1
|
Wang X, Zhou C, Ao W, Wu L, Wu Y, Xu W, Liu S, Tan Q, Wang L, Zhao F, Liu J, Pei Y, Zhao S, Hua T. Structural basis of β-glucopyranoside salicin recognition by a human bitter taste GPCR. Cell Rep 2025; 44:115604. [PMID: 40261795 DOI: 10.1016/j.celrep.2025.115604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/18/2025] [Accepted: 04/01/2025] [Indexed: 04/24/2025] Open
Abstract
The human perception of bitterness is mediated by type 2 taste receptors (TAS2Rs), which recognize a broad array of bitter substances with distinct chemical properties. TAS2R16 exhibits a pronounced selectivity for β-glucoside-moiety-containing compounds, such as salicin from willow bark. However, the molecular mechanism of moiety-specific recognition and receptor activation in TAS2R16 remains unclear. Here, we present cryoelectron microscopy structures of the salicin-activated human TAS2R16 complexed with gustducin and Gi1 and Gi2 proteins. The binding mode of salicin with TAS2R16 and the specific interactions of the β-D-glucopyranoside moiety are detailed. Together with molecular docking and mutagenesis data, this study uncovers the structural underpinnings of TAS2R16's group-specific recognition, receptor activation, and subsequent gustducin and Gi protein coupling. These findings advance our understanding of human bitter taste receptors and provide a foundation for structural modifications of bitter glycosides, opening potential therapeutic applications.
Collapse
Affiliation(s)
- Xin Wang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Cui Zhou
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Lingang Laboratory, Shanghai 200031, China
| | - Weizhen Ao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Weixiu Xu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shenhui Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qiwen Tan
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Ling Wang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Fei Zhao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Junlin Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Yuan Pei
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
2
|
Zhou J, Feng Y, Zhou W, Zhang M, Liu F, Mao J, Wu D, Cao Y, Wu Y, Jiang L. Ultrasound-assisted metabolite detection in different extraction processes of Bletilla striata and bitter metabolite detection. ULTRASONICS SONOCHEMISTRY 2025; 114:107266. [PMID: 39952165 PMCID: PMC12013125 DOI: 10.1016/j.ultsonch.2025.107266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/26/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Bletilla striata, a medicinal orchidaceous plant, is recognized for its significant pharmacological value. However, the lack of comparative metabolomic data across different extraction methods for analyzing its bioactive components has significantly undervalued the application potential of B. striata in the traditional Chinese medicine market. Using six ultrasound-assisted extraction methods and UPLC-MS/MS, this study identified 1,945 metabolites in B. striata extracts. The dominant categories were lipids (51.35%), flavonoids (18.00%), and phenolic acids (12.51%). KEGG analysis revealed alterations in flavonoids and isoflavonoids biosynthesis pathways. Thirteen bitter metabolites, including cinnamic acid, were identified in B. striata tubers, underscoring their potential pharmacological applications, such as anti-inflammatory, antioxidant and antibacterial activities. Optimizing different extraction methods can better preserve the bioactive components of B. striata extracts, thereby enhancing its potential applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Juan Zhou
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241000, China; Central Laboratory, Fuzhou University Affiliated Provincial Hospital, Fuzhou 35000, China
| | - Yushen Feng
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241000, China
| | - Wenhao Zhou
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241000, China
| | - Mengying Zhang
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241000, China
| | - Fugui Liu
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241000, China
| | - Jian Mao
- Yangtze River Delta Information Intelligence Innovation Research Institute, Wuhu 241000, Anhui, China
| | - Dajun Wu
- Anhui Runhua Ecological Forestry Co., Ltd., Guangde 242200, Anhui, China
| | - Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, China.
| | - Yigao Wu
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241000, China; Department of Medical Psychology, Yijishan Hospital of Wannan Medical College, Wuhu 241000, Anhui, China.
| | - Lan Jiang
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241000, China; Central Laboratory, Fuzhou University Affiliated Provincial Hospital, Fuzhou 35000, China.
| |
Collapse
|
3
|
Schmitz LM, Lang T, Steuer A, Koppelmann L, Di Pizio A, Arnold N, Behrens M. Taste-Guided Isolation of Bitter Compounds from the Mushroom Amaropostia stiptica Activates a Subset of Human Bitter Taste Receptors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4850-4858. [PMID: 39945763 PMCID: PMC11869282 DOI: 10.1021/acs.jafc.4c12651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025]
Abstract
Bitter taste perception cautions humans against the ingestion of potentially toxic compounds. However, current knowledge about natural bitter substances and their activation of human bitter taste receptors (TAS2Rs) is biased toward substances from flowering plants, whereas other sources are underrepresented. Although numerous mushrooms taste bitter, the corresponding substances and receptors are unexplored. Three previously undescribed triterpene glucosides, named oligoporins D-F, together with the known oligoporins A and B, were isolated from Amaropostia stiptica. The structures of oligoporins D-F were determined using spectroscopic analyses. The isolated oligoporins and the bitter indolalkaloid infractopicrin from Cortinarius infractus were functionally screened with all TAS2Rs. For all compounds, at least one responding receptor was identified. Oligoporin D activated TAS2R46 already at a submicromolar concentration and thus belongs to the family of most potent bitter agonists. The addition of mushroom compounds to the list of cognate TAS2R activators lowers the existing bias of knowledge about bitter agonists.
Collapse
Affiliation(s)
- Lea M. Schmitz
- Leibniz
Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Tatjana Lang
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, 85354 Freising, Germany
| | - Alexandra Steuer
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, 85354 Freising, Germany
- Chemoinformatics
and Protein Modelling, Department of Molecular Life Sciences, School
of Life Sciences, Technical University of
Munich, 85354 Freising, Germany
| | - Luisa Koppelmann
- Leibniz
Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Antonella Di Pizio
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, 85354 Freising, Germany
- Chemoinformatics
and Protein Modelling, Department of Molecular Life Sciences, School
of Life Sciences, Technical University of
Munich, 85354 Freising, Germany
| | - Norbert Arnold
- Leibniz
Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Maik Behrens
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, 85354 Freising, Germany
| |
Collapse
|
4
|
Subramanian G, Ponnusamy V, Murugesan J, Vedagiri H, Panneerselvan P, Vasanthakumar K, Krishnan V, Subramaniam S. Structure-function relationships between the human bitter taste receptor TAS2R38 and propylthiouracil: An in-silico investigation. IUBMB Life 2025; 77:e70008. [PMID: 39970077 DOI: 10.1002/iub.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/05/2025] [Indexed: 02/21/2025]
Abstract
Taster categorisation uses bitter thiourea compounds like propylthiouracil (PROP) and phenylthiocarbamide (PTC), which are frequently associated with amino acid alterations at positions 49, 262 and 296 in human taste 2 receptor member 38 (hTAS2R38). Since the hTAS2R38 protein lacked a crystallographic structure, it was modelled using contact-guided iterative threading assembly refinement, its residues were mutated and refined, and the binding pocket area and volume were assessed using CASTp. Bitter thiourea molecules were docked using the ligand extra precision module and the receptor-ligand complex was manually positioned in a fully hydrated, equilibrated 1-palmitoyl-2-oleoylphosphatidylcholine bilayer using the CHARMM GUI membrane constructor, a 100 ns simulation was carried out using the Desmond program. Analysis revealed that the PROP binds to the allosteric hydrophobic pocket of hTAS2R38 and forms a hydrogen bond with ASN190. The native structure (hTAS2R38PAV) has a higher glide energy (-24.164 kcal/mol) and docking score (-7.212 kcal/mol) than mutants, corroborating our taste preference study. In contrast, PTC lacks hydrogen bonds in the binding pocket but exhibits pi-pi stacking interactions with the native structure. Structures with mutations at the 49th or 296th position showed the largest root mean square deviations and fluctuations. A triple mutation increases surface area and volume, making the 262nd position critical to the binding pocket. These results highlight the functional roles of these three residues in hTAS2R38.
Collapse
Affiliation(s)
- Gowtham Subramanian
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, India
| | - Vinithra Ponnusamy
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, India
| | - Janaranjani Murugesan
- Medical Genomics Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, India
| | - Hemamalini Vedagiri
- Medical Genomics Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, India
| | - Prabha Panneerselvan
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, India
| | - Keerthana Vasanthakumar
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, India
| | - Vasanth Krishnan
- Molecular Biology Laboratory, Department of Botany, School of Life Sciences, Bharathiar University, Coimbatore, India
| | - Selvakumar Subramaniam
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, India
| |
Collapse
|
5
|
Nguyen H, Lin C, Bell K, Huang A, Hannum M, Ramirez V, Christensen C, Rawson NE, Colquitt L, Domanico P, Sasimovich I, Herriman R, Joseph P, Braimah O, Reed DR. Worldwide study of the taste of bitter medicines and their modifiers. Chem Senses 2025; 50:bjaf003. [PMID: 39902731 PMCID: PMC12010088 DOI: 10.1093/chemse/bjaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Indexed: 02/06/2025] Open
Abstract
The bitter taste of medicines hinders patient compliance, but not everyone experiences these difficulties because people worldwide differ in their bitterness perception. To better understand how people from diverse ancestries perceive medicines and taste modifiers, 338 adults, European and recent US and Canadian immigrants from Asia, South Asia, and Africa, rated the bitterness intensity of taste solutions on a 100-point generalized visual analog scale and provided a saliva sample for genotyping. The taste solutions were 5 medicines, tenofovir alafenamide (TAF), moxifloxacin, praziquantel, amodiaquine, and propylthiouracil (PROP), and 4 other solutions, TAF mixed with sucralose (sweet, reduces bitterness) or 6-methylflavone (tasteless, reduces bitterness), sucralose alone, and sodium chloride alone. Bitterness ratings differed by ancestry for 2 of the 5 drugs (amodiaquine and PROP) and for TAF mixed with sucralose. Genetic analysis showed that people with variants in 1 bitter receptor variant gene (TAS2R38) reported PROP was more bitter than did those with a different variant (P = 7.6e-19) and that people with either an RIMS2 or a THSD4 genotype found sucralose more bitter than did others (P = 2.6e-8, P = 7.9e-11, respectively). Our findings may help guide the formulation of bad-tasting medicines to meet the needs of those most sensitive to them.
Collapse
Affiliation(s)
- Ha Nguyen
- Monell Chemical Senses Center, Philadelphia, PA, United States
| | - Cailu Lin
- Monell Chemical Senses Center, Philadelphia, PA, United States
| | - Katherine Bell
- Monell Chemical Senses Center, Philadelphia, PA, United States
| | - Amy Huang
- Monell Chemical Senses Center, Philadelphia, PA, United States
| | | | - Vicente Ramirez
- Monell Chemical Senses Center, Philadelphia, PA, United States
| | | | - Nancy E Rawson
- Monell Chemical Senses Center, Philadelphia, PA, United States
| | - Lauren Colquitt
- Monell Chemical Senses Center, Philadelphia, PA, United States
| | - Paul Domanico
- Clinton Health Access Initiative, Boston, MA, United States
| | | | - Riley Herriman
- Monell Chemical Senses Center, Philadelphia, PA, United States
| | - Paule Joseph
- National Institute of Alcohol Abuse and Alcoholism and National Institute of Nursing Research, Bethesda, MD, United States
| | | | - Danielle R Reed
- Monell Chemical Senses Center, Philadelphia, PA, United States
| |
Collapse
|
6
|
Schöneberg T. Modulating vertebrate physiology by genomic fine-tuning of GPCR functions. Physiol Rev 2025; 105:383-439. [PMID: 39052017 DOI: 10.1152/physrev.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024] Open
Abstract
G protein-coupled receptors (GPCRs) play a crucial role as membrane receptors, facilitating the communication of eukaryotic species with their environment and regulating cellular and organ interactions. Consequently, GPCRs hold immense potential in contributing to adaptation to ecological niches and responding to environmental shifts. Comparative analyses of vertebrate genomes reveal patterns of GPCR gene loss, expansion, and signatures of selection. Integrating these genomic data with insights from functional analyses of gene variants enables the interpretation of genotype-phenotype correlations. This review underscores the involvement of GPCRs in adaptive processes, presenting numerous examples of how alterations in GPCR functionality influence vertebrate physiology or, conversely, how environmental changes impact GPCR functions. The findings demonstrate that modifications in GPCR function contribute to adapting to aquatic, arid, and nocturnal habitats, influencing camouflage strategies, and specializing in particular dietary preferences. Furthermore, the adaptability of GPCR functions provides an effective mechanism in facilitating past, recent, or ongoing adaptations in animal domestication and human evolution and should be considered in therapeutic strategies and drug development.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
- School of Medicine, University of Global Health Equity, Kigali, Rwanda
| |
Collapse
|
7
|
Behrens M. International Union of Basic and Clinical Pharmacology. CXVII: Taste 2 receptors-Structures, functions, activators, and blockers. Pharmacol Rev 2025; 77:100001. [PMID: 39952694 DOI: 10.1124/pharmrev.123.001140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/20/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
For most vertebrates, bitter perception plays a critical role in the detection of potentially harmful substances in food items. The detection of bitter compounds is facilitated by specialized receptors located in the taste buds of the oral cavity. This work focuses on these receptors, including their sensitivities, structure-function relationships, agonists, and antagonists. The existence of numerous bitter taste receptor variants in the human population and the fact that several of them profoundly affect individual perceptions of bitter tastes are discussed as well. Moreover, the identification of bitter taste receptors in numerous tissues outside the oral cavity and their multiple proposed roles in these tissues are described briefly. Although this work is mainly focused on human bitter taste receptors, it is imperative to compare human bitter taste with bitter taste of other animals to understand which forces might have shaped the evolution of bitter taste receptors and their functions and to distinguish apparently typical human features from rather general ones. For readers who are not very familiar with the gustatory system, short descriptions of taste anatomy, signal transduction, and oral bitter taste receptor expression are included in the beginning of this article. SIGNIFICANCE STATEMENT: Apart from their role as sensors for potentially harmful substances in the oral cavity, the numerous additional roles of bitter taste receptors in tissues outside the gustatory system have recently received much attention. For careful assessment of their functions inside and outside the taste system, a solid knowledge of the specific and general pharmacological features of these receptors and the growing toolbox available for studying them is imperative and provided in this work.
Collapse
Affiliation(s)
- Maik Behrens
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany.
| |
Collapse
|
8
|
Itoigawa A, Nakagita T, Toda Y. The Remarkable Diversity of Vertebrate Bitter Taste Receptors: Recent Advances in Genomic and Functional Studies. Int J Mol Sci 2024; 25:12654. [PMID: 39684366 PMCID: PMC11641376 DOI: 10.3390/ijms252312654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
Bitter taste perception is crucial for animal survival. By detecting potentially harmful substances, such as plant secondary metabolites, as bitter, animals can avoid ingesting toxic compounds. In vertebrates, this function is mediated by taste receptors type 2 (T2Rs), a family of G protein-coupled receptors (GPCRs) expressed on taste buds. Given their vital roles, T2Rs have undergone significant selective pressures throughout vertebrate evolution, leading to frequent gene duplications and deletions, functional changes, and intrapopulation differentiation across various lineages. Recent advancements in genomic and functional research have uncovered the repertoires and functions of bitter taste receptors in a wide range of vertebrate species, shedding light on their evolution in relation to dietary habits and other ecological factors. This review summarizes recent research on bitter taste receptors and explores the mechanisms driving the diversity of these receptors from the perspective of vertebrate ecology and evolution.
Collapse
Affiliation(s)
- Akihiro Itoigawa
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku 102-0083, Tokyo, Japan
| | - Tomoya Nakagita
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| | - Yasuka Toda
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| |
Collapse
|
9
|
Wang X, Bai G, Liang J, Xie Q, Chen Z, Zhou E, Li M, Wei X, Sun L, Zhang Z, Yang C, Tao TH, Zhou Z. Gustatory interface for operative assessment and taste decoding in patients with tongue cancer. Nat Commun 2024; 15:8967. [PMID: 39420050 PMCID: PMC11487085 DOI: 10.1038/s41467-024-53379-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
Taste, a pivotal sense modality, plays a fundamental role in discerning flavors and evaluating the potential harm of food, thereby contributing to human survival, physical and mental health. Patients with tongue cancer may experience a loss of taste following extensive surgical resection with flap reconstruction. Here, we designed a gustatory interface that enables the non-invasive detection of tongue electrical activities for a comprehensive operative assessment. Moreover, it decodes gustatory information from the reconstructed tongue without taste buds. Our gustatory interface facilitates the recording and analysis of electrical activities on the tongue, yielding an electrical mapping across the entire tongue surface, which delineates the safe margin for surgical management and assesses flap viability for postoperative structure monitoring and prompt intervention. Furthermore, the gustatory interface helps patients discern tastes with an accuracy of 97.8%. Our invention offers a promising approach to clinical assessment and management and holds potential for improving the quality of life for individuals with tongue cancer.
Collapse
Affiliation(s)
- Xiner Wang
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guo Bai
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Jizhi Liang
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianyang Xie
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | | | - Erda Zhou
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Li
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xiaoling Wei
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Liuyang Sun
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiyuan Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Chi Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China.
| | - Tiger H Tao
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Neuroxess Co. Ltd, Shanghai, 200023, China.
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, 519031, China.
- Tianqiao and Chrissy Chen Institute for Translational Research, Shanghai, China.
| | - Zhitao Zhou
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| |
Collapse
|
10
|
Ferreira MH, Bezinelli LM, de Paula Eduardo F, Pereira AZ, Hamerschlak N, Corrêa L. Photobiomodulation minimizes taste changes during hematopoietic cell transplantation: A randomized clinical trial. JOURNAL OF BIOPHOTONICS 2024; 17:e202400095. [PMID: 38850248 DOI: 10.1002/jbio.202400095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024]
Abstract
Prevention and treatment protocols for taste changes observed during hematopoietic cell transplantation (HCT) are not well-established. The purpose of this study was to assess the efficacy of photobiomodulation (PBM) in relieving taste changes and preventing lingual papillae atrophy. HCT patients received PBM (n = 42) on the tongue dorsum using an InGaAIP laser (660 nm, 100 mW, 1.1 W/cm2, 8.8 J/cm2). During the HCT conditioning (T0), severe neutropenia (T1), and after neutrophil engraftment (T2), taste acuity for sweet, bitter, sour, and salty solutions, and clinical appearance of lingual papillae were compared with those of a placebo group (n = 43). PBM significantly reduced hypogeusia, ageusia, and parageusia at T1 and T2, and also successfully prevented papillae atrophy during all the analyzed HCT periods. In conclusion, PBM enhanced taste acuity during HCT. The decrease in papillae atrophy indicated a potential regenerative effect of this therapy on tongue mucosa.
Collapse
Affiliation(s)
- Mariana Henriques Ferreira
- Hospital Israelita Albert Einstein, São Paulo, Brazil
- Pathology Department, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | - Luciana Corrêa
- Pathology Department, School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Morini G. The taste for health: the role of taste receptors and their ligands in the complex food/health relationship. Front Nutr 2024; 11:1396393. [PMID: 38873558 PMCID: PMC11169839 DOI: 10.3389/fnut.2024.1396393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/03/2024] [Indexed: 06/15/2024] Open
Abstract
Taste, food, and health are terms that have since always accompanied the act of eating, but the association was simple: taste serves to classify a food as good or bad and therefore influences food choices, which determine the nutritional status and therefore health. The identification of taste receptors, particularly, the G protein-coupled receptors that mediate sweet, umami, and bitter tastes, in the gastrointestinal tract has assigned them much more relevant tasks, from nutrient sensing and hormone release to microbiota composition and immune response and finally to a rationale for the gut-brain axis. Particularly interesting are bitter taste receptors since most of the times they do not mediate macronutrients (energy). The relevant roles of bitter taste receptors in the gut indicate that they could become new drug targets and their ligands new medications or components in nutraceutical formulations. Traditional knowledge from different cultures reported that bitterness intensity was an indicator for distinguishing plants used as food from those used as medicine, and many non-cultivated plants were used to control glucose level and treat diabetes, modulate hunger, and heal gastrointestinal disorders caused by pathogens and parasites. This concept represents a means for the scientific integration of ancient wisdom with advanced medicine, constituting a possible boost for more sustainable food and functional food innovation and design.
Collapse
|
12
|
Schaefer S, Ziegler F, Lang T, Steuer A, Di Pizio A, Behrens M. Membrane-bound chemoreception of bitter bile acids and peptides is mediated by the same subset of bitter taste receptors. Cell Mol Life Sci 2024; 81:217. [PMID: 38748186 PMCID: PMC11096235 DOI: 10.1007/s00018-024-05202-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 05/18/2024]
Abstract
The vertebrate sense of taste allows rapid assessment of the nutritional quality and potential presence of harmful substances prior to ingestion. Among the five basic taste qualities, salty, sour, sweet, umami, and bitter, bitterness is associated with the presence of putative toxic substances and elicits rejection behaviors in a wide range of animals including humans. However, not all bitter substances are harmful, some are thought to be health-beneficial and nutritious. Among those compound classes that elicit a bitter taste although being non-toxic and partly even essential for humans are bitter peptides and L-amino acids. Using functional heterologous expression assays, we observed that the 5 dominant human bitter taste receptors responsive to bitter peptides and amino acids are activated by bile acids, which are notorious for their extreme bitterness. We further demonstrate that the cross-reactivity of bitter taste receptors for these two different compound classes is evolutionary conserved and can be traced back to the amphibian lineage. Moreover, we show that the cross-detection by some receptors relies on "structural mimicry" between the very bitter peptide L-Trp-Trp-Trp and bile acids, whereas other receptors exhibit a phylogenetic conservation of this trait. As some bile acid-sensitive bitter taste receptor genes fulfill dual-roles in gustatory and non-gustatory systems, we suggest that the phylogenetic conservation of the rather surprising cross-detection of the two substance classes could rely on a gene-sharing-like mechanism in which the non-gustatory function accounts for the bitter taste response to amino acids and peptides.
Collapse
Affiliation(s)
- Silvia Schaefer
- TUM Graduate School, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Alte Akademie 8, 85354, Freising, Germany
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Strasse 34, 85354, Freising, Germany
| | - Florian Ziegler
- TUM Graduate School, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Alte Akademie 8, 85354, Freising, Germany
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Strasse 34, 85354, Freising, Germany
| | - Tatjana Lang
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Strasse 34, 85354, Freising, Germany
| | - Alexandra Steuer
- TUM Graduate School, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Alte Akademie 8, 85354, Freising, Germany
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Strasse 34, 85354, Freising, Germany
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Strasse 34, 85354, Freising, Germany
- Chemoinformatics and Protein Modelling, Technical University of Munich, Freising, Germany
| | - Maik Behrens
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Strasse 34, 85354, Freising, Germany.
| |
Collapse
|
13
|
Chu X, Zhu W, Li X, Su E, Wang J. Bitter flavors and bitter compounds in foods: identification, perception, and reduction techniques. Food Res Int 2024; 183:114234. [PMID: 38760147 DOI: 10.1016/j.foodres.2024.114234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 05/19/2024]
Abstract
Bitterness is one of the five basic tastes generally considered undesirable. The widespread presence of bitter compounds can negatively affect the palatability of foods. The classification and sensory evaluation of bitter compounds have been the focus in recent research. However, the rigorous identification of bitter tastes and further studies to effectively mask or remove them have not been thoroughly evaluated. The present paper focuses on identification of bitter compounds in foods, structural-based activation of bitter receptors, and strategies to reduce bitter compounds in foods. It also discusses the roles of metabolomics and virtual screening analysis in bitter taste. The identification of bitter compounds has seen greater success through metabolomics with multivariate statistical analysis compared to conventional chromatography, HPLC, LC-MS, and NMR techniques. However, to avoid false positives, sensory recognition should be combined. Bitter perception involves the structural activation of bitter taste receptors (TAS2Rs). Only 25 human TAS2Rs have been identified as responsible for recognizing numerous bitter compounds, showcasing their high structural diversity to bitter agonists. Thus, reducing bitterness can be achieved through several methods. Traditionally, the removal or degradation of bitter substances has been used for debittering, while the masking of bitterness presents a new effective approach to improving food flavor. Future research in food bitterness should focus on identifying unknown bitter compounds in food, elucidating the mechanisms of activation of different receptors, and developing debittering techniques based on the entire food matrix.
Collapse
Affiliation(s)
- Xinyu Chu
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wangsheng Zhu
- Engineering Technology Research Center for Plant Cell of Anhui Province, West Anhui University, Anhui 237012, China
| | - Xue Li
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Erzheng Su
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center of Efficient Procession of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Jiahong Wang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center of Efficient Procession of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
14
|
Nguyen H, Lin C, Bell K, Huang A, Hannum M, Ramirez V, Christensen C, Rawson NE, Colquitt L, Domanico P, Sasimovich I, Herriman R, Joseph P, Braimah O, Reed DR. Worldwide study of the taste of bitter medicines and their modifiers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590957. [PMID: 38712219 PMCID: PMC11071635 DOI: 10.1101/2024.04.24.590957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The bitter taste of medicines hinders patient compliance, but not everyone experiences these difficulties because people worldwide differ in their bitterness perception. To better understand how people from diverse ancestries perceive medicines and taste modifiers, 338 adults, European and recent US and Canada immigrants from Asia, South Asia, and Africa, rated the bitterness intensity of taste solutions on a 100-point generalized visual analog scale and provided a saliva sample for genotyping. The taste solutions were five medicines, tenofovir alafenamide (TAF), moxifloxacin, praziquantel, amodiaquine, and propylthiouracil (PROP), and four other solutions, TAF mixed with sucralose (sweet, reduces bitterness) or 6-methylflavone (tasteless, reduces bitterness), sucralose alone, and sodium chloride alone. Bitterness ratings differed by ancestry for two of the five drugs (amodiaquine and PROP) and for TAF mixed with sucralose. Genetic analysis showed that people with variants in one bitter receptor variant gene (TAS2R38) reported PROP was more bitter than did those with a different variant (p= 7.6e-19) and that people with either an RIMS2 or a THSD4 genotype found sucralose more bitter than did others (p=2.6e-8, p=7.9e-11, resp.). Our findings may help guide the formulation of bad-tasting medicines to meet the needs of those most sensitive to them.
Collapse
Affiliation(s)
- Ha Nguyen
- Monell Chemical Senses Center, Philadelphia PA, USA
| | - Cailu Lin
- Monell Chemical Senses Center, Philadelphia PA, USA
| | | | - Amy Huang
- Monell Chemical Senses Center, Philadelphia PA, USA
| | | | | | | | | | | | | | | | | | - Paule Joseph
- National Institute of Alcohol Abuse and Alcoholism & National Institute of Nursing Research, Bethesda MD, USA
| | | | | |
Collapse
|
15
|
Bartnik M. Methoxyfuranocoumarins of Natural Origin-Updating Biological Activity Research and Searching for New Directions-A Review. Curr Issues Mol Biol 2024; 46:856-883. [PMID: 38275669 PMCID: PMC10813879 DOI: 10.3390/cimb46010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Plant secondary metabolites, including furanocoumarins, have attracted attention for decades as active molecules with therapeutic potential, especially those occurring in a limited number of species as evolutionarily specific and chemotaxonomically important. The most famous methoxyfuranocoumarins (MFCs), bergapten, xanthotoxin, isopimpinellin, phellopterin, byakangelicol, byakangelicin, isobergapten, pimpinellin, sphondin, as well as rare ones such as peucedanin and 8-methoxypeucedanin, apaensin, cnidilin, moellendorffiline and dahuribiethrins, have recently been investigated for their various biological activities. The α-glucosidase inhibitory activity and antioxidant potential of moellendorffiline, the antiproliferative and proapoptotic properties of non-UV-activated bergapten and xanthotoxin, the effect of MFC on the activity of tyrosinase, acetyl- and butylcholinesterase, and the role of these compounds as adjuvants in anticancer and antibacterial tests have been confirmed. The anticonvulsant effects of halfordin, the antidepressant effects of xanthotoxin, and the antiadipogenic, neuroprotective, anti-amyloid-β, and anti-inflammatory (via increasing SIRT 1 protein expression) properties of phellopterin, as well as the activity of sphondin against hepatitis B virus, have also attracted interest. It is worth paying attention to the agonistic effect of xanthotoxin on bitter taste receptors (TAS2Rs) on cardiomyocytes, which may be important in the future treatment of tachycardia, as well as the significant anti-inflammatory activity of dahuribiethrins. It should be emphasized that MFCs, although in many cases isolated for the first time many years ago, are still of great interest as bioactive molecules. The aim of this review is to highlight key recent developments in the study of the diverse biological activities of MFCs and attempt to highlight promising directions for their further research. Where possible, descriptions of the mechanisms of action of MFC are provided, which is related to the constantly discovered therapeutic potential of these molecules. The review covers the results of experiments from the last ten years (2014-2023) conducted on isolated natural cMFCs and includes the activity of molecules that have not been activated by UV rays.
Collapse
Affiliation(s)
- Magdalena Bartnik
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Chodźki 1 Street, 20-093 Lublin, Poland
| |
Collapse
|
16
|
Behrens M, Lang T, Korsching SI. A singular shark bitter taste receptor provides insights into the evolution of bitter taste perception. Proc Natl Acad Sci U S A 2023; 120:e2310347120. [PMID: 37956436 PMCID: PMC10691231 DOI: 10.1073/pnas.2310347120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/05/2023] [Indexed: 11/15/2023] Open
Abstract
Many animal and plant species synthesize toxic compounds as deterrent; thus, detection of these compounds is of vital importance to avoid their ingestion. Often, such compounds are recognized by taste 2 receptors that mediate bitter taste in humans. Until now, bitter taste receptors have only been found in bony vertebrates, where they occur as a large family already in coelacanth, a "living fossil" and the earliest-diverging extant lobe-finned fish. Here, we have revisited the evolutionary origin of taste 2 receptors (T2Rs) making use of a multitude of recently available cartilaginous fish genomes. We have identified a singular T2R in 12 cartilaginous fish species (9 sharks, 1 sawfish, and 2 skates), which represents a sister clade to all bony fish T2Rs. We have examined its ligands for two shark species, a catshark and a bamboo shark. The ligand repertoire of bamboo shark represents a subset of that of the catshark, with roughly similar thresholds. Amarogentin, one of the most bitter natural substances for humans, also elicited the highest signal amplitudes with both shark receptors. Other subsets of ligands are shared with basal bony fish T2Rs indicating an astonishing degree of functional conservation over nearly 500 mya of separate evolution. Both shark receptors respond to endogenous steroids as well as xenobiotic compounds, whereas separate receptors exist for xenobiotics both in early- and late-derived bony vertebrates (coelacanth, zebrafish, and human), consistent with the shark T2R reflecting the original ligand repertoire of the ancestral bitter taste receptor at the evolutionary origin of this family.
Collapse
Affiliation(s)
- Maik Behrens
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising85354, Germany
| | - Tatjana Lang
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising85354, Germany
| | - Sigrun I. Korsching
- Institute of Genetics, Faculty of Mathematics and Natural Sciences, University at Cologne, Cologne50674, Germany
| |
Collapse
|
17
|
Zhou Y, Zhang Y, Hong H, Luo Y, Li B, Tan Y. Mastering the art of taming: Reducing bitterness in fish by-products derived peptides. Food Res Int 2023; 173:113241. [PMID: 37803554 DOI: 10.1016/j.foodres.2023.113241] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 10/08/2023]
Abstract
Processed fish by-products are valuable sources of peptides due to their high protein content. However, the bitterness of these peptides can limit their use. This review outlines the most recent advancements and information regarding the reduction of bitterness in fish by-products derived peptides. The sources and factors influencing bitterness, the transduction mechanisms involved, and strategies for reducing bitterness are highlighted. Bitterness in peptides is mainly influenced by the source, preparation method, presence of hydrophobic amino acid groups, binding to bitter receptors, and amino acid sequence. The most widely utilized techniques for eliminating bitterness or enhancing taste include the Maillard reaction, encapsulation, seperating undesirable components, and bitter-blockers. Finally, a summary of the current challenges and future prospects in the domain of fish by-products derived peptides is given. Despite some limitations, such as residual bitterness and limited industrial application, there is a need for further research to reduce the bitterness of fish by-products derived peptides. To achieve this goal, future studies should focus on the technology of fish by-products derived peptide bitterness diminishment, with the aim of producing high-quality products that meet consumer expectations.
Collapse
Affiliation(s)
- Yongjie Zhou
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yan Zhang
- Experimental Seafood Processing Laboratory, Coastal Research and Extension Center, Mississippi State University, Pascagoula, MS 39567, USA
| | - Hui Hong
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongkang Luo
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bo Li
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuqing Tan
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
18
|
Kumar P, Redel U, Lang T, Korsching SI, Behrens M. Bitter taste receptors of the zebra finch ( Taeniopygia guttata). Front Physiol 2023; 14:1233711. [PMID: 37860623 PMCID: PMC10582322 DOI: 10.3389/fphys.2023.1233711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
Despite the important role of bitter taste for the rejection of potentially harmful food sources, birds have long been suspected to exhibit inferior bitter tasting abilities. Although more recent reports on the bitter recognition spectra of several bird species have cast doubt about the validity of this assumption, the bitter taste of avian species is still an understudied field. Previously, we reported the bitter activation profiles of three zebra finch receptors Tas2r5, -r6, and -r7, which represent orthologs of a single chicken bitter taste receptor, Tas2r1. In order to get a better understanding of the bitter tasting capabilities of zebra finches, we selected another Tas2r gene of this species that is similar to another chicken Tas2r. Using functional calcium mobilization experiments, we screened zebra finch Tas2r1 with 72 bitter compounds and observed responses for 7 substances. Interestingly, all but one of the newly identified bitter agonists were different from those previously identified for Tas2r5, -r6, and -r7 suggesting that the newly investigated receptor fills important gaps in the zebra finch bitter recognition profile. The most potent bitter agonist found in our study is cucurbitacin I, a highly toxic natural bitter substance. We conclude that zebra finch exhibits an exquisitely developed bitter taste with pronounced cucurbitacin I sensitivity suggesting a prominent ecological role of this compound for zebra finch.
Collapse
Affiliation(s)
- Praveen Kumar
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Ulrike Redel
- German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Tatjana Lang
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | | | - Maik Behrens
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| |
Collapse
|
19
|
Pieroni A, Morini G, Piochi M, Sulaiman N, Kalle R, Haq SM, Devecchi A, Franceschini C, Zocchi DM, Migliavada R, Prakofjewa J, Sartori M, Krigas N, Ahmad M, Torri L, Sõukand R. Bitter Is Better: Wild Greens Used in the Blue Zone of Ikaria, Greece. Nutrients 2023; 15:3242. [PMID: 37513661 PMCID: PMC10385191 DOI: 10.3390/nu15143242] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
The current study reports an ethnobotanical field investigation of traditionally gathered and consumed wild greens (Chorta) in one of the five so-called Blue Zones in the world: Ikaria Isle, Greece. Through 31 semi-structured interviews, a total of 56 wild green plants were documented along with their culinary uses, linguistic labels, and locally perceived tastes. Most of the gathered greens were described as bitter and associated with members of Asteraceae and Brassicaceae botanical families (31%), while among the top-quoted wild greens, species belonging to these two plant families accounted for 50% of the wild vegetables, which were consumed mostly cooked. Cross-cultural comparison with foraging in other areas of the central-eastern Mediterranean and the Near East demonstrated a remarkable overlapping of Ikarian greens with Cretan and Sicilian, as well as in the prevalence of bitter-tasting botanical genera. Important differences with other wild greens-related food heritage were found, most notably with the Armenian and Kurdish ones, which do not commonly feature many bitter greens. The proven role of extra-oral bitter taste receptors in the modulation of gastric emptying, glucose absorption and crosstalk with microbiota opens new ways of looking at these differences, in particular with regard to possible health implications. The present study is also an important attempt to preserve and document the bio-cultural gastronomic heritage of Chorta as a quintessential part of the Mediterranean diet. The study recommends that nutritionists, food scientists, and historians, as well as policymakers and practitioners, pay the required attention to traditional rural dietary systems as models of sustainable health.
Collapse
Affiliation(s)
- Andrea Pieroni
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy
- Department of Medical Analysis, Tishk International University, Erbil 44001, Iraq
| | - Gabriella Morini
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy
| | - Maria Piochi
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy
| | - Naji Sulaiman
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy
- Department of Ethnology, Charles University, 116 38 Prague, Czech Republic
| | - Raivo Kalle
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy
- Estonian Literary Museum, Vanemuise 42, 51003 Tartu, Estonia
| | - Shiekh Marifatul Haq
- Department of Ethnobotany, Institute of Botany, Ilia State University, 0162 Tbilisi, Georgia
| | - Andrea Devecchi
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy
| | - Cinzia Franceschini
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy
| | - Dauro M Zocchi
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy
| | - Riccardo Migliavada
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy
| | - Julia Prakofjewa
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venezia, Italy
| | - Matteo Sartori
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venezia, Italy
| | - Nikos Krigas
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Demeter, 57001 Thessaloniki, Greece
| | - Mushtaq Ahmad
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Luisa Torri
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy
| | - Renata Sõukand
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venezia, Italy
| |
Collapse
|
20
|
Huang J, Li Y, Yu C, Mo R, Zhu Z, Dong Z, Hu X, Deng W. Metabolome and Transcriptome Integrated Analysis of Mulberry Leaves for Insight into the Formation of Bitter Taste. Genes (Basel) 2023; 14:1282. [PMID: 37372462 DOI: 10.3390/genes14061282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Mulberry leaves are excellent for health care, confirmed as a 'drug homologous food' by the Ministry of Health, China. The bitter taste of mulberry leaves is one of the main problems that hinders the development of the mulberry food industry. The bitter, unique taste of mulberry leaves is difficult to eliminate by post-processing. In this study, the bitter metabolites in mulberry leaves were identified as flavonoids, phenolic acids, alkaloids, coumarins and L-amino acids by a combined analysis of the metabolome and transcriptome of mulberry leaves. The analysis of the differential metabolites showed that the bitter metabolites were diverse and the sugar metabolites were down-regulated, indicating that the bitter taste of mulberry leaves was a comprehensive reflection of various bitter-related metabolites. Multi-omics analysis showed that the main metabolic pathway related to bitter taste in mulberry leaves was galactose metabolism, indicating that soluble sugar was one of the main factors of bitter taste difference in mulberry leaves. Bitter metabolites play a great role in the medicinal and functional food of mulberry leaves, but the saccharides in mulberry leaves have a great influence on the bitter taste of mulberry. Therefore, we propose to retain bitter metabolites with drug activity in mulberry leaves and increase the content of sugars to improve the bitter taste of mulberry leaves as strategies for mulberry leaf food processing and mulberry breeding for vegetable use.
Collapse
Affiliation(s)
- Jin Huang
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yong Li
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Cui Yu
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Rongli Mo
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zhixian Zhu
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zhaoxia Dong
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xingming Hu
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Wen Deng
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
21
|
Lang T, Di Pizio A, Risso D, Drayna D, Behrens M. Activation Profile of TAS2R2, the 26th Human Bitter Taste Receptor. Mol Nutr Food Res 2023; 67:e2200775. [PMID: 36929150 PMCID: PMC10239339 DOI: 10.1002/mnfr.202200775] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/02/2022] [Indexed: 03/18/2023]
Abstract
SCOPE To avoid ingestion of potentially harmful substances, humans are equipped with about 25 bitter taste receptor genes (TAS2R) expressed in oral taste cells. Humans exhibit considerable variance in their bitter tasting abilities, which are associated with genetic polymorphisms in bitter taste receptor genes. One of these variant receptor genes, TAS2R2, is initially believed to represent a pseudogene. However, TAS2R2 exists in a putative functional variant within some populations and can therefore be considered as an additional functional bitter taste receptor. METHODS AND RESULTS To learn more about the function of the experimentally neglected TAS2R2, a functional screening with 122 bitter compounds is performed. The study observes responses with eight of the 122 bitter substances and identifies the substance phenylbutazone as a unique activator of TAS2R2 among the family of TAS2Rs, thus filling one more gap in the array of cognate bitter substances. CONCLUSIONS The comprehensive characterization of the receptive range of TAS2R2 allows the classification into the group of TAS2Rs with a medium number of bitter agonists. The variability of bitter taste and its potential influences on food choice in some human populations may be even higher than assumed.
Collapse
Affiliation(s)
- Tatjana Lang
- Leibniz Institute of Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Antonella Di Pizio
- Leibniz Institute of Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Davide Risso
- National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, USA
| | - Dennis Drayna
- National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, USA
| | - Maik Behrens
- Leibniz Institute of Food Systems Biology at the Technical University of Munich, Freising, Germany
| |
Collapse
|
22
|
Cvancara DJ, Baertsch HC, Lehmann AE, Humphreys IM, Farrell NF, Marshall TB, Bhatt NK, Abuzeid WM, Jafari A. Postmarketing Reporting of Paxlovid-Related Dysgeusia: A Real-World Pharmacovigilance Study. Otolaryngol Head Neck Surg 2023. [PMID: 36821807 DOI: 10.1002/ohn.278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/16/2022] [Accepted: 01/16/2023] [Indexed: 02/07/2023]
Abstract
OBJECTIVE A novel COVID-19 therapeutic, nirmatrelvir/ritonavir (Paxlovid), is commonly associated with reports of dysgeusia. The Food and Drug Administration Adverse Event Reporting System (FAERS) database was used to determine the real-world reporting of Paxlovid-associated dysgeusia (PAD), identify associated factors, and describe the relative reporting rates of dysgeusia for Paxlovid compared to other COVID-19 therapeutics (OCT), ritonavir alone, and other protease inhibitors (OPI). STUDY DESIGN Observational retrospective. SETTING Tertiary academic medical center. METHODS We collected patient and adverse event characteristics reported in the FAERS database between January 1968 and September 2022. Disproportionality analyses were used to compare the reporting of PAD to dysgeusia reported for OCT, ritonavir, and OPI. RESULTS 345,229 adverse events were included in the present study. Dysgeusia was a frequently reported Paxlovid-associated adverse event (17.5%) and was associated with nonserious COVID-19 infection (reporting odds ratio [ROR] 1.4; 95% confidence interval [CI] 1.2, 1.7) and female sex (ROR = 1.7; 95% CI 1.6, 1.9). Paxlovid was more likely to be associated with the reporting of dysgeusia compared to OCT (ROR 305.4; 95% CI 164.1, 568.5), ritonavir (ROR 28.0; 95% CI 24.1, 32.7), and OPI (ROR 49.0; 95% CI 42.8, 56.1). CONCLUSION Dysgeusia is much more likely to be reported by patients receiving Paxlovid than those receiving OCT, ritonavir alone, or OPI. These findings suggest a potential mechanism of dysgeusia that causes distorted taste out of proportion to the background effects of COVID-19 infection and specific to nirmatrelvir. Future studies are needed to determine the underlying pathophysiology and long-term clinical implications for patients who report dysgeusia with Paxlovid.
Collapse
Affiliation(s)
- David J Cvancara
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA
| | - Hans C Baertsch
- Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ashton E Lehmann
- Department of Otolaryngology-Head and Neck Surgery, Geisinger Medical Center, Danville, Pennsylvania, USA
| | - Ian M Humphreys
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA
| | - Nyssa Fox Farrell
- Department of Otolaryngology-Head and Neck Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Thomas B Marshall
- Department of Otolaryngology-Head and Neck Surgery, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Neel K Bhatt
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA
| | - Waleed M Abuzeid
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA
| | - Aria Jafari
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA
| |
Collapse
|
23
|
Chen S, Zhou X, Lu Y, Xu K, Wen J, Cui M. Anti-HIV drugs lopinavir/ritonavir activate bitter taste receptors. Chem Senses 2023; 48:bjad035. [PMID: 37625013 PMCID: PMC10486187 DOI: 10.1093/chemse/bjad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 08/27/2023] Open
Abstract
Lopinavir and ritonavir (LPV/r) are the primary anti-human immunodeficiency virus (HIV) drugs recommended by the World Health Organization for treating children aged 3 years and above who are infected with the HIV. These drugs are typically available in liquid formulations to aid in dosing for children who cannot swallow tablets. However, the strong bitter taste associated with these medications can be a significant obstacle to adherence, particularly in young children, and can jeopardize the effectiveness of the treatment. Studies have shown that poor palatability can affect the survival rate of HIV-infected children. Therefore, developing more child-friendly protease inhibitor formulations, particularly those with improved taste, is critical for children with HIV. The molecular mechanism by which lopinavir and ritonavir activate bitter taste receptors, TAS2Rs, is not yet clear. In this study, we utilized a calcium mobilization assay to characterize the activation of bitter taste receptors by lopinavir and ritonavir. We discovered that lopinavir activates TAS2R1 and TAS2R13, while ritonavir activates TAS2R1, TAS2R8, TAS2R13, and TAS2R14. The development of bitter taste blockers that target these receptors with a safe profile would be highly desirable in eliminating the unpleasant bitter taste of these anti-HIV drugs.
Collapse
Affiliation(s)
- Shurui Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, United States
| | - Xinyi Zhou
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, United States
| | - Yongcheng Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, United States
| | - Keman Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, United States
| | - Jiao Wen
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, United States
| | - Meng Cui
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, United States
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, United States
| |
Collapse
|
24
|
Xu W, Wu L, Liu S, Liu X, Cao X, Zhou C, Zhang J, Fu Y, Guo Y, Wu Y, Tan Q, Wang L, Liu J, Jiang L, Fan Z, Pei Y, Yu J, Cheng J, Zhao S, Hao X, Liu ZJ, Hua T. Structural basis for strychnine activation of human bitter taste receptor TAS2R46. Science 2022; 377:1298-1304. [PMID: 36108005 DOI: 10.1126/science.abo1633] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Taste sensing is a sophisticated chemosensory process, and bitter taste perception is mediated by type 2 taste receptors (TAS2Rs), or class T G protein-coupled receptors. Understanding the detailed molecular mechanisms behind taste sensation is hindered by a lack of experimental receptor structures. Here, we report the cryo-electron microscopy structures of human TAS2R46 complexed with chimeric mini-G protein gustducin, in both strychnine-bound and apo forms. Several features of TAS2R46 are disclosed, including distinct receptor structures that compare with known GPCRs, a new "toggle switch," activation-related motifs, and precoupling with mini-G protein gustducin. Furthermore, the dynamic extracellular and more-static intracellular parts of TAS2R46 suggest possible diverse ligand-recognition and activation processes. This study provides a basis for further exploration of other bitter taste receptors and their therapeutic applications.
Collapse
Affiliation(s)
- Weixiu Xu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Shenhui Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiao Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoling Cao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Cui Zhou
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jinyi Zhang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - You Fu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yu Guo
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Qiwen Tan
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Ling Wang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Junlin Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Longquan Jiang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhongbo Fan
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yuan Pei
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Jingyi Yu
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaojiang Hao
- State Key Laboratory of Phytochemistry and Plant Resource in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650210, China
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
25
|
Ke X, Ma H, Yang J, Qiu M, Wang J, Han L, Zhang D. New strategies for identifying and masking the bitter taste in traditional herbal medicines: The example of Huanglian Jiedu Decoction. Front Pharmacol 2022; 13:843821. [PMID: 36060004 PMCID: PMC9431955 DOI: 10.3389/fphar.2022.843821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Suppressing the bitter taste of traditional Chinese medicine (TCM) largely has been a major clinical challenge due to complex and diverse metabolites and high dispersion of bitter metabolites in liquid preparations. In this work, we developed a novel strategy for recognizing bitter substances, hiding their bitter taste, and elucidated the mechanism of flavor masking in TCM. Huanglian Jie-Du Decoction (HLJDD) with an intense bitter taste was studied as a typical case. UHPLC-MS/MS was used to analyze the chemical components in HLJDD, whereas the bitter substances were identified by pharmacophores. Additionally, the screening results of the pharmacophores were further validated by using experimental assays. The mask formula of HLJDD was effectively screened under the condition of clear bitter substances. Subsequently, computational chemistry, molecular docking, and infrared characterization (IR) techniques were then used to explicate the mechanism of flavor masking. Consequently, neotame, γ-CD, and mPEG2000-PLLA2000 significantly reduced the bitterness of HLJDD. Specifically, mPEG2000-PLLA2000 increased the colloid proportion in the decoction system and minimized the distribution of bitter components in the real solution. Sweetener neotame suppressed the perception of bitter taste and inhibited bitter taste receptor activation to eventually reduce the bitter taste. The γ-CD included in the decoction bound the hydrophobic groups of the bitter metabolites in real solution and “packed” all or part of the bitter metabolites into the “cavity”. We established a novel approach for screening bitter substances in TCM by integrating virtual screening and experimental assays. Based on this strategy, the bitter taste masking of TCM was performed from three different aspects, namely, changing the drug phase state, component distribution, and interfering with bitter taste signal transduction. Collectively, the methods achieved a significant effect on bitter taste suppression and taste masking. Our findings will provide a novel strategy for masking the taste of TCM liquid preparation/decoction, which will in return help in improving the clinical efficacy of TCM.
Collapse
Affiliation(s)
- Xiumei Ke
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- *Correspondence: Xiumei Ke, ; Jianwei Wang, ; Li Han, ; Dingkun Zhang,
| | - Hongyan Ma
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junxuan Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Min Qiu
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianwei Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- *Correspondence: Xiumei Ke, ; Jianwei Wang, ; Li Han, ; Dingkun Zhang,
| | - Li Han
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiumei Ke, ; Jianwei Wang, ; Li Han, ; Dingkun Zhang,
| | - Dingkun Zhang
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiumei Ke, ; Jianwei Wang, ; Li Han, ; Dingkun Zhang,
| |
Collapse
|
26
|
Laffitte A, Belloir C, Neiers F, Briand L. Functional Characterization of the Venus Flytrap Domain of the Human TAS1R2 Sweet Taste Receptor. Int J Mol Sci 2022; 23:ijms23169216. [PMID: 36012481 PMCID: PMC9409066 DOI: 10.3390/ijms23169216] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
The human sweet taste receptor is a heterodimeric receptor composed of two distinct G-protein-coupled receptors (GPCRs), TAS1R2 and TAS1R3. The TAS1R2 and TAS1R3 subunits are members of a small family of class C GPCRs whose members share the same architecture, comprising a Venus Flytrap (VFT) module linked to the seven transmembrane domains (TMDs) by a short cysteine-rich region (CRR). The VFT module of TAS1R2 contains the primary binding site for most of the sweet-tasting compounds, including natural sugars and artificial and natural sweeteners. However, cellular assays, molecular docking and site-directed mutagenesis studies have revealed that the VFT, CRR and TMD of TAS1R3 interact with some sweeteners, including the sweet-tasting protein brazzein. The aim of this study was to better understand the contribution of TAS1R2-VFT in the binding of sweet stimuli. To achieve this, we heterologously expressed human TAS1R2-VFT (hTAS1R2-VFT) in Escherichia coli. Circular dichroism spectroscopic studies revealed that hTAS1R2-VFT was properly folded with evidence of secondary structures. Using size-exclusion chromatography coupled with light scattering, we found that hTAS1R2-VFT behaves as a monomer. Ligand binding quantified by intrinsic tryptophan fluorescence showed that hTAS1R2-VFT is capable of binding sweet stimuli with Kd values, in agreement with physiological detection. Furthermore, we investigated whether the impact of point mutations, already shown to have deleterious effects on cellular assays, could impact the ability of hTAS1R2-VFT to bind sweet ligands. As expected, the ligand affinities of hTAS1R2-VFT were drastically reduced through the introduction of single amino acid substitutions (D278A and E382A) known to abolish the response of the full-length TAS1R2/TAS1R3 receptor. This study demonstrates the feasibility of producing milligram quantities of hTAS1R2-VFT to further characterize the mechanism of binding interaction and perform structural studies.
Collapse
|
27
|
Margulis E, Slavutsky Y, Lang T, Behrens M, Benjamini Y, Niv MY. BitterMatch: recommendation systems for matching molecules with bitter taste receptors. J Cheminform 2022; 14:45. [PMID: 35799226 PMCID: PMC9261901 DOI: 10.1186/s13321-022-00612-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/14/2022] [Indexed: 11/10/2022] Open
Abstract
Bitterness is an aversive cue elicited by thousands of chemically diverse compounds. Bitter taste may prevent consumption of foods and jeopardize drug compliance. The G protein-coupled receptors for bitter taste, TAS2Rs, have species-dependent number of subtypes and varying expression levels in extraoral tissues. Molecular recognition by TAS2R subtypes is physiologically important, and presents a challenging case study for ligand-receptor matchmaking. Inspired by hybrid recommendation systems, we developed a new set of similarity features, and created the BitterMatch algorithm that predicts associations of ligands to receptors with ~ 80% precision at ~ 50% recall. Associations for several compounds were tested in-vitro, resulting in 80% precision and 42% recall. The encouraging performance was achieved by including receptor properties and integrating experimentally determined ligand-receptor associations with chemical ligand-to-ligand similarities. BitterMatch can predict off-targets for bitter drugs, identify novel ligands and guide flavor design. The novel features capture information regarding the molecules and their receptors, which could inform various chemoinformatic tasks. Inclusion of neighbor-informed similarities improves as experimental data mounts, and provides a generalizable framework for molecule-biotarget matching.
Collapse
Affiliation(s)
- Eitan Margulis
- The Institute of Biochemistry, Food Science and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yuli Slavutsky
- Department of Statistics and Data Science, Faculty of Social Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tatjana Lang
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Maik Behrens
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Yuval Benjamini
- Department of Statistics and Data Science, Faculty of Social Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Masha Y Niv
- The Institute of Biochemistry, Food Science and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
28
|
A Cell Co-Culture Taste Sensor Using Different Proportions of Caco-2 and SH-SY5Y Cells for Bitterness Detection. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Bitter taste receptors (T2Rs) are involved in bitter taste perception, which is one of the five basic taste modalities in mammals. In this study, a cell co-culture taste sensor using different proportions of Caco-2 cells and SH-SY5Y cells was proposed. Caco-2 cells, which endogenously expressed the human T2R38 receptor, and SH-SY5Y cells, which endogenously expressed the human T2R16 receptor, were co-cultured. Using Caco-2 cells and SH-SY5Y cells at a constant total concentration of 40 K/mL, we designed seven mixtures with [Caco-2]/([Caco-2] + [SH-SY5Y]) ratios of 0, 20, 40, 50, 60, 80, and 100%. These mixtures were then seeded on the 16 E-plates of the electric cell-substrate impedance sensor (ECIS) for bitterness detection. Theoretically, after T2R38 ligands activation, continuous evolution profiles (CEP), with [Caco-2]/([Caco-2] + [SH-SY5Y]) ratios as the x-axis and ΔCI (Max) as the y-axis, would exhibit positive correlation property. After T2R16 ligands activation, the CEP would show negative correlation property. However, when stimulated with compounds that could activate both T2R16 and T2R38, it would show different response patterns.
Collapse
|
29
|
Deng S, Zhang G, Olayemi Aluko O, Mo Z, Mao J, Zhang H, Liu X, Ma M, Wang Q, Liu H. Bitter and astringent substances in green tea: composition, human perception mechanisms, evaluation methods and factors influencing their formation. Food Res Int 2022; 157:111262. [DOI: 10.1016/j.foodres.2022.111262] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 12/01/2022]
|
30
|
Wooding SP, Ramirez VA, Behrens M. Bitter taste receptors: Genes, evolution and health. Evol Med Public Health 2021; 9:431-447. [PMID: 35154779 PMCID: PMC8830313 DOI: 10.1093/emph/eoab031] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/05/2021] [Indexed: 02/01/2023] Open
Abstract
Bitter taste perception plays vital roles in animal behavior and fitness. By signaling the presence of toxins in foods, particularly noxious defense compounds found in plants, it enables animals to avoid exposure. In vertebrates, bitter perception is initiated by TAS2Rs, a family of G protein-coupled receptors expressed on the surface of taste buds. There, oriented toward the interior of the mouth, they monitor the contents of foods, drinks and other substances as they are ingested. When bitter compounds are encountered, TAS2Rs respond by triggering neural pathways leading to sensation. The importance of this role placed TAS2Rs under selective pressures in the course of their evolution, leaving signatures in patterns of gene gain and loss, sequence polymorphism, and population structure consistent with vertebrates' diverse feeding ecologies. The protective value of bitter taste is reduced in modern humans because contemporary food supplies are safe and abundant. However, this is not always the case. Some crops, particularly in the developing world, retain surprisingly high toxicity and bitterness remains an important measure of safety. Bitter perception also shapes health through its influence on preference driven behaviors such as diet choice, alcohol intake and tobacco use. Further, allelic variation in TAS2Rs is extensive, leading to individual differences in taste sensitivity that drive these behaviors, shaping susceptibility to disease. Thus, bitter taste perception occupies a critical intersection between ancient evolutionary processes and modern human health.
Collapse
Affiliation(s)
- Stephen P Wooding
- Department of Anthropology and Health Sciences Research Institute, University of California, Merced, CA, USA
| | - Vicente A Ramirez
- Department of Public Health, University of California, Merced, CA, USA
| | - Maik Behrens
- Maik Behrens, Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| |
Collapse
|
31
|
On the human taste perception: Molecular-level understanding empowered by computational methods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
32
|
Yang MY, Kim SK, Kim D, Liggett SB, Goddard WA. Structures and Agonist Binding Sites of Bitter Taste Receptor TAS2R5 Complexed with Gi Protein and Validated against Experiment. J Phys Chem Lett 2021; 12:9293-9300. [PMID: 34542294 PMCID: PMC8650975 DOI: 10.1021/acs.jpclett.1c02162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bitter taste receptors (TAS2Rs) function in taste perception, but are also expressed in many extraoral tissues, presenting attractive therapeutic targets. TAS2R5s expressed on human airway smooth muscle cells can induce bronchodilation for treating asthma and other obstructive diseases. But TAS2R5s display low agonist affinity and the lack of a 3D structure has hindered efforts to design more active ligands. We report the structure of the activated TAS2R5 coupled to the Gi protein and bound to each of 19 agonists, using computational approaches. These agonists bind to two polar residues in TM3 that are unique for TAS2R5 among 25 TAS2R subtypes. Our predicted results correlate well with experimental results of agonist-receptor signaling coefficients, providing validation of the predicted structure. These results provide highly specific data on how agonists activate TAS2R5, how modifications of ligand structure alter receptor activation, and a guide to structure-based drug design.
Collapse
Affiliation(s)
- Moon Young Yang
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA, 91125
| | - Soo-Kyung Kim
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA, 91125
| | - Donghwa Kim
- Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, 33602
| | - Stephen B. Liggett
- Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, 33602
- Departments of Medicine and Molecular Pharmacology and Physiology, Medical Engineering, and Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, 33602
| | - William A. Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA, 91125
| |
Collapse
|
33
|
Shimizu T, Kubozono T, Asaoka R, Toda Y, Ishimaru Y. Expression profiles and functional characterization of common carp ( Cyprinus carpio) T2Rs. Biochem Biophys Rep 2021; 28:101123. [PMID: 34504956 PMCID: PMC8416640 DOI: 10.1016/j.bbrep.2021.101123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 11/24/2022] Open
Abstract
Bitter taste perception is mediated by a family of G protein-coupled receptors (T2Rs) in vertebrates. Common carp (Cyprinus carpio), which has experienced an additional round of whole genome duplication during the course of evolution, has a small number of T2R genes similar to zebrafish, a closely related cyprinid fish species, and their expression pattern at the cellular level or their cognate ligands have not been elucidated yet. Here, we showed through in situ hybridization experiments, that three common carp T2R (ccT2R) genes encoding ccT2R200-1, ccT2R202-1, and ccT2R202-2, were specifically expressed in the subsets of taste receptor cells in the lips and gill rakers. ccT2R200-1 was co-expressed with genes encoding downstream signal transduction molecules, such as PLC-β2 and Gαia. Heterologous expression system revealed that each ccT2R showed narrowly, intermediately, or broadly tuned ligand specificity, as in the case of zebrafish T2Rs. However, ccT2Rs showed different ligand profiles from their orthologous zebrafish T2Rs previously reported. Finally, we identified three ccT2Rs, namely ccT2R200-1, ccT2R200-2, and ccT2R203-1, to be activated by natural bitter compounds, andrographolide and/or picrotoxinin, which elicited no response to zebrafish T2Rs, in a dose-dependent manner. These results suggest that some ccT2Rs may have evolved to function in the oral cavity as taste receptors for natural bitter compounds found in the habitats in a species-specific manner. Common carp T2R (ccT2R) gene was co-expressed with genes encoding downstream signal transduction molecules in subsets of taste receptor cells, similar to zebrafish. Each ccT2R showed narrowly, intermediately, or broadly tuned ligand specificity, as in the case of zebrafish T2Rs; however, ccT2Rs showed different ligand profiles from their orthologous zebrafish T2Rs previously reported. Some ccT2Rs may have evolved to function in the oral cavity as taste receptors for natural bitter compounds found in the habitats in a species-specific manner.
Collapse
Affiliation(s)
- Toshiki Shimizu
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Takashi Kubozono
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Ryota Asaoka
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Yasuka Toda
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Yoshiro Ishimaru
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| |
Collapse
|
34
|
Wei X, Jiang D, Chen C, Wu J, Qin C, Yuan Q, Xue Y, Xiong Y, Zhuang L, Hu N, Wang P. Hybrid Integrated Cardiomyocyte Biosensors for Bitter Detection and Cardiotoxicity Assessment. ACS Sens 2021; 6:2593-2604. [PMID: 34253023 DOI: 10.1021/acssensors.1c00158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Among basic taste sensations, bitter taste is vital to the survival of mammals due to its indispensable role in toxin prediction or identification, so the identification of bitter compounds is of great value in the pharmaceutical and food industry. Recently, bitter taste receptor (T2Rs)-based biosensors have been developed for specific bitter detection. However, the taste biosensors based on taste cells/tissues suffer from simple function, low sensitivity, low content, and limited parameters. Here, to establish a high-content, highly sensitive, and multifunctional taste biosensor, we developed a multifunctional hybrid integrated cardiomyocyte biosensor (HICB) for bitter detection. Due to the expression of bitter taste receptors in cardiomyocytes, the HICB can recognize the specific bitter agonists by synchronously recording the extracellular field potential (EFP) and mechanical beating (MB) signals from the cultured cardiomyocytes in vitro. Multiple feature parameters were defined and extracted from the electromechanical signals of cardiomyocytes to analyze the specific responses to four typical bitter compounds. The radar map, heat map, and principal component analysis (PCA) were used to visualize and classify the specific responses. Moreover, bitter-induced cardiotoxicity also was chronically evaluated, and these bitter compounds presented an inhibition effect on the electrophysiological and contractile activities of cardiomyocytes. This high-content HICB offers an alternative platform for both bitter detection and cardiotoxicity assessment, showing promising applications in the fields of taste detection and toxicity screening.
Collapse
Affiliation(s)
- Xinwei Wei
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Deming Jiang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Changming Chen
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jianguo Wu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chunlian Qin
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qunchen Yuan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yingying Xue
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yizhou Xiong
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liujing Zhuang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ning Hu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
35
|
Morini G, Winnig M, Vennegeerts T, Borgonovo G, Bassoli A. Vanillin Activates Human Bitter Taste Receptors TAS2R14, TAS2R20, and TAS2R39. Front Nutr 2021; 8:683627. [PMID: 34307435 PMCID: PMC8298857 DOI: 10.3389/fnut.2021.683627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022] Open
Abstract
Vanilla is widely used in food preparation worldwide for its sensory properties, mainly related to its fragrance, being vanillin the major compound present in the processed vanilla. Vanillin is also known to elicit bitterness as a secondary sensory sensation, but the molecular mechanism of its bitterness has never been reported. Assay buffers of vanillin were tested in vitro on all known 25 human bitter taste receptors TAS2Rs. Three receptors, TAS2R14, TAS2R20, and TAS2R39, were activated, showing that these receptors are mediating the bitterness of vanillin. The result could be useful to improve the overall sensory profile of this broadly used food ingredient, but even more could represent the starting point for further studies to investigate the potential of vanillin in sensory nutrition and other pharmaceutical applications.
Collapse
Affiliation(s)
| | - Marcel Winnig
- IMAX Discovery GmbH, Dortmund, Germany.,Axxam S.p.A. Bresso, Italy
| | - Timo Vennegeerts
- IMAX Discovery GmbH, Dortmund, Germany.,Axxam S.p.A. Bresso, Italy
| | - Gigliola Borgonovo
- DeFENS - Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Angela Bassoli
- DeFENS - Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| |
Collapse
|
36
|
Alfonso-Prieto M. Bitter Taste and Olfactory Receptors: Beyond Chemical Sensing in the Tongue and the Nose. J Membr Biol 2021; 254:343-352. [PMID: 34173018 PMCID: PMC8231087 DOI: 10.1007/s00232-021-00182-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/29/2021] [Indexed: 11/24/2022]
Abstract
Abstract The Up-and-Coming-Scientist section of the current issue of the Journal of Membrane Biology features the invited essay by Dr. Mercedes Alfonso-Prieto, Assistant Professor at the Forschungszentrum Jülich (FZJ), Germany, and the Heinrich-Heine University Düsseldorf, Vogt Institute for Brain Research.
Dr. Alfonso-Prieto completed her doctoral degree in chemistry at the Barcelona Science Park, Spain, in 2009, pursued post-doctoral research in computational molecular sciences at Temple University, USA, and then, as a Marie Curie post-doctoral fellow at the University of Barcelona, worked on computations of enzyme reactions and modeling of photoswitchable ligands targeting neuronal receptors. In 2016, she joined the Institute for Advanced Science and the Institute for Computational Biomedicine at the FZJ, where she pursues research on modeling and simulation of chemical senses.
The invited essay by Dr. Alfonso-Prieto discusses state-of-the-art modeling of molecular receptors involved in chemical sensing – the senses of taste and smell. These receptors, and computational methods to study them, are the focus of Dr. Alfonso-Prieto’s research. Recently, Dr. Alfonso-Prieto and colleagues have presented a new methodology to predict ligand binding poses for GPCRs, and extensive computations that deciphered the ligand selectivity determinants of bitter taste receptors. These developments inform our current understanding of how taste occurs at the molecular level. Graphic Abstract ![]()
Collapse
Affiliation(s)
- Mercedes Alfonso-Prieto
- Institute for Advanced Simulations IAS-5/Institute for Neuroscience and Medicine INM-9, Computational Biomedicine, Forschungszentrum Jülich GmbH, Jülich, Germany. .,Medical Faculty, Cécile and Oskar Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
37
|
Guevara EE, Webster TH, Lawler RR, Bradley BJ, Greene LK, Ranaivonasy J, Ratsirarson J, Harris RA, Liu Y, Murali S, Raveendran M, Hughes DST, Muzny DM, Yoder AD, Worley KC, Rogers J. Comparative genomic analysis of sifakas ( Propithecus) reveals selection for folivory and high heterozygosity despite endangered status. SCIENCE ADVANCES 2021; 7:7/17/eabd2274. [PMID: 33893095 PMCID: PMC8064638 DOI: 10.1126/sciadv.abd2274] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 03/08/2021] [Indexed: 05/12/2023]
Abstract
Sifakas (genus Propithecus) are critically endangered, large-bodied diurnal lemurs that eat leaf-based diets and show corresponding anatomical and microbial adaptations to folivory. We report on the genome assembly of Coquerel's sifaka (P. coquereli) and the resequenced genomes of Verreaux's (P. verreauxi), the golden-crowned (P. tattersalli), and the diademed (P. diadema) sifakas. We find high heterozygosity in all sifakas compared with other primates and endangered mammals. Demographic reconstructions nevertheless suggest declines in effective population size beginning before human arrival on Madagascar. Comparative genomic analyses indicate pervasive accelerated evolution in the ancestral sifaka lineage affecting genes in several complementary pathways relevant to folivory, including nutrient absorption and xenobiotic and fatty acid metabolism. Sifakas show convergent evolution at the level of the pathway, gene family, gene, and amino acid substitution with other folivores. Although sifakas have relatively generalized diets, the physiological challenges of habitual folivory likely led to strong selection.
Collapse
Affiliation(s)
- Elaine E Guevara
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA.
- Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Timothy H Webster
- Department of Anthropology, University of Utah, Salt Lake City, UT 84112, USA
| | - Richard R Lawler
- Department of Sociology and Anthropology, James Madison University, Harrisonburg, VA 22807, USA
| | - Brenda J Bradley
- Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Lydia K Greene
- Duke Lemur Center, Duke University, Durham, NC 27705, USA
- Department of Biology, Duke University, Durham, NC 27708-0338, USA
| | - Jeannin Ranaivonasy
- Département Agroécologie, Biodiversité et Changement Climatique, ESSA, University of Antananarivo, Antananarivo, Madagascar
| | - Joelisoa Ratsirarson
- Département Agroécologie, Biodiversité et Changement Climatique, ESSA, University of Antananarivo, Antananarivo, Madagascar
| | - R Alan Harris
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yue Liu
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shwetha Murali
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Donna M Muzny
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC 27708-0338, USA
| | - Kim C Worley
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| |
Collapse
|
38
|
Dutta Banik D, Medler KF. Bitter, sweet, and umami signaling in taste cells: it’s not as simple as we thought. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2021.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
39
|
Risso D, Drayna D, Tofanelli S, Morini G. Open questions in sweet, umami and bitter taste genetics. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2020.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Ziegler F, Behrens M. Bitter taste receptors of the common vampire bat are functional and show conserved responses to metal ions in vitro. Proc Biol Sci 2021; 288:20210418. [PMID: 33784867 DOI: 10.1098/rspb.2021.0418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The bitter taste sensation is important to warn mammals of the ingestion of potentially toxic food compounds. For mammals, whose nutrition relies on highly specific food sources, such as blood in the case of vampire bats, it is unknown if bitter sensing is involved in prey selection. By contrast to other bat species, vampire bats exhibit numerous bitter taste receptor pseudogenes, which could point to a decreased importance of bitter taste. However, electrophysiological and behavioural studies suggest the existence of functional bitter taste transmission. To determine the agonist spectra of the three bitter taste receptors that are conserved in all three vampire bat species, we investigated the in vitro activation of Desmodus rotundus T2R1, T2R4 and T2R7. Using a set of 57 natural and synthetic bitter compounds, we were able to identify agonists for all three receptors. Hence, we confirmed a persisting functionality and, consequently, a putative biological role of bitter taste receptors in vampire bats. Furthermore, the activation of the human TAS2R7 by metal ions is shown to be conserved in D. rotundus.
Collapse
Affiliation(s)
- Florian Ziegler
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Maik Behrens
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| |
Collapse
|
41
|
Abstract
All organisms have the ability to detect chemicals in the environment, which likely evolved out of organisms' needs to detect food sources and avoid potentially harmful compounds. The taste system detects chemicals and is used to determine whether potential food items will be ingested or rejected. The sense of taste detects five known taste qualities: bitter, sweet, salty, sour, and umami, which is the detection of amino acids, specifically glutamate. These different taste qualities encompass a wide variety of chemicals that differ in their structure and as a result, the peripheral taste utilizes numerous and diverse mechanisms to detect these stimuli. In this chapter, we will summarize what is currently known about the signaling mechanisms used by taste cells to transduce stimulus signals.
Collapse
Affiliation(s)
- Debarghya Dutta Banik
- Department of Biological Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kathryn F Medler
- Department of Biological Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
42
|
Behrens M, Di Pizio A, Redel U, Meyerhof W, Korsching SI. At the Root of T2R Gene Evolution: Recognition Profiles of Coelacanth and Zebrafish Bitter Receptors. Genome Biol Evol 2020; 13:6045956. [PMID: 33355666 PMCID: PMC7851594 DOI: 10.1093/gbe/evaa264] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2020] [Indexed: 12/22/2022] Open
Abstract
The careful evaluation of food is important for survival throughout the animal kingdom, and specialized chemoreceptors have evolved to recognize nutrients, minerals, acids, and many toxins. Vertebrate bitter taste, mediated by the taste receptor type 2 (T2R) family, warns against potentially toxic compounds. During evolution T2R receptors appear first in bony fish, but the functional properties of bony fish T2R receptors are mostly unknown. We performed a phylogenetic analysis showing the “living fossil” coelacanth (Latimeria chalumnae) and zebrafish (Danio rerio) to possess T2R repertoires typical for early-diverged species in the lobe-finned and the ray-finned clade, respectively. Receptors from these two species were selected for heterologous expression assays using a diverse panel of bitter substances. Remarkably, the ligand profile of the most basal coelacanth receptor, T2R01, is identical to that of its ortholog in zebrafish, consistent with functional conservation across >400 Myr of separate evolution. The second coelacanth receptor deorphaned, T2R02, is activated by steroid hormones and bile acids, evolutionary old molecules that are potentially endogenously synthesized agonists for extraoral T2Rs. For zebrafish, we report the presence of both specialized and promiscuous T2R receptors. Moreover, we identified an antagonist for one of the zebrafish receptors suggesting that bitter antagonism contributed to shape this receptor family throughout evolution.
Collapse
Affiliation(s)
- Maik Behrens
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany.,Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Antonella Di Pizio
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Ulrike Redel
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Wolfgang Meyerhof
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | | |
Collapse
|
43
|
Ahmad R, Dalziel JE. G Protein-Coupled Receptors in Taste Physiology and Pharmacology. Front Pharmacol 2020; 11:587664. [PMID: 33390961 PMCID: PMC7774309 DOI: 10.3389/fphar.2020.587664] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Heterotrimeric G protein-coupled receptors (GPCRs) comprise the largest receptor family in mammals and are responsible for the regulation of most physiological functions. Besides mediating the sensory modalities of olfaction and vision, GPCRs also transduce signals for three basic taste qualities of sweet, umami (savory taste), and bitter, as well as the flavor sensation kokumi. Taste GPCRs reside in specialised taste receptor cells (TRCs) within taste buds. Type I taste GPCRs (TAS1R) form heterodimeric complexes that function as sweet (TAS1R2/TAS1R3) or umami (TAS1R1/TAS1R3) taste receptors, whereas Type II are monomeric bitter taste receptors or kokumi/calcium-sensing receptors. Sweet, umami and kokumi receptors share structural similarities in containing multiple agonist binding sites with pronounced selectivity while most bitter receptors contain a single binding site that is broadly tuned to a diverse array of bitter ligands in a non-selective manner. Tastant binding to the receptor activates downstream secondary messenger pathways leading to depolarization and increased intracellular calcium in TRCs, that in turn innervate the gustatory cortex in the brain. Despite recent advances in our understanding of the relationship between agonist binding and the conformational changes required for receptor activation, several major challenges and questions remain in taste GPCR biology that are discussed in the present review. In recent years, intensive integrative approaches combining heterologous expression, mutagenesis and homology modeling have together provided insight regarding agonist binding site locations and molecular mechanisms of orthosteric and allosteric modulation. In addition, studies based on transgenic mice, utilizing either global or conditional knock out strategies have provided insights to taste receptor signal transduction mechanisms and their roles in physiology. However, the need for more functional studies in a physiological context is apparent and would be enhanced by a crystallized structure of taste receptors for a more complete picture of their pharmacological mechanisms.
Collapse
Affiliation(s)
- Raise Ahmad
- Food Nutrition and Health Team, Food and Bio-based Products Group, AgResearch, Palmerston North, New Zealand
| | - Julie E Dalziel
- Food Nutrition and Health Team, Food and Bio-based Products Group, AgResearch, Palmerston North, New Zealand
| |
Collapse
|
44
|
Risso D, Drayna D, Morini G. Alteration, Reduction and Taste Loss: Main Causes and Potential Implications on Dietary Habits. Nutrients 2020; 12:E3284. [PMID: 33120898 PMCID: PMC7693910 DOI: 10.3390/nu12113284] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/29/2020] [Accepted: 10/23/2020] [Indexed: 01/04/2023] Open
Abstract
Our sense of taste arises from the sensory information generated after compounds in the oral cavity and oropharynx activate taste receptor cells situated on taste buds. This produces the perception of sweet, bitter, salty, sour, or umami stimuli, depending on the chemical nature of the tastant. Taste impairments (dysgeusia) are alterations of this normal gustatory functioning that may result in complete taste losses (ageusia), partial reductions (hypogeusia), or over-acuteness of the sense of taste (hypergeusia). Taste impairments are not life-threatening conditions, but they can cause sufficient discomfort and lead to appetite loss and changes in eating habits, with possible effects on health. Determinants of such alterations are multiple and consist of both genetic and environmental factors, including aging, exposure to chemicals, drugs, trauma, high alcohol consumption, cigarette smoking, poor oral health, malnutrition, and viral upper respiratory infections including influenza. Disturbances or loss of smell, taste, and chemesthesis have also emerged as predominant neurological symptoms of infection by the recent Coronavirus disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus strain 2 (SARS-CoV-2), as well as by previous both endemic and pandemic coronaviruses such as Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and SARS-CoV. This review is focused on the main causes of alteration, reduction, and loss of taste and their potential repercussion on dietary habits and health, with a special focus on the recently developed hypotheses regarding the mechanisms through which SARS-CoV-2 might alter taste perception.
Collapse
Affiliation(s)
- Davide Risso
- Ferrero Group, Soremartec Italia Srl, 12051 Alba, CN, Italy
| | - Dennis Drayna
- National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA;
| | - Gabriella Morini
- University of Gastronomic Sciences, Piazza Vittorio Emanuele 9, Bra, 12042 Pollenzo, CN, Italy;
| |
Collapse
|
45
|
Structure-Function Analyses of Human Bitter Taste Receptors-Where Do We Stand? Molecules 2020; 25:molecules25194423. [PMID: 32993119 PMCID: PMC7582848 DOI: 10.3390/molecules25194423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
The finding that bitter taste receptors are expressed in numerous tissues outside the oral cavity and fulfill important roles in metabolic regulation, innate immunity and respiratory control, have made these receptors important targets for drug discovery. Efficient drug discovery depends heavily on detailed knowledge on structure-function-relationships of the target receptors. Unfortunately, experimental structures of bitter taste receptors are still lacking, and hence, the field relies mostly on structures obtained by molecular modeling combined with functional experiments and point mutageneses. The present article summarizes the current knowledge on the structure–function relationships of human bitter taste receptors. Although these receptors are difficult to express in heterologous systems and their homology with other G protein-coupled receptors is very low, detailed information are available at least for some of these receptors.
Collapse
|
46
|
Baldwin MW, Ko MC. Functional evolution of vertebrate sensory receptors. Horm Behav 2020; 124:104771. [PMID: 32437717 DOI: 10.1016/j.yhbeh.2020.104771] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
Sensory receptors enable animals to perceive their external world, and functional properties of receptors evolve to detect the specific cues relevant for an organism's survival. Changes in sensory receptor function or tuning can directly impact an organism's behavior. Functional tests of receptors from multiple species and the generation of chimeric receptors between orthologs with different properties allow for the dissection of the molecular basis of receptor function and identification of the key residues that impart functional changes in different species. Knowledge of these functionally important sites facilitates investigation into questions regarding the role of epistasis and the extent of convergence, as well as the timing of sensory shifts relative to other phenotypic changes. However, as receptors can also play roles in non-sensory tissues, and receptor responses can be modulated by numerous other factors including varying expression levels, alternative splicing, and morphological features of the sensory cell, behavioral validation can be instrumental in confirming that responses observed in heterologous systems play a sensory role. Expression profiling of sensory cells and comparative genomics approaches can shed light on cell-type specific modifications and identify other proteins that may affect receptor function and can provide insight into the correlated evolution of complex suites of traits. Here we review the evolutionary history and diversity of functional responses of the major classes of sensory receptors in vertebrates, including opsins, chemosensory receptors, and ion channels involved in temperature-sensing, mechanosensation and electroreception.
Collapse
Affiliation(s)
| | - Meng-Ching Ko
- Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
47
|
Dagan-Wiener A, Di Pizio A, Nissim I, Bahia MS, Dubovski N, Margulis E, Niv MY. BitterDB: taste ligands and receptors database in 2019. Nucleic Acids Res 2020; 47:D1179-D1185. [PMID: 30357384 PMCID: PMC6323989 DOI: 10.1093/nar/gky974] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/09/2018] [Indexed: 01/22/2023] Open
Abstract
BitterDB (http://bitterdb.agri.huji.ac.il) was introduced in 2012 as a central resource for information on bitter-tasting molecules and their receptors. The information in BitterDB is frequently used for choosing suitable ligands for experimental studies, for developing bitterness predictors, for analysis of receptors promiscuity and more. Here, we describe a major upgrade of the database, including significant increase in content as well as new features. BitterDB now holds over 1000 bitter molecules, up from the initial 550. When available, quantitative sensory data on bitterness intensity as well as toxicity information were added. For 270 molecules, at least one associated bitter taste receptor (T2R) is reported. The overall number of ligand-T2R associations is now close to 800. BitterDB was extended to several species: in addition to human, it now holds information on mouse, cat and chicken T2Rs, and the compounds that activate them. BitterDB now provides a unique platform for structure-based studies with high-quality homology models, known ligands, and for the human receptors also data from mutagenesis experiments, information on frequently occurring single nucleotide polymorphisms and links to expression levels in different tissues.
Collapse
Affiliation(s)
- Ayana Dagan-Wiener
- The Institute of Biochemistry, Food and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, 76100 Rehovot, Israel.,The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem 91904, Israel
| | - Antonella Di Pizio
- The Institute of Biochemistry, Food and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, 76100 Rehovot, Israel.,The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem 91904, Israel
| | - Ido Nissim
- The Institute of Biochemistry, Food and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, 76100 Rehovot, Israel.,The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem 91904, Israel
| | - Malkeet S Bahia
- The Institute of Biochemistry, Food and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, 76100 Rehovot, Israel.,The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem 91904, Israel
| | - Nitzan Dubovski
- The Institute of Biochemistry, Food and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, 76100 Rehovot, Israel.,The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem 91904, Israel
| | - Eitan Margulis
- The Institute of Biochemistry, Food and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, 76100 Rehovot, Israel.,The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem 91904, Israel
| | - Masha Y Niv
- The Institute of Biochemistry, Food and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, 76100 Rehovot, Israel.,The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
48
|
Ntie-Kang F. Mechanistic role of plant-based bitter principles and bitterness prediction for natural product studies I: Database and methods. PHYSICAL SCIENCES REVIEWS 2019. [DOI: 10.1515/psr-2018-0117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This chapter discusses the rationale behind the bitter sensation elicited by chemical compounds, focusing on natural products. Emphasis has been placed on a brief presentation of BitterDB (the database of bitter compounds), along with available methods for the prediction of bitterness in compounds. The fundamental basis for explaining bitterness has been provided, based on the structural features of human bitter taste receptors and have been used to shed light on the mechanistic role of a few out of the 25 known human taste receptors to provide the foundation for understanding how bitter compounds interact with their receptors. Some case studies of ligand-based prediction models based on 2D fingerprints and 3D pharmacophores, along with machine learning methods have been provided. The chapter closes with an attempt to establish the relationship between bitterness and toxicity.
Collapse
|
49
|
Fierro F, Giorgetti A, Carloni P, Meyerhof W, Alfonso-Prieto M. Dual binding mode of "bitter sugars" to their human bitter taste receptor target. Sci Rep 2019; 9:8437. [PMID: 31186454 PMCID: PMC6560132 DOI: 10.1038/s41598-019-44805-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
The 25 human bitter taste receptors (hTAS2Rs) are responsible for detecting bitter molecules present in food, and they also play several physiological and pathological roles in extraoral compartments. Therefore, understanding their ligand specificity is important both for food research and for pharmacological applications. Here we provide a molecular insight into the exquisite molecular recognition of bitter β-glycopyranosides by one of the members of this receptor subclass, hTAS2R16. Most of its agonists have in common the presence of a β-glycopyranose unit along with an extremely structurally diverse aglycon moiety. This poses the question of how hTAS2R16 can recognize such a large number of "bitter sugars". By means of hybrid molecular mechanics/coarse grained molecular dynamics simulations, here we show that the three hTAS2R16 agonists salicin, arbutin and phenyl-β-D-glucopyranoside interact with the receptor through a previously unrecognized dual binding mode. Such mechanism may offer a seamless way to fit different aglycons inside the binding cavity, while maintaining the sugar bound, similar to the strategy used by several carbohydrate-binding lectins. Our prediction is validated a posteriori by comparison with mutagenesis data and also rationalizes a wealth of structure-activity relationship data. Therefore, our findings not only provide a deeper molecular characterization of the binding determinants for the three ligands studied here, but also give insights applicable to other hTAS2R16 agonists. Together with our results for other hTAS2Rs, this study paves the way to improve our overall understanding of the structural determinants of ligand specificity in bitter taste receptors.
Collapse
Affiliation(s)
- Fabrizio Fierro
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany
- Department of Biology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Alejandro Giorgetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany
- Department of Biotechnology, University of Verona, Verona, Italy
- JARA-HPC, IAS-5/INM-9 Computational Biomedicine, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany
- JARA-HPC, IAS-5/INM-9 Computational Biomedicine, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
- Department of Physics, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
- VNU Key Laboratory "Multiscale Simulation of Complex Systems", VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Wolfgang Meyerhof
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Mercedes Alfonso-Prieto
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany.
- JARA-HPC, IAS-5/INM-9 Computational Biomedicine, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany.
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
50
|
Alfonso-Prieto M, Navarini L, Carloni P. Understanding Ligand Binding to G-Protein Coupled Receptors Using Multiscale Simulations. Front Mol Biosci 2019; 6:29. [PMID: 31131282 PMCID: PMC6510167 DOI: 10.3389/fmolb.2019.00029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/11/2019] [Indexed: 12/18/2022] Open
Abstract
Human G-protein coupled receptors (GPCRs) convey a wide variety of extracellular signals inside the cell and they are one of the main targets for pharmaceutical intervention. Rational drug design requires structural information on these receptors; however, the number of experimental structures is scarce. This gap can be filled by computational models, based on homology modeling and docking techniques. Nonetheless, the low sequence identity across GPCRs and the chemical diversity of their ligands may limit the quality of these models and hence refinement using molecular dynamics simulations is recommended. This is the case for olfactory and bitter taste receptors, which constitute the first and third largest GPCR groups and show sequence identities with the available GPCR templates below 20%. We have developed a molecular dynamics approach, based on the combination of molecular mechanics and coarse grained (MM/CG), tailored to study ligand binding in GPCRs. This approach has been applied so far to bitter taste receptor complexes, showing significant predictive power. The protein/ligand interactions observed in the simulations were consistent with extensive mutagenesis and functional data. Moreover, the simulations predicted several binding residues not previously tested, which were subsequently verified by carrying out additional experiments. Comparison of the simulations of two bitter taste receptors with different ligand selectivity also provided some insights into the binding determinants of bitter taste receptors. Although the MM/CG approach has been applied so far to a limited number of GPCR/ligand complexes, the excellent agreement of the computational models with the mutagenesis and functional data supports the applicability of this method to other GPCRs for which experimental structures are missing. This is particularly important for the challenging case of GPCRs with low sequence identity with available templates, for which molecular docking shows limited predictive power.
Collapse
Affiliation(s)
- Mercedes Alfonso-Prieto
- Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany.,Medical Faculty, Cécile and Oskar Vogt Institute for Brain Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Paolo Carloni
- Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany.,Institute for Neuroscience and Medicine INM-11, Forschungszentrum Jülich, Jülich, Germany.,Department of Physics, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany.,VNU Key Laboratory "Multiscale Simulation of Complex Systems", VNU University of Science, Vietnam National University, Hanoi, Vietnam
| |
Collapse
|