasi, Romania
| | - Lucian Hritcu
- Department of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No. 11, 700506 Iasi, Romania
| |
Collapse
|