1
|
Guo W, Yao X, Chen Z, Liu T, Wang W, Zhang S, Xian J, Wang Y. Recent advance on application of biochar in remediation of heavy metal contaminated soil: Emphasis on reaction factor, immobilization mechanism and functional modification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123212. [PMID: 39531773 DOI: 10.1016/j.jenvman.2024.123212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/14/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Soil contamination with heavy metals (HMs) poses a critical environmental challenge that demands immediate attention and resolution. Among the various remediation techniques, biochar emerges as an environmentally friendly option with obvious advantages. Biochar can be obtained by pyrolysis of various biomass and has significant effects in the remediation of heavy metal pollution contaminated soil. In this study, we examined 3489 articles on biochar-based remediation of soil heavy metal contamination published between May 2009 and October 2023, utilizing the Web of Science core collection database. Based on bibliometric methods and big data statistical analysis, CiteSpace visualization software is utilized to create a knowledge map of biochar research, allowing for an analysis of keyword clustering and a summary of the current research hotspots and development trends. Furthermore, this review emphasizes factors influencing the characteristics of biochar, including raw material types, pyrolysis temperature and pyrolysis method. At the same time, the optimal conditions for producing biochar are also presented. Additionally, the mechanisms of biochar remediation for heavy metal contaminated soil are introduced in detail, including electrostatic attraction, ion exchange, physical adsorption, surface complexation and precipitation. Meanwhile, the modification and combined effects of biochar are also reviewed. Finally, the advantages and potential risks of using biochar are explored. It is aims to serve as a reference for subsequent research and promote the application of environmental remediation technologies in polluted soils.
Collapse
Affiliation(s)
- Wenpei Guo
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou, 550025, China; School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xin Yao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Zhuo Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Ting Liu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Wei Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Shujun Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Jiuqin Xian
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Yuehu Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou, 550025, China.
| |
Collapse
|
2
|
Bhat SA, Bashir O, Ul Haq SA, Amin T, Rafiq A, Ali M, Américo-Pinheiro JHP, Sher F. Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach. CHEMOSPHERE 2022; 303:134788. [PMID: 35504464 DOI: 10.1016/j.chemosphere.2022.134788] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/16/2022] [Accepted: 04/27/2022] [Indexed: 05/22/2023]
Abstract
Rapid industrialization, increased waste production and surge in agricultural activities, mining, contaminated irrigation water and industrial effluents contribute to the contamination of water resources due to heavy metal (HM) accumulation. Humans employ HM-contaminated resources to produce food, which eventually accumulates in the food chain. Decontamination of these valuable resources, as well as avoidance of additional contamination has long been needed to avoid detrimental health impacts. Phytoremediation is a realistic and promising strategy for heavy metal removal from polluted areas, based on the employment of hyper-accumulator plant species that are extremely tolerant to HMs present in the environment/soil. Green plants are used to remove, decompose, or detoxify hazardous metals in this technique. For soil decontamination, five types of phytoremediation methods have been used viz. phytostabilization, phytodegradation, rhizofiltration, phytoextraction and phytovolatilization. Traditional phytoremediation methods, on the other hand, have significant limits in terms of large-scale application, thus biotechnological efforts to modify plants for HM phytoremediation ways are being explored to improve the efficacy of plants as HM decontamination candidates. It is relatively a new technology that is widely regarded as economic, efficient and unique besides being environment friendly. New metal hyperaccumulators with high efficiency are being explored and employed for their use in phytoremediation and phytomining. Therefore, this review comprehensively discusses different strategies and biotechnological approaches for the removal of various HM containments from the environment, with emphasis on the advancements and implications of phytoremediation, along with their applications in cleaning up various toxic pollutants. Moreover, sources, effects of HMs and factors affecting phytoremediation of HMs metals have also been discussed.
Collapse
Affiliation(s)
- Shakeel Ahmad Bhat
- College of Agricultural Engineering and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, 190025, India
| | - Omar Bashir
- Department of Food Technology and Nutrition, Lovely Professional University, Punjab, 144402, India
| | - Syed Anam Ul Haq
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, 190025, India
| | - Tawheed Amin
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, 190025, India
| | - Asif Rafiq
- College of Temperate Sericulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Mirgund, Baramulla, Jammu and Kashmir, 193121, India
| | - Mudasir Ali
- College of Agricultural Engineering and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, 190025, India
| | - Juliana Heloisa Pinê Américo-Pinheiro
- School of Engineering, São Paulo State University (UNESP), Ave. Brasil Sul, Number 56, 15385-000, Ilha Solteira, SP, Brazil; Brazil University, Street Carolina Fonseca, Number 584, 08230-030, São Paulo, SP, Brazil
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| |
Collapse
|
3
|
Chu Q, Xue L, Wang B, Li D, He H, Feng Y, Han L, Yang L, Xing B. Insights into the molecular transformation in the dissolved organic compounds of agro-waste-hydrochars by microbial-aging using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. BIORESOURCE TECHNOLOGY 2021; 320:124411. [PMID: 33246237 DOI: 10.1016/j.biortech.2020.124411] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
Hydrochars-based dissolved organic matters (DOM) are easily available to organisms and thus have important influence on the biota once applying hydrochars as environment amendment. Thus, positive modifications on molecular composition of DOM is indispensable before hydrochars application. In this study, the impacts of microbial-aging by anaerobic fermentation on DOM of agro-waste-hydrochars was systematically assessed. Results revealed that microbial-aging caused lower DOM release but higher DOM molecular diversity. Moreover, microbial-aging resulted in the production of more biodegradable compounds, including lipids and proteins, and reduced the aromaticity of DOM. The highly oxygenated molecules (O/C > 0.6) were shifted into lower-order ones in the hydrochars-based DOM, suggesting the transformation of hydrophilic compounds into hydrophobic ones. Additionally, microbial-aging promoted the degradation of phenols by 99.0-98.9%, phenolic acids 37.8-73.5%, and polycyclic aromatic hydrocarbons by 83.4-90.4% in hydrochar-based DOM. Overall, this study demonstrates that microbial-aging changes the molecular characteristics of hydrochars-based DOM in a positive manner.
Collapse
Affiliation(s)
- Qingnan Chu
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain and Key Laboratory for Crop and Animal Integrated farming of Ministry of Agriculture and Rural Affairs, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Lihong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain and Key Laboratory for Crop and Animal Integrated farming of Ministry of Agriculture and Rural Affairs, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212001, China
| | - Bingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Detian Li
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain and Key Laboratory for Crop and Animal Integrated farming of Ministry of Agriculture and Rural Affairs, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Huayong He
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain and Key Laboratory for Crop and Animal Integrated farming of Ministry of Agriculture and Rural Affairs, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain and Key Laboratory for Crop and Animal Integrated farming of Ministry of Agriculture and Rural Affairs, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212001, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA.
| | - Lanfang Han
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Linzhang Yang
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain and Key Laboratory for Crop and Animal Integrated farming of Ministry of Agriculture and Rural Affairs, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
4
|
Halim MA, Rahman MM, Megharaj M, Naidu R. Cadmium Immobilization in the Rhizosphere and Plant Cellular Detoxification: Role of Plant-Growth-Promoting Rhizobacteria as a Sustainable Solution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13497-13529. [PMID: 33170689 DOI: 10.1021/acs.jafc.0c04579] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Food is the major cadmium (Cd)-exposure pathway from agricultural soils to humans and other living entities and must be reduced in an effective way. A plant can select beneficial microbes, like plant-growth-promoting rhizobacteria (PGPR), depending upon the nature of root exudates in the rhizosphere, for its own benefits, such as plant growth promotion as well as protection from metal toxicity. This review intends to seek out information on the rhizo-immobilization of Cd in polluted soils using the PGPR along with plant nutrient fertilizers. This review suggests that the rhizo-immobilization of Cd by a combination of PGPR and nanohybrid-based plant nutrient fertilizers would be a potential and sustainable technology for phytoavailable Cd immobilization in the rhizosphere and plant cellular detoxification, by keeping the plant nutrition flow and green dynamics of plant nutrition and boosting the plant growth and development under Cd stress.
Collapse
Affiliation(s)
- Md Abdul Halim
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Department of Biotechnology, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
5
|
Sha Z, Chen Z, Feng Y, Xue L, Yang L, Cao L, Chu Q. Minerals loaded with oxygen nanobubbles mitigate arsenic translocation from paddy soils to rice. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122818. [PMID: 32512435 DOI: 10.1016/j.jhazmat.2020.122818] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/09/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Inhibiting reductive transformation of arsenic (As) in flooded paddy soils is fundamentally important for mitigating As transfer into the food chain. In this study, oxygen-nanobubble-loaded-zeolites (ZON) and -vermiculites (VON) were tested as a novel approach for supplying oxygen to paddy soils to inhibit As influx into rice. The dynamic physio- and bio-chemical variations in the rhizosphere and bulk soil were profiled in a rhizobox experiment. Upon adding ZON and VON, the redox potential and dissolved oxygen consistently increased throughout the cultivation period. The improved redox environment inhibited As(III) release into porewater and increased As(V) adsorbed on crystalline Fe (hydr)oxides, following the reduction of arsC and arrA gene abundances and enhancement of the aioA gene. Moreover, adding ZON and VON promoted root iron plaque formation, which increased As retention on iron plaque. Both ZON and VON treatments mitigated As translocation from soil to rice, meanwhile increasing root and shoot biomass. ZON was superior to VON in repressing As transfer and promoting rice growth due to its higher oxygen loading capacity. This study provides a novel and environment-friendly material to both mitigate the As translocation from paddy soil to rice and improve rice growth.
Collapse
Affiliation(s)
- Zhimin Sha
- Graduate School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Zheng Chen
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, Jiangsu, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs of People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212001, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| | - Lihong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs of People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212001, China
| | - Linzhang Yang
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs of People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Linkui Cao
- Graduate School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Qingnan Chu
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs of People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
6
|
Chu Q, Xue L, Singh BP, Yu S, Müller K, Wang H, Feng Y, Pan G, Zheng X, Yang L. Sewage sludge-derived hydrochar that inhibits ammonia volatilization, improves soil nitrogen retention and rice nitrogen utilization. CHEMOSPHERE 2020; 245:125558. [PMID: 31855761 DOI: 10.1016/j.chemosphere.2019.125558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/26/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
Hydrothermal carbonization (HTC) is a promising technique for treating sewage sludge. In this study, three sewage sludge-derived hydrochars produced with water (SSHW), 1 wt% magnesium citrate (SSHM) solution, and 1 wt% magnesium citrate mixed with 1 wt% sulfuric acid (SSHMS) solution were applied to columns of packed paddy soil. We evaluated the effects of these differently modified sewage sludge-hydrochars on ammonia volatilization, soil nitrogen (N) retention and rice growth. Results showed that compared to the control, SSHMS reduced the cumulative ammonia volatilization determined after three split application of N-fertilizer. SSHM and SSHMS both reduced the yield-scale ammonia volatilization by 20.3% and 41.2% respectively. Moreover, the addition of three sewage sludge-derived hydrochars increased soil ammonium-N retention after the first supplementary fertilization; however, after the second supplementary fertilization, only SSHMS addition significantly increased soil ammonium-N retention. Of the three hydrochars tested, SSHMS has the strongest effects on soil ammonium-N retention and inhibition of ammonium-N loss in floodwater. This was attributed to increased ammonium sorption driven by SSHMS's lower surface pH and porous diameter, larger adsorption porous volume and higher abundance of carboxyl functional groups. Additionally, the increased soil N retention increased grain N content and yield. Our results provide a novel method to valorize sewage sludge into a valuable fertilizer that if applied to paddy soil it can inhibit ammonia volatilization, N loss in floodwater, and promote N use efficiency by rice, with positive implications for sustainable rice production.
Collapse
Affiliation(s)
- Qingnan Chu
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Centre of Integrated Water-Energy-Food Studies, School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Nottinghamshire, NG25 0QF, UK
| | - Lihong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212001, China
| | - Bhupinder Pal Singh
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW, 2568, Australia; School of Environmental and Life Sciences, Faculty of Science, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Shan Yu
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Karin Müller
- The New Zealand Institute for Plant & Food Research Limited, Ruakura Research Centre, Private Bag 3123, Hamilton, New Zealand
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212001, China.
| | - Gang Pan
- Centre of Integrated Water-Energy-Food Studies, School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Nottinghamshire, NG25 0QF, UK
| | - Xuebo Zheng
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Linzhang Yang
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| |
Collapse
|
7
|
Li J, Xu Y, Wang L, Li F. Heavy metal occurrence and risk assessment in dairy feeds and manures from the typical intensive dairy farms in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:6348-6358. [PMID: 30617882 DOI: 10.1007/s11356-019-04125-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Modern farming practice features extensive overuse of additives in animal feed. Subsequent use of manure as a fertilizer has resulted in significant heavy metal accumulation in agricultural soil, which is particularly apparent in areas of intensive farming. Here, samples of dairy feed, manure, water, and soil were collected from four intensive dairy farms in China and analyzed to assess selected heavy metal concentrations (Cu, Zn, Cr, Ni, Pb, and Cd). Results revealed that all feed samples contained the selected heavy metals, attesting to the wide use of additives during intensive dairy farming. The average Cr and Pb concentrations were 6.1 to 17.1 times greater than their recommended guidelines. Overall, average heavy metal concentrations in manure decreased in the following order: Zn > Cu > Cr > Ni > Pb > Cd. Using data obtained from the sequential extraction procedure, proposed by the Community Bureau of Reference (BCR), metal bioavailability also decreased according to the following order: Pb (69.4%) > Cr (63.7%) > Ni (60.8%) > Cu (53.4%) > Zn (50.0%) > Cd (34.5%). Heavy metal levels in sampled wastewater were also relatively high; however, surface and well water levels were relatively low. Although use of manure in dairy farming has not resulted in serious pollution until now, Zn, Cu, and Cd are all known to pose significant risk to soil quality. Finally, principal component analysis (PCA) results indicated that heavy metal levels in soil originated predominantly from parent soil materials and were then enhanced by anthropogenic sources.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Fadong Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
8
|
Sha Z, Watanabe T, Chu Q, Oka N, Osaki M, Shinano T. A Reduced Phosphorus Application Rate Using a Mycorrhizal Plant as the Preceding Crop Maintains Soybean Seeds' Nutritional Quality. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:32-42. [PMID: 30525606 DOI: 10.1021/acs.jafc.8b05288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We tested whether introducing an arbuscular mycorrhizal fungi (AMF)-host plant with a reduced P application rate could maintain soybean seeds' nutrient quality. The dynamic variation of 14 nutrients was analyzed in source and sink organs during the seed-filling stage. The AMF-host and non-AMF-host plants, sunflower and mustard, were grown as preceding crops (PCs). Soybeans, the succeeding crops, were planted with three different phosphorus levels, namely, 0, 50, and 150 kg P2O5 ha-1. The results showed that the AMF-host PC with a reduced P application rate maintained the seed's yield and nutrients quality. During the seed-filling stage, the AMF-host PC with a reduced P application rate increased the uptake of most nutrients compared to the non-AMF-host PC, and improved the remobilization efficiency of all nutrients except Mn, Fe, and Se, compared to the optimal P application rate. These results could help improve the utilization efficiency of P fertilizers and protect soybeans' nutritional value.
Collapse
Affiliation(s)
- Zhimin Sha
- Graduate School of Agriculture and Biology , Shanghai Jiaotong University , 200240 , Shanghai , China
- Graduate School of Agriculture , Hokkaido University , Sapporo , 062-8555 , Japan
| | - Toshihiro Watanabe
- Graduate School of Agriculture , Hokkaido University , Sapporo , 062-8555 , Japan
| | - Qingnan Chu
- Graduate School of Agriculture , Hokkaido University , Sapporo , 062-8555 , Japan
- Institute of Agricultural Resources and Environment , Jiangsu Academy of Agricultural Sciences , Nanjing , 210014 , China
- School of Animal, Rural and Environmental Sciences , Nottingham Trent University , Brackenhurst Campus, Nottingham NG2500F , U.K
| | - Norikuni Oka
- Hokkaido Agricultural Research Center/NARO , Sapporo , 062-8555 , Japan
| | - Mitsuru Osaki
- Graduate School of Agriculture , Hokkaido University , Sapporo , 062-8555 , Japan
| | - Takuro Shinano
- Tohoku Agricultural Research Center/NARO , Fukushima , 960-2156 , Japan
| |
Collapse
|
9
|
Guan DX, Sun FS, Yu GH, Polizzotto ML, Liu YG. Total and available metal concentrations in soils from six long-term fertilization sites across China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31666-31678. [PMID: 30209764 DOI: 10.1007/s11356-018-3143-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Approximately 19% of agricultural soils in China are contaminated by heavy metals. However, the effects of agricultural management practices on soil contamination are not well understood. Taking advantage of six long-term (23-34 years) field sites across China, this study examined the effects of different agricultural fertilization treatments, including control (no fertilization), inorganic nitrogen, phosphorus and potassium fertilization (NPK), manure fertilization (M), and NPK plus manure fertilization (NPKM), on the total and available metal concentrations in soils. The results showed that after 23-34 years of fertilization, the M and NPKM treatments significantly increased the total concentration of cadmium (Cd), copper (Cu), and zinc (Zn) in soils compared with the concentrations measured for the control and NPK treatments. In contrast, the fertilization treatments had almost no influence on soil lead (Pb) and nickel (Ni) concentrations. The results of analysis via diffusive gradients in thin films demonstrated that long-term sheep or cattle manure fertilization increased the available metals, especially Cd, Cu, and Zn, but long-term swine manure application decreased the available metals, except for Cu and Zn, in soils. Further analysis revealed that the manure source, soil pH level, and biogeochemical properties of metals affected the availability of Cd, Cu, Pb, Zn, and Ni in soils. Collectively, organic fertilizers had the potential to reduce metal uptake by crops, but caution should be taken to reduce metal concentrations in manure.
Collapse
Affiliation(s)
- Dong-Xing Guan
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Fu-Sheng Sun
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guang-Hui Yu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China.
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | | | - Yun-Gen Liu
- Research Center for Soil Contamination & Environment Remediation, Southwest Forestry University, Kunming, 650224, China
| |
Collapse
|
10
|
Wen J, Li Z, Huang B, Luo N, Huang M, Yang R, Zhang Q, Zhai X, Zeng G. The complexation of rhizosphere and nonrhizosphere soil organic matter with chromium: Using elemental analysis combined with FTIR spectroscopy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 154:52-58. [PMID: 29454271 DOI: 10.1016/j.ecoenv.2018.02.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 05/18/2023]
Abstract
Complexation is a main mechanism controlling the reactions between soil organic matter (SOM) and heavy metals, which still have not been fully understood up to date. The objective of this study was to compare the SOM composition of nonrhizosphere and rhizosphere in low Cr treatment with that in high Cr treatment and to find out how metal concentrations affect the complexation with SOM. The results revealed that both the hydroxyl and the carboxyl were significantly different under different Cr treatment groups. For nonrhizosphere samples, the high Cr treatment tended to have less hydroxyl contents and more structural changes on hydroxyl (3389-3381 cm-1) than the low Cr treatment (3389-3388 cm-1), while in the rhizosphere samples the reverse happened. The gap of the different Cr treated band area in the rhizosphere samples (44 a.u of the gap) was greatly smaller than that in the nonrhizosphere samples (576 a.u of the gap). In both the rhizosphere and nonrhizosphere samples, the high Cr treatment showed greater structural changes on carboxylic acids (11, 12 a.u changes based on the control) than the low Cr treatment (4, 6 a.u). The unsaturated carboxylic acids could account for downward frequency shift and the contents in the nonrhizosphere samples were slightly greater than that in the rhizosphere samples. This study used elemental analysis combined with FTIR spectroscopy to explore the effects of metal concentrations on the complexation of Cr with SOM and the composition of SOM. These findings give a way to understanding part of the complexation mechanisms between the metal and SOM.
Collapse
Affiliation(s)
- Jiajun Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhongwu Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Bin Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ninglin Luo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Mei Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ren Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qiu Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiuqing Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|